

SUMMER-18 EXAMINATION Model Answer

Subject Title: Stoichiometry

Subject code :

17315

Page **1** of **17**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-18 EXAMINATION <u>Model Answer</u>

Subject Title: Stoichiometry

Subject code :

Page **2** of **17**

17315

Q No. Answer marks **1A** Any 4 8 Dalton's law: It states that the total pressure exerted by a gas mixture is equal 1A-a 1 to the sum of partial pressures **Mathematical Statement**: $P = P_1 + P_2 + P_3$ 1 where P is the total pressure of gas mixture, P_1 , P_2 , P_3 are partial pressures 1A-b Ideal gas equation is PV=nRT 1 Where P= pressure V=Volume n= number of moles R= Universal gas constant T= absolute temperature Value and unit of R is 8.314 KPa m³/ kmol K 1 **Standard heat of formation :** 1A-c 1 It is the amount of heat liberated or absorbed when one mol of a compound is formed from its elements at standard conditions. Standard heat of combustion: It is the amount of heat liberated when one mol of a compound is combusted or 1 burned in oxygen at standard conditions.(25^oC and 1atm pressure) 1A-d **Block diagram for distillation:**

bject Title: St	oichiometry	Subject code :	17315	Page 3 of 17
	Feed F kg/h distillation	 → Distillate X kg/h → residue Y kg/h 		1
	Overall balance is $F = X + Y$			1
1А-е	20 kg Cl ₂ Molecular weight of Cl ₂ =71 Moles of Cl ₂ = weight / molecular weight = 20 / 71 = 0.282 kmoles PV=nRT P = 100 KPa T= 298 K V= nRT/P = 0.282 * 8.314 * 298 / 100	nt		1
1A-f	= 6.98 m ³ 105.6 KPa .g Absolute pr = Gauge pr + atmospheric pr = 105.6 + 101.325 = 206.925 KPa			1
1-B	Any 2			12
1-B a	Basis: 15 kg liquid propane Kmoles of propane = 15/44 = 0.341 PV = nRT			2
	V = nRT/P			1

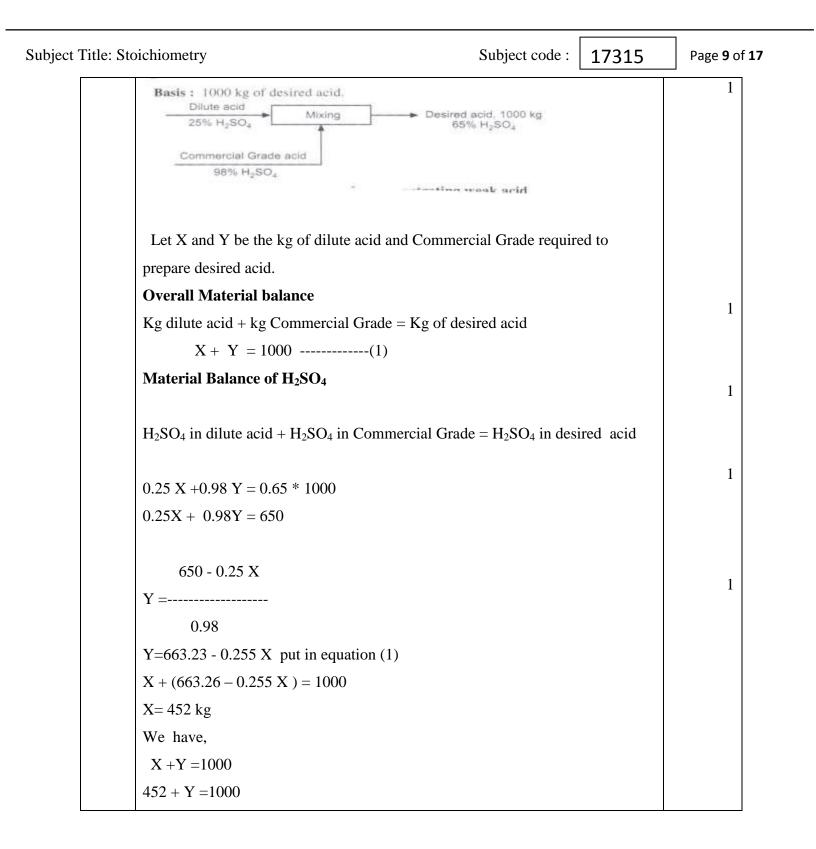
(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject	Title: Sto	bichiometry	Subject code :	17315	Page 4 of 17	
		$P = 101.325 \text{ KPa}$ $R = 8.314 \text{ m}^3\text{kPa/ kmol.K T} = 2$	273 K		1	
		V= 0.341 * 8.314 * 273 / 101.325			1	
		$= 7.638 \text{ m}^3$			1	
	1-B b	Basis: 100 kmol gas sample			1	
		Avg. mol.wt of air = $M_1X_1 + M_2X_2$			1	
		= 32 * 0.21 + 28 * 0.79				
		= 28.84			1	
		Density = P* Mav / RT			1	
		= 1519.875 * 28.84/ 8.314 * 503				
		$= 10.48 \text{ Kg/m}^3$			2	
	1-B c	To prove mol% of A = Mol fr of A * 100				
		Mol % of $A = (Moles of A / Total moles of the system)$	stem) * 100	.(1)	2	
		Mol fraction of $A = (Moles of A / Total moles of the second sec$	the system)(2)	2	
		Comparing (1) and(2)				
		Mol % of A = Mole fraction of A * 100			2	
	2	Any 4			16	
	2-a	Steps involved in solving material balance with	out chemical rea	ctions:	4	
		1.Assume suitable basis of calculation as given in	problem.			
		2. Adopt weight units in case of problem of proces	ss without chemic	al		
		reaction.				
		3. Draw block diagram of process				
		4. Show input and output streams				
		5. Write overall material balance				
		6. Write individual material balance				
		7. Solve above two algebraic equations				
		8. Get values of two unknown quantities.				
		9.Write balances as follows:				

		feed	product	Compo	
	Unchanging component				
	Outgoing component				
2-b	Basis: 100 kg of g	groundnut seeds.			
	Gnound <u>nut</u> us 7.071 us 7. soud	> Expelle	r > (ake 80%. solid 5%. 011	311	1
	kg of solid=45kg				
	kg of oil=45kg				
	unchanging comp	onent is solid			
	let weight of cake	=x kg			
	solid balance				
	0.8x=45	9-56 75kg			1
	Therefore x=45/0 Oil in cake=56.25	-			1
	=2.81kg	0.05			
	-2.01Kg				
	Therefore oil reco	overed=45-2.81			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: S	toichiometry Subject code : 17315	Page 6 of a
	% recovery of oil	
	=(42.19/45)*100	
	=93.75 %	1
2-c	$SO_2 + \frac{1}{2}O_2 \longrightarrow SO_3$	
	SO_2 fed = 100 kg. moles	1
	SO_3 formed = 80 kg. moles	
	1 kg. mole SO_2 reacted = 1 kg. mole SO_3 formed	
	? $= 80$ kg. mole SO ₃ formed	1
	kg. mole SO_2 reacted = 80	1
	% conversion of $SO_2 = (SO_2 \text{ reacted } / SO_2 \text{ fed})^* 100$	
	= 80*100/100 = 80%	1
2-d	i)Stoichiometric Equation :	
	The stoichiometric equation of a chemical reaction is the statement indicating	1
	relative moles of reactant and products that take part in the reaction.	
	For example, the stoichiometric equation	
	$CO + 2 H_2 \rightarrow CH_3OH$	
	Indicates that one molecule of CO react with two molecules of hydrogen to	1
	produce one molecule of methanol	
	ii)Stoichiometric ratio :	
	It is the ratio of stoichiometric coefficient of two molecular species or	
	Components in the balanced reaction	1
	For example, in the stoichiometric equation	
	$CO + 2H_2 \rightarrow CH_3OH$	
	Stoichiometric ratio of H_2 to $CO = 2:1$	1
	(Students may write other suitable example)	



oject Title: St	Title: Stoichiometry		17315	Page 7 of 17
2-е	Basis – 50kmol SO ₂			
	150 kmol air			
	Reaction			
	$SO_2 + \frac{1}{2}O_2 = SO_3$			1
	Air fed = 150kmol			
	O_2 in air = 150 × (0.21)			
	= 31.5 kmol			
	Theoretical requirement of O ₂			
	1 Kmol $SO_2 \equiv 0.5$ kmol O_2			1
	$=\frac{0.5}{1}\times 50$			
	= 25 kmol			
	∴% excess of O_2 used			
	$= \frac{O_2 \text{ in supplied} - O_2 \text{ theo read}}{O_2 \text{ theo read}}$			1
	$=\frac{31.5-25}{25}\times 100$			
	= 26			
	\therefore % excess air used = 26%			1
	OR			1
	Theo.air reqd = $\frac{100}{21} \times 25$			
	= 119.05 Kmol			
	:. % excess air used = $\frac{150 - 119.05}{119.05}$			
	= 26%			
2-f	$C_{pm}^{0} = 29.3955 \text{kJ} / (\text{K mol. K})$			
	Moles of air $(n) = 3$			

8 MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

3 3-a	$T = 473K T_0 = 298$ Heat added Q = n* C ⁰ _{pm} (= 3*29.395 = 15432.64 Any 2	5(473-298)			1 1
	= 3*29.395 = 15432.64	5(473-298)			1
	= 15432.64				
		kJ			1
	Any 2				2
3-а	Any Z				16
	Basis : 100 Kmol of feed				1
	Feed contains 60 kmol A	, 30 kmol B and 10 kmol ir	nerts		
	Let X be the kmol of A re	acted by reaction :			
	2A + B	C			
	A reacted = $0.8*60 = 48$ k	xmol C			
	From reaction B reacted	$= (1/2)^* 48 = 24$ kmol			2
	C formed	$= (1/2)^* 48 = 24$ kmol			2
	Product stream contains u	nreacted A, unreacted B, p	roduct C and iner	I	1
	Unreacted $A = 60-48 = 12$	2 kmol			1
	B unreacted = $(30 - 24)$ km	mol =6 kmol			
	Total moles of product str	ream = $12 + 6 + 24 + 10 = 52$	2 kmol		2
	Composition of product s	tream:			
	component	kmoles	Mol%		
	AB	12 6	23.08	—	2
	С	24	46.15		
	inert	10	19.23		
3-b	Basis :1000 Kg of desired	l acid			1

THE. S	coichiometry Subject code : 173	315	Page 10 of
	Y = 548 Kg		
	Dilute acid required = 452 Kg		2
	Commercial Grade Acid required =548 kg		
3-с	Basis : 1000 kmol Benzen- Toluene mixture		1
	Top product X k	mol	
	Feed 100 kmol Distillation		
			1
	Residue Y kmol		
	Let X and Y be the mass flow rates of distillate and bottom product		
	respectively		
	Overall Material Balance:		1
	X + Y = 1000 (i)		
	Material Balance of benzene:		
	(52/100)*X + (5/100)*Y = (28/100)*1000 0.52*X + 0.05*Y = 280		1
	$0.52^{+}X + 0.05^{+}I = 280$		1
	By solving X =489.36Kg/hr		
	Y= 510.64 kg/hr		
	Mass flow rates of distillate = 489.36 Kg/hr ans. (a)		2
	Mass flow rates of bottom Product = 510.64 kg/hr ans.(a)		_
	Benzene in distillate = 0.52 * 489.36 = 254.47 Kg/hr		
	Benzene in feed = 0.28 *1000 = 280 Kg/hr		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Title: S	toichiometry Subject code : 17315	Page 11 of 17
	% recovery of benzene = * 100 Benzene in feed	1
	% recovery of benzene = $\frac{254.47}{280}$ * 100	1
	% recovery of benzene = 90.88 % ans. (b)	
4	Any 2	16
4-a	Basis 1mol of n propanol liquid 1) $C(s) + O_2(g) = CO_2(g) \Delta H_1 = -393.51 \frac{KJ}{mol}$	2
	2) $H_2(g) + \frac{1}{2}O_2(g) = H_2O(e) \Delta H_2 = -285.83 \frac{KJ}{mol}$	2
	3) $C_3H_7OH(4) + 4.5O_2 = 3CO_2 + 4H_2O \Delta Hc = -2028.19 \frac{KJ}{mol}$	2
	$\Delta H_+ C_3 H_7 OH =$ Heat of formation of n propanol	
	$= 3\Delta H_1 + 4\Delta H_2 - \Delta H^0 C$	
	= 3(-393.51) + 4(-285.83) - (-2028.19)	2
	= - 295.66 kJ/mol.	
4-b	Basis : 100 Kg of Soyabean seeds	1
	It contains 18.6 kg oil ,69 kg solids and 12.4 kg moisture	
	Let X be the Kg of cake obtained	
	Material balance of Solids : Solids in seeds = Solids in cake	2
	0.69 * 100 = 0.877 * X	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject	ubject Title: Stoichiometry		Subject code :	17315	Page 12 of 17
		X = 78.68 Kg			
		Material balance of Oil : Oil in seeds = Oil in cake + Oil recovered	l		2
		0.186*100 = 0.008*78.68 + Oil recovere	d		
		18.6 = 0.6294 + Oil recovered			
		Oil recovered $= 18.6 - 0.6294 = 17.97$ Kg			
		Oil recovered % recovery of Oil = * 100 Oil in Seeds			1
		17.97 % recovery of Oil = 17.97 18.6			1
		% recovery of Oil = 96.61 % ans.			1
	4-c	To prove Pressure % = Mol % = Volume %			
		Ideal gas law is $PV = nRT$ (1)			1
		Ideal gas law for component gas A(partial pressure	e) is		
		$P_A V = n_A RT \dots (2)$			1
		(2)/(1)			
		$P_A V / PV = n_A RT / nRT$			1
		$P_A / P = n_A / n$			
		Multiplying both sides by 100, we get			1
		$(P_A / P)^* 100 = (n_A / n) * 100$			
		Pressure $\% = Mol \%$ (3)			1
		Ideal gas law for component gas A(pure component	t volume) is		
		$P V_A = n_A RT \dots (4)$			1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: S	Stoichiometry Subject code : 17315	Page 13 of 17
	(4)/(1)	
	$P V_A / PV = n_A RT / nRT$	
	$V_A / V = n_A / n$	1
	Multiplying both sides by 100, we get	
	$(V_A / V)^* 100 = (n_A / n) * 100$	
	Volume % = Mol %(5)	1
	Comparing (3) and(5)	
	We can write	
	Pressure % = Mol % = Volume %	
5	Any 2	16
5-a	Basis: 1000 kg wet ONA	1
	Water Xkg 1000 Kg feed 90% solid dryer Product Y kg 0.5% moisture	1
	Overall balance is	1
	1000 = X + Y	
	Balance for solid	
	0.90 * 1000 = 0.995 * Y	1
	Y = 904.52 kg	
	X = 95.48 kg	
	Water removed = 95.48 kg	2
	Product obtained = 904.52 kg	
	% of original water removed = (Water removed/original water 0*100	1

ject Title: S	toichiometry Subject code : 17315	Page 14 of 1
	= (95.48/100)*100 = 95.48%	1
5-b	Basis: 100 Kmol/min of CO ₂	
	Q= Heat added	
	T_2	
	$= n \int Cp dT$	01
	T_1	
	T_2	
	$= n \int [21.3655 + 64.2841 \times 10^{-3} \text{ T} - 41.0506 \times 10^{-6} \text{ T}^{2} +$	
	T ₁ 9.7999 x 10^{-9} T ³] dT	02
	= n [21.3655 (T ₂ -T ₁) +64.2841 x 10 ⁻³ /2 (T ² ₂ -T ² ₁)	
	- 41.0506 x 10 ⁻⁶ /3 ($T_2^3 - T_1^3$) +9.7999 x 10 ⁻⁹ /4 ($T_2^4 - T_1^4$)]	
	Where $n = 100 \text{ kmol/min}$, $T_2 = 383 \text{ K}$, $T_1 = 298 \text{ K}$	02
	= 100 [21.3655 (383 - 298) + 64.2841 x $10^{-3}/2$ (383 ² - 298 ²) -41.0506 x $10^{-6}/3$	
	$(383^3 - 298^3) + 9.7999 \times 10^{-9}/4 (383^4 - 298^4)$]	
		02
	= 330335.5 KJ/min	
	= 5505.6 KJ/s	01
	Q = 5505.6 KW Ans.	
5-c	Basis: 1 mol of gaseous ethanol reacted	1
	$C_2H_5OH(g)$ → $CH_3CHO(g) + H_2(g)$	
	$\Delta H^{o}_{R} =$ Standard heat of reaction	
	=[$\Sigma \Delta H_c^o$] reactant - [$\Sigma \Delta H_c^o$] product	2
	= $[1 \times \Delta H^{\circ}_{c} C_{2}H_{5}OH(g)] - [1 \times \Delta H^{\circ}_{c} CH_{3}CHO(g) + 1 \times \Delta H^{\circ}_{c} H_{2}]$	3

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: S	coichiometry Subject code : 17315	Page 15 of 17
	= [1 x -1410.09)] - [1 x (-1192.65) + 1 x (-285.83)] = -1410.09 + 1478.48 = 68.39 KJ Ans. Note: Instead of -1192.65, if the student calculated with the value of -11.9265, the answer will be -1112.33 kJ. Full marks should be given.	2
6	Any 4	16
6-a	Vander Waal's equation of state: $(P+a/V^2)(V-b)= nRT$ Where a & b are constants.	2
	$A = 27 R^2 T_c^2 / 64 P_c$ lit ² . Mpa / mol ²	1
	$B = RT_c / 8 P_c$ Tc & Pc = Critical Temperature and Pressure	1
6-b	Feed F Kg/hr $X_1 \%$ solid Evaporator	3
	Thick liquor Y kg/hr	
	X ₂ % solid	
	Overall Material balance is F = X + Y	1
6-c	Heat capacity: It is the amount of heat required to increase the temperature of one kg of substance by 1 K. It is expressed on a unit mass or unit mole basis.Heat of combustion: It is the amount of heat liberated when one mole of a	2
	compound is combusted or burned in oxygen. The combustion reaction proceeds with a reduction in enthalpy of a system, hence heat of combustion is	2

Subject Title: Stoichiometry			Subject code :	17315	Page 16 of 1
		negative.			
	6-d	Hess's law of constant heat summation : It states that the enthalpy change			
		i.e. heat evolved or absorbed in a particular reaction is the same whether the			2
		reaction takes place in one or several steps.			
		For Example : Carbon can be converted into CO ₂ by two ways			
		Path 1 : C (s) + O_2 (g)> CO_2 (g) Δ H			
		$\begin{array}{llllllllllllllllllllllllllllllllllll$			
	(i) + (ii) C (s) + O_2 (g)> CO_2 (g)				
	Thus $\Delta H = \Delta H1 + \Delta H2$				
	6-е	Differentiate Conversion and Yield :			1 mark
		Conversion	Yield		each for
		1.Conversion is the ratio of the	1. Yield of a desired product i	s the	any 4
		amount of reactant reacted to the	ratio of the quantity of the des	ired	points
		initial amount of the reactant	product actually obtained to it	s	
			quantity maximally obtainable	e.	
		2. Conversion gives us idea	2. The Yield of a desired prod	luct	
		regarding how efficient a given	tell us how efficient is a given		
		chemical process is from the point	chemical process is in terms o	f the	
		of view of utilization of the	reaction product.		
		starting materials.			
		3. Higher values of Conversion is	3. Higher values of Yield is the	ie	
		the indication of minimum	indication of minimum occurr	ence	
		amount of the limiting reactant	of side reactions.		
		left unreacted.			

Subject Title: St	oichiometry	Subject code : 17315	Page 17 of 17		
	4. Conversion is applicable to	4. Yield is applicable to Complex			
	single reactions as well as to	reaction			
	Complex reaction.				
	5. Conversion may have low to	5. Yield should have always			
	high values –maximum 100%	higher values ,maximum : less			
		than 100%			
6-f	Recycling: It is returning back a po	rtion of stream leaving a process unit to the	1		
	entrance of the process unit for further processing.				
	Reasons for performing recycling:	(any four)	³ ⁄4 marks		
	1. Maximum utilization of the valuable reactant				
	 Improvement of the performance of the equipment/ operation Utilization of the heat being lost in the exit stream. 				
	4. Better operating conditions of the system				
	5. Improvement in the selectivity of a product				
	6. Enrichment of a product				