SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 1 of 17

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 2 of 17

\begin{tabular}{|c|c|c|}
\hline Q No. \& Answer \& marks \\
\hline 1A \& Any 4 \& 8 \\
\hline 1A-a \& \begin{tabular}{l}
Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures \\
Mathematical Statement: \(P=P_{1}+P_{2}+P_{3}\) \\
where P is the total pressure of gas mixture , \(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\) are partial pressures
\end{tabular} \& 1
1 \\
\hline 1A-b \& \begin{tabular}{l}
Ideal gas equation is
\[
\mathrm{PV}=\mathrm{nRT}
\] \\
Where \(\mathrm{P}=\) pressure
V=Volume \\
\(\mathrm{n}=\) number of moles \\
\(\mathrm{R}=\) Universal gas constant \\
\(\mathrm{T}=\) absolute temperature \\
Value and unit of R is \(\mathbf{8 . 3 1 4} \mathrm{KPa} \mathrm{m}^{\mathbf{3}} / \mathbf{k m o l ~ K}\)
\end{tabular} \& 1

1

\hline 1A-c \& | Standard heat of formation : |
| :--- |
| It is the amount of heat liberated or absorbed when one mol of a compound is formed from its elements at standard conditions. |
| Standard heat of combustion: |
| It is the amount of heat liberated when one mol of a compound is combusted or burned in oxygen at standard conditions. $\left(25^{\circ} \mathrm{C}\right.$ and 1 atm pressure) | \& 1

1

\hline 1A-d \& Block diagram for distillation: \&

\hline
\end{tabular}

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page $\mathbf{3}$ of $\mathbf{1 7}$

\begin{tabular}{|c|c|c|}
\hline \& Overall balance is $\mathrm{F}=\mathrm{X}+\mathrm{Y}$ \& 1

\hline 1A-e \& $$
\left.\begin{array}{l}
20 \mathrm{~kg} \mathrm{Cl} \\
2
\end{array}\right] \begin{aligned}
& \text { Molecular weight of } \mathrm{Cl}_{2}=71 \\
& \text { Moles of } \mathrm{Cl}_{2}=\text { weight / molecular weight } \\
& \qquad \begin{aligned}
& \quad=20 / 71=0.282 \text { kmoles } \\
& \mathrm{PV}=\mathrm{nRT} \quad \mathrm{P}=100 \mathrm{KPa} \quad \mathrm{~T}=298 \mathrm{~K} \\
& \mathrm{~V}=\mathrm{nRT} / \mathrm{P} \\
&=0.282 * 8.314 * 298 / 100 \\
&= \mathbf{6 . 9 8} \mathbf{~ m}^{\mathbf{3}}
\end{aligned}
\end{aligned}
$$ \& 1

1

\hline 1A-f \& $$
\begin{aligned}
& \mathbf{1 0 5 . 6} \mathbf{K P a} . \mathbf{g} \\
& \begin{aligned}
\text { Absolute } \mathrm{pr} & =\text { Gauge } \mathrm{pr}+\text { atmospheric } \mathrm{pr} \\
& =105.6+101.325 \\
& =\mathbf{2 0 6 . 9 2 5} \mathbf{~ K P a}
\end{aligned}
\end{aligned}
$$ \& 1

1

\hline 1-B \& Any 2 \& 12

\hline 1-B a \& | Basis: 15 kg liquid propane |
| :--- |
| Kmoles of propane $=15 / 44=0.341$ $\begin{aligned} & \mathrm{PV}=\mathrm{nRT} \\ & \mathrm{~V}=\mathrm{nRT} / \mathrm{P} \end{aligned}$ | \& 2

1

\hline
\end{tabular}

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 4 of 17

	$\begin{aligned} \mathrm{P} & =101.325 \mathrm{KPa} \mathrm{R}=8.314 \mathrm{~m}^{3} \mathrm{kPa} / \mathrm{kmol} . \mathrm{K} \mathrm{~T}=273 \mathrm{~K} \\ \mathrm{~V} & =0.341 * 8.314 * 273 / 101.325 \\ & =7.638 \mathbf{~ m}^{3} \end{aligned}$	1 1
1-B b	Basis: 100 kmol gas sample $\begin{aligned} \text { Avg. mol.wt of air } & =\mathrm{M}_{1} \mathrm{X}_{1}+\mathrm{M}_{2} \mathrm{X}_{2} \\ & =32 * 0.21+28 * 0.79 \\ & =\mathbf{2 8 . 8 4} \end{aligned}$ $\begin{aligned} \text { Density } & =\mathrm{P} * \text { Mav } / \mathrm{RT} \\ & =1519.875 * 28.84 / 8.314 * 503 \\ & =\mathbf{1 0 . 4 8} \mathbf{K g} / \mathbf{m}^{\mathbf{3}} \end{aligned}$	1 1 1 2
1-B c	To prove mol \% of A = Mol fr of A * 100 $\mathrm{Mol} \%$ of $\mathrm{A}=($ Moles of $\mathrm{A} /$ Total moles of the system $) * 100$ \qquad Mol fraction of $\mathrm{A}=($ Moles of $\mathrm{A} /$ Total moles of the system $) \ldots .$. . (2) Comparing (1) and(2) Mol $\%$ of $\mathrm{A}=$ Mole fraction of $\mathrm{A} * 100$	2 2 2
2	Any 4	16
2-a	Steps involved in solving material balance without chemical reactions: 1.Assume suitable basis of calculation as given in problem. 2. Adopt weight units in case of problem of process without chemical reaction. 3. Draw block diagram of process 4. Show input and output streams 5. Write overall material balance 6. Write individual material balance 7. Solve above two algebraic equations 8. Get values of two unknown quantities. 9.Write balances as follows:	4

Model Answer

Subject Title: Stoichiometry \quad Subject code : 17315 Page $\mathbf{5}$ of 17

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 6 of 17

	\% recovery of oil $\begin{aligned} & =(42.19 / 45) * 100 \\ & =\mathbf{9 3 . 7 5} \% \end{aligned}$	1
2-c	```\(\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{SO}_{3}\) \(\mathrm{SO}_{2}\) fed \(=100 \mathrm{~kg}\). moles \(\mathrm{SO}_{3}\) formed \(=80 \mathrm{~kg}\). moles 1 kg . mole \(\mathrm{SO}_{2}\) reacted \(=1 \mathrm{~kg}\). mole \(\mathrm{SO}_{3}\) formed \(? \quad=80 \mathrm{~kg}\). mole \(\mathrm{SO}_{3}\) formed kg. mole \(\mathrm{SO}_{2}\) reacted \(=80\) \(\%\) conversion of \(\mathrm{SO}_{2}=\left(\mathrm{SO}_{2}\right.\) reacted \(\left./ \mathrm{SO}_{2} \mathrm{fed}\right) * 100\) \(=80 * 100 / 100=\mathbf{8 0 \%}\)```	1 1
2-d	i)Stoichiometric Equation : The stoichiometric equation of a chemical reaction is the statement indicating relative moles of reactant and products that take part in the reaction. For example, the stoichiometric equation $\mathrm{CO}+2 \mathrm{H}_{2}-\cdots---\rightarrow \mathrm{CH}_{3} \mathrm{OH}$ Indicates that one molecule of CO react with two molecules of hydrogen to produce one molecule of methanol ii)Stoichiometric ratio : It is the ratio of stoichiometric coefficient of two molecular species or Components in the balanced reaction For example, in the stoichiometric equation $\mathrm{CO}+2 \mathrm{H}_{2}-\cdots---\rightarrow \mathrm{CH}_{3} \mathrm{OH}$ Stoichiometric ratio of H_{2} to $\mathrm{CO}=2: 1$ (Students may write other suitable example)	1 1 1 1 1

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page $\mathbf{7}$ of 17

2-e	Basis - $50 \mathrm{kmol} \mathrm{SO}_{2}$ 150 kmol air Reaction $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{SO}_{3}$ Air fed $=150 \mathrm{kmol}$ $\begin{aligned} \mathrm{O}_{2} \text { in air } & =150 \times(0.21) \\ & =31.5 \mathrm{kmol} \end{aligned}$ Theorctical requirement of O_{2} $\begin{aligned} 1 \mathrm{Kmol} \mathrm{SO}_{2} & \equiv 0.5 \mathrm{kmol} \mathrm{O}_{2} \\ & =\frac{0.5}{1} \times 50 \\ & =25 \mathrm{kmol} \end{aligned}$ $\therefore \%$ excess of O_{2} used $\begin{aligned} & =\frac{\mathrm{O}_{2} \text { in supplied }-\mathrm{O}_{2} \text { theo read }}{\mathrm{O}_{2} \text { theo read }} \\ & =\frac{31.5-25}{25} \times 100 \\ & =26 \end{aligned}$ $\therefore \%$ excess air used $=\mathbf{2 6 \%}$ $\begin{aligned} \text { Theo. air reqd } & =\frac{100}{21} \times 25 \\ & =119.05 \mathrm{Kmol} \end{aligned}$ $\therefore \%$ excess air used $=\frac{150-119.05}{119.05}$ $=26 \%$	1
2-f	$\mathrm{C}_{\mathrm{pm}}^{0}=29.3955 \mathrm{~kJ} /(\mathrm{K} \mathrm{~mol} . \mathrm{K})$ Moles of air (n) $=3$	

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page $\mathbf{8}$ of $\mathbf{1 7}$

	$\begin{aligned} \hline \mathrm{T}=473 \mathrm{~K} \quad \mathrm{~T}_{0} & =298 \\ \text { Heat added } \mathrm{Q} & =\mathrm{n}^{*} \mathrm{C}_{\mathrm{pm}}^{0}\left(\mathrm{~T}-\mathrm{T}_{0}\right) \\ & =3 * 29.3955(473-298) \\ & =\mathbf{1 5 4 3 2 . 6 4} \mathbf{~ k J} \end{aligned}$	1 1 2
3	Any 2	16
3-a	Basis : 100 Kmol of feed Feed contains $60 \mathrm{kmol} \mathrm{A}, 30 \mathrm{kmol} \mathrm{B}$ and 10 kmol inerts Let X be the kmol of A reacted by reaction : $2 \mathrm{~A}+\mathrm{B}----\mathrm{C}$ A reacted $=0.8^{*} 60=48 \mathrm{kmol} \mathrm{C}$ From reaction B reacted $=(1 / 2) * 48=24 \mathrm{kmol}$ $\text { C formed }=(1 / 2) * 48=24 \quad \mathrm{kmol}$ Product stream contains unreacted A , unreacted B , product C and inert Unreacted $A=60-48=12 \mathrm{kmol}$ B unreacted $=(30-24) \mathrm{kmol}=6 \mathrm{kmol}$ Total moles of product stream $=12+6+24+10=52 \mathrm{kmol}$ Composition of product stream:	1
3-b	Basis : 1000 Kg of desired acid	1

Model Answer

Subject Title: Stoichiometry \quad Subject code : 17315 Page 9 of 17

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 10 of 17

	$\mathrm{Y}=548 \mathrm{Kg}$ Dilute acid required $=452 \mathrm{Kg}$ Commercial Grade Acid required $=\mathbf{5 4 8} \mathbf{~ k g}$	2
3-c	Basis : 1000 kmol Benzen- Toluene mixture Top product X kmol Let X and Y be the mass flow rates of distillate and bottom product respectively Overall Material Balance: $\begin{equation*} X+Y=1000 \tag{i} \end{equation*}$ Material Balance of benzene: $\begin{gathered} (52 / 100) * \mathrm{X}+(5 / 100) * \mathrm{Y}=(28 / 100) * 1000 \\ 0.52 * \mathrm{X}+0.05 * \mathrm{Y}=280 \end{gathered}$ By solving $\quad X=489.36 \mathrm{Kg} / \mathrm{hr}$ $\mathrm{Y}=510.64 \mathrm{~kg} / \mathrm{hr}$ Mass flow rates of distillate $=\mathbf{4 8 9 . 3 6 K g} / \mathbf{h r}---$ ans. (a) Mass flow rates of bottom Product $=\mathbf{5 1 0 . 6 4} \mathbf{~ k g} / \mathbf{h r}---$ ans.(a) Benzene in distillate $=0.52 * 489.36=\mathbf{2 5 4 . 4 7} \mathbf{K g} / \mathbf{h r}$ Benzene in feed $=0.28 * 1000=\mathbf{2 8 0} \mathbf{~ K g} / \mathbf{h r}$	1

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page $\mathbf{1 1}$ of $\mathbf{1 7}$

\begin{tabular}{|c|c|c|}
\hline \& \& 1

1

\hline 4 \& Any 2 \& 16

\hline 4-a \& | Basis 1mol of n propanol liquid |
| :--- |
| 1) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}_{1}=-393.51 \frac{\mathrm{KJ}}{\mathrm{mol}}$ |
| 2) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}$ |
| (e) $\Delta \mathrm{H}_{2}=-285.83 \frac{\mathrm{KJ}}{\mathrm{mol}}$ |
| 3) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}{ }^{(1)}+4.5 \mathrm{O}_{2}=3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{Hc}=-2028.19 \frac{\mathrm{KJ}}{\mathrm{mol}}$ |
| $\Delta \mathrm{H}_{+} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}=$ Heat of formation of n propanol $\begin{aligned} & =3 \Delta \mathrm{H}_{1}+4 \Delta \mathrm{H}_{2}-\Delta \mathrm{H}^{0} \mathrm{C} \\ & =3(-393.51)+4(-285.83)-(-2028.19) \\ & =-\mathbf{2 9 5 . 6 6} \mathbf{~ k J} / \mathbf{m o l} \end{aligned}$ | \& 2

2
2
2
2

\hline 4-b \& | Basis: 100 Kg of Soyabean seeds |
| :--- |
| It contains 18.6 kg oil , 69 kg solids and 12.4 kg moisture |
| Let X be the Kg of cake obtained |
| Material balance of Solids : |
| Solids in seeds $=$ Solids in cake $0.69 * 100=0.877 * X$ | \& 1

2

\hline
\end{tabular}

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 12 of 17

\begin{tabular}{|c|c|c|}
\hline \& $$
\mathrm{X}=78.68 \mathrm{Kg}
$$ \& 2

1

\hline 4-c \& | To prove Pressure \% = Mol \% = Volume \% |
| :--- |
| Ideal gas law is $\mathrm{PV}=\mathrm{nRT}$ |
| Ideal gas law for component gas A (partial pressure) is $\begin{equation*} \mathrm{P}_{\mathrm{A}} \mathrm{~V}=\mathrm{n}_{\mathrm{A}} \mathrm{RT} . \tag{2} \end{equation*}$ |
| (2) / (1) $\begin{aligned} & \mathrm{P}_{\mathrm{A}} \mathrm{~V} / \mathrm{PV}=\mathrm{n}_{\mathrm{A}} \mathrm{RT} / \mathrm{nRT} \\ & \mathrm{P}_{\mathrm{A}} / \mathrm{P}=\mathrm{n}_{\mathrm{A}} / \mathrm{n} \end{aligned}$ |
| Multiplying both sides by 100 , we get $\begin{equation*} \left(\mathrm{P}_{\mathrm{A}} / \mathrm{P}\right) * 100=\left(\mathrm{n}_{\mathrm{A}} / \mathrm{n}\right) * 100 \tag{3} \end{equation*}$ |
| Pressure \% = Mol \% |
| Ideal gas law for component gas A (pure component volume) is $\begin{equation*} \mathrm{P} \mathrm{~V}_{\mathrm{A}}=\mathrm{n}_{\mathrm{A}} \mathrm{RT} \tag{4} \end{equation*}$ | \& 1

1
1
1
1
1

\hline
\end{tabular}

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 13 of 17

	(4) / (1) $P V_{A} / P V=n_{A} R T / n R T$ $\mathrm{V}_{\mathrm{A}} / \mathrm{V}=\mathrm{n}_{\mathrm{A}} / \mathrm{n}$ Multiplying both sides by 100 , we get $\begin{equation*} \left(\mathrm{V}_{\mathrm{A}} / \mathrm{V}\right) * 100=\left(\mathrm{n}_{\mathrm{A}} / \mathrm{n}\right) * 100 \tag{5} \end{equation*}$ Volume \% = Mol \% Comparing (3) and(5) We can write Pressure \% = Mol \% = Volume \%	1 1
5	Any 2	16
5-a	Basis: 1000 kg wet ONA Overall balance is $1000=X+Y$ Balance for solid $0.90 * 1000=0.995 * \mathrm{Y}$ $\mathrm{Y}=904.52 \mathrm{~kg}$ $\mathrm{X}=95.48 \mathrm{~kg}$ Water removed $=95.48 \mathbf{k g}$ Product obtained $=904.52 \mathrm{~kg}$ \% of original water removed $=($ Water removed/original water $0 * 100$	1

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 14 of 17

\begin{tabular}{|c|c|c|}
\hline \& $=(95.48 / 100) * 100=\mathbf{9 5 . 4 8 \%}$ \& 1

\hline 5-b \& $$
\begin{aligned}
& \text { Basis: } 100 \mathrm{Kmol} / \mathrm{min} \text { of } \mathrm{CO}_{2} \\
& \mathrm{Q}=\text { Heat added } \\
& \quad \mathrm{T}_{2} \\
& =\mathrm{n} \int \mathrm{Cp} \mathrm{dT} \\
& \\
& \mathrm{~T}_{1} \\
& \quad \mathrm{~T}_{2} \\
& =\mathrm{n} \int\left[21.3655+64.2841 \times 10^{-3} \mathrm{~T}-41.0506 \times 10^{-6} \mathrm{~T}^{2}+\right. \\
& \quad \mathrm{T}_{1} \\
& =\mathrm{n}\left[21.3655\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+64.2841 \times 10^{-3} / 2\left(\mathrm{~T}^{2}{ }_{2}-\mathrm{T}^{2}{ }_{1}\right)\right. \\
& \left.\quad-41.0506 \times 10^{-6} / 3\left(\mathrm{~T}^{3}{ }_{2}-\mathrm{T}^{3}{ }_{1}\right)+9.7999 \times 10^{-9} / 4\left(\mathrm{~T}^{4}{ }_{2}-\mathrm{T}^{4}{ }_{1}\right)\right] \\
& \begin{aligned}
\text { Where } \mathrm{n}=100 \mathrm{kmol} / \mathrm{min}, \mathrm{~T}_{2}=383 \mathrm{~K}, \mathrm{~T}_{1}=298 \mathrm{~K}
\end{aligned} \\
& =100\left[21.3655(383-298)+64.2841 \times 10^{-3} / 2\left(383^{2}-298^{2}\right)-41.0506 \times 10^{-6} / 3\right. \\
& \left.\left(383^{3}-298^{3}\right)+9.7999 \times 10^{-9} / 4\left(383^{4}-298^{4}\right)\right] \\
& \quad=330335.5 \mathrm{KJ} / \mathrm{min} \\
& = \\
& \text { Q }=5505.6 \mathrm{KJ} / \mathrm{s}
\end{aligned}
$$ \& 01

02

02
02
01

\hline 5-c \& Basis: 1 mol of gaseous ethanol reacted

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})--\cdots-\cdots---\rightarrow \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

$$
\begin{aligned}
& \Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}}=\text { Standard heat of reaction } \\
& =\left[\Sigma \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}}\right] \text { reactant }-\left[\Sigma \Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{c}}\right] \text { product } \\
& =\left[1 \mathrm{x} \Delta \mathrm{H}^{\mathrm{o}}{ }_{\mathrm{c}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{~g})\right]-\left[1 \mathrm{x} \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}} \mathrm{CH}_{3} \mathrm{CHO}(\mathrm{~g})+\right. \\
& \left.1 \times \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}} \mathrm{H}_{2}\right]
\end{aligned}
$$ \& 1

2
3

\hline
\end{tabular}

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 15 of 17

\begin{tabular}{|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& =[1 \times-1410.09)]-[1 \times(-1192.65)+1 \times(-285.83)] \\
\& =-1410.09+1478.48 \\
\& =\mathbf{6 8 . 3 9} \mathbf{~ K J} \quad---- \text { Ans. }
\end{aligned}
\] \\
Note: Instead of -1192.65, if the student calculated with the value of -11.9265, the answer will be -1112.33kJ. Full marks should be given.
\end{tabular} \& 2 \\
\hline 6 \& Any 4 \& 16 \\
\hline 6-a \& \begin{tabular}{l}
Vander Waal's equation of state:
\[
\left(\mathrm{P}+\mathrm{a} / \mathrm{V}^{2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{nRT}
\] \\
Where \(\mathrm{a} \& \mathrm{~b}\) are constants.
\[
\begin{aligned}
\& \mathrm{A}=27 \mathrm{R}^{2} \mathrm{~T}_{\mathrm{c}}^{2} / 64 \mathrm{P}_{\mathrm{c}} \quad \mathrm{lit}^{2} . \mathrm{Mpa} / \mathrm{mol}^{2} \\
\& \mathrm{~B}=\mathrm{RT}_{\mathrm{c}} / 8 \mathrm{P}_{\mathrm{c}}
\end{aligned}
\] \\
Tc \& Pc = Critical Temperature and Pressure
\end{tabular} \& 2
1
1 \\
\hline 6-b \& Overall Material balance is
\[
\mathrm{F}=\mathrm{X}+\mathrm{Y}
\] \& 3

1

\hline 6-c \& | Heat capacity: It is the amount of heat required to increase the temperature of one kg of substance by 1 K . It is expressed on a unit mass or unit mole basis. |
| :--- |
| Heat of combustion: It is the amount of heat liberated when one mole of a compound is combusted or burned in oxygen. The combustion reaction proceeds with a reduction in enthalpy of a system, hence heat of combustion is | \& 2

2

\hline
\end{tabular}

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 16 of 17

	negative.		
6-d	Hess's law of constant heat summation : It states that the enthalpy change i.e. heat evolved or absorbed in a particular reaction is the same whether the reaction takes place in one or several steps. For Example : Carbon can be converted into CO_{2} by two ways Path 1:C $(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}_{2}(\mathrm{~g}) \quad----\Delta \mathrm{H}$ Path 2 : (i) $\mathrm{C}(\mathrm{s})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}(\mathrm{g}) \quad----\Delta \mathrm{H} 1$ (ii) $2 \mathrm{CO}(\mathrm{g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}_{2}(\mathrm{~g}) \quad----\Delta \mathrm{H} 2$ (i) + (ii) $\quad \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}_{2}(\mathrm{~g})$ Thus $\quad \Delta \mathrm{H}=\Delta \mathrm{H} 1+\Delta \mathrm{H} 2$		2
6-e	Differentiate Conversion and Yield :		1 mark
	Conversion	Yield	each for
	1.Conversion is the ratio of the amount of reactant reacted to the initial amount of the reactant 2. Conversion gives us idea regarding how efficient a given chemical process is from the point of view of utilization of the starting materials. 3. Higher values of Conversion is the indication of minimum amount of the limiting reactant left unreacted.	1. Yield of a desired product is the ratio of the quantity of the desired product actually obtained to its quantity maximally obtainable. 2. The Yield of a desired product tell us how efficient is a given chemical process is in terms of the reaction product. 3. Higher values of Yield is the indication of minimum occurrence of side reactions.	any 4 points

SUMMER-18 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code: 17315
Page $\mathbf{1 7}$ of $\mathbf{1 7}$

	4. Conversion is applicable to single reactions as well as to Complex reaction. 5. Conversion may have low to high values -maximum 100%	4. Yield is applicable to Complex reaction higher values ,maximum : less than 100%	
6-f	Recycling: It is returning back a portion of stream leaving a process unit to the entrance of the process unit for further processing. Reasons for performing recycling: (any four) 1. Maximum utilization of the valuable reactant 2. Improvement of the performance of the equipment/ operation 3. Utilization of the heat being lost in the exit stream. 4. Better operating conditions of the system 5. Improvement in the selectivity of a product 6. Enrichment of a product	$3 / 4$ marks each	

