

SUMMER-17 EXAMINATION Model Answer

Subject Title: Stoichiometry

Subject code : | 17315

Page **1** of **15**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try

to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

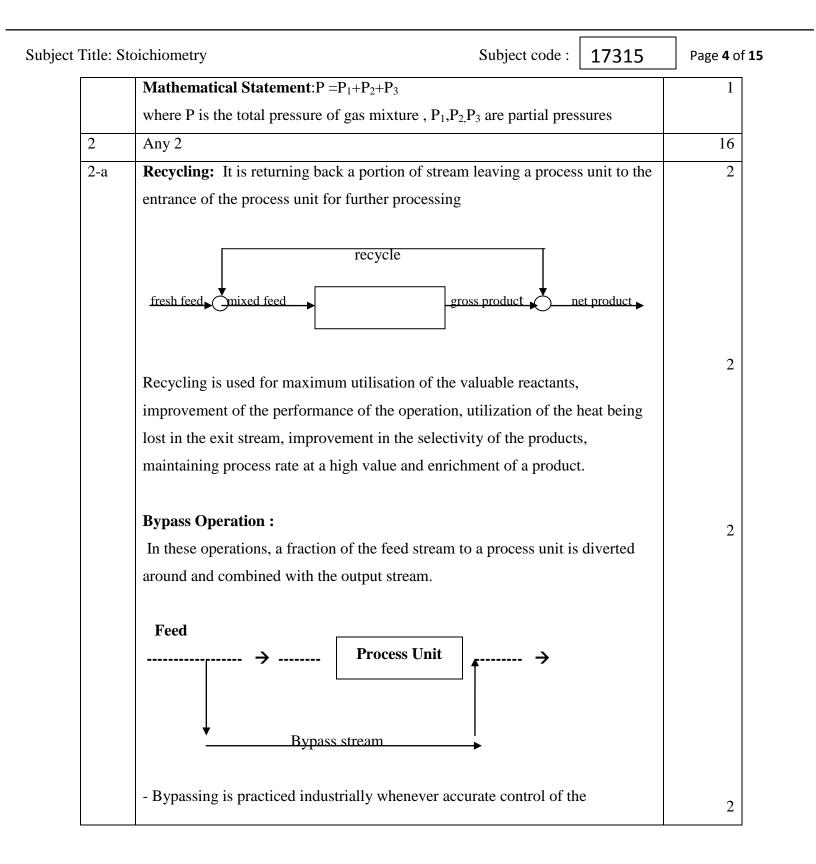
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-17 EXAMINATION Model Answer

Subject Title: Stoichiometry

Subject code :

17315


Page **2** of **15**

Q No.	Answer			
1	Any 10	20		
1-a	Ideal Gas law:	1		
	PV=nRT where P - pressure, V - volume, n- moles, K-absolute temperature			
	and R – universal gas constant.	1		
1-b	Vander Waal's equation of state:			
	$(P+a/V^2)(V-b)=nRT$			
	Where a & b are constants			
1-c	% Conversion: It is the ratio of amount of limiting reactant reacted to the	2		
	amount of limiting reactant totally charged. Express in percentage.			
1-d	Excess component: It is the reactant which is in excess of the theoretical or	2		
	stoichiometric requirement.			
	ORIt is the component which decides the extend of a reaction.			
1-е	Sensible Heat :	1		
	Sensible heat is the heat that must be transferred to raise or lower the			
	temperature of a substance or mixture of substance.			
	Latent Heat : When matter undergoes a phase change, the enthalpy change			
	associated with unit amount of matter at constant temperature and pressure is	1		
	known as Latent Heat of phase change.			
1-f	Material balance diagram for crystallisation	2		
	Feed Crystalliser Crystals			

Title: StoichiometrySubject code :17315		Page 3 of a
1-g	Standard heat of combustion:	2
	It is the amount of heat liberated when one mol of a compound is combusted or	
	burned in oxygen at standard conditions.(25°C and 1atm pressure)	
1-h	Heat capacity at constant volume: It is the amount of heat required to	2
	increase the temperature of one gram of substance by one degree.(under	
	constant volume)	
1-i	Raoult's law: It states that at a given temperature, the equilibrium partial	1
	pressure of a component of a solution in the vapour phase is equal to the	
	product of the mole fraction of the component in the liquid phase and the	
	vapour pressure of the pure component.	
	$\mathbf{p}_{\mathbf{A}} = \mathbf{p}^{0}{}_{\mathbf{A}} \mathbf{X}_{\mathbf{A}}$	1
	p _A - partial pressure	
	p^0_A - vapour pressure vapour	
	X _A - mole fraction of the component in the liquid phase	
1-j	Law of conservation of energy:	2
	Energy input= energy output + accumulation	
1-k	1)Stoichiometric Equation :	1
	The stoichiometric equation of a chemical reaction is the statement indicating	
	relative moles of reactant and products that take part in the reaction.	
	2) Stoichiometric ratio :	
	it is the ratio of stoichiometric coefficient of two molecular species or	1
	Components in the balanced reaction	
1-l	Dalton's law: It states that the total pressure exerted by a gas mixture is equal	1
	to the sum of partial pressures	

Subject 7	Fitle: Sto	ichiometry Subject code :	17315	Page 5 of 15	
[composition or concentration of the process exit stream is expected.			
		- The composition and properties of the product may be varied by va	arying the		
		fraction of the feed that is bypassed.			
		Example: A juice concentration process in which the dehydration process in which the dehydration process in which the dehydration process is a statement of the statement of t	rocess runs		
		most efficiently by removing more water than is desired. A portion of	of the feed		
		may be directed around the dehydrator in a bypass loop, to be mixed	with		
		unprocessed feed. Or any other example			
	2-b	Basis: 100 kmol air			
		Avg. mol.wt of air = $M_1X_1+M_2X_2$		2	
		= 28 * 0.79 + 32 * 0.21			
		= 28.84		2	
		Density = P* Mav / RT		2	
		= 101.325 * 28.84/ 8.314 * 273		2	
		$= 1.287 \text{ Kg/m}^3$			
-	2-c	Case –I: Basis: 100 Kg/hr of solid handling capacity of the evaporation	tor.		
		→ Water evaporated			
		<u>↑</u>		1	
		Weak liquor Evaporator			
		5% solids			
		Thick liquor,50% s	olids		
		Lat V hathe hathe Kaller of weak linear then we have			
		Let X be the be the Kg/hr of weak liquor then we have. 0.05 V = 100			
		0.05 X = 100		1	
		X = 2000 Kg/hr			
		Y be the be the Kg/hr of thick liquor then we have.			
		0.5 Y = 100			

t Title: S	toichiometry Subject code : 17315	Page 6 of 15
	Y = 200 kg/hr	1
	Overall Material Balance:	
	Kg/hr of weak liquor = Kg/hr of thick liquor + Kg/hr of	
	Water evaporated	
	2000 = 200 + Kg/hr of Water evaporated	1
	Kg/hr of Water evaporated = 1800 Kg/hr	
	Case –II: Basis: 1800 Kg/hr of Water evaporated	
	Let A be the kg/hr of weak liquor	
	B be the be the Kg/hr of thick liquor	
	Overall Material Balance:	
	$\mathbf{A} = \mathbf{B} + 1800$	1
	Material Balance of Solids :	
	0.06 A = 0.36 B A = 6 B	
	Putting in above equation	
	6 B = B + 1800	1
	B = 360 Kg/hr	
	A = 360 + 1800 = 2160 Kg/hr	1
	Solid in weak liquor = $0.06 \times 2160 = 129.6 \text{ Kg/hr}$	
	Solid handling Capacity = 129.6 Kg/hr Ans.	1
3	Any 2	16
3-a	SOLUTION :	
	BASIS : 1000 kg of desired mixed acid.	1
	Waste acid, 28 % H ₂ SO ₄ ,35% HNO ₃	
		1
	Desired mixed acid	
	Con.nitric acid 1000 kg	

Subject Title: S	Stoichiometry	Subject code :	17315	Page 7 of 15
	Blending			
	72% HNO ₃	40% H ₂ SO ₄ , 41% HNO ₃		
	Con.sulphuric acid			
	98% H ₂ SO ₄			
	Block diagram for fortify	ing waste acid with concentrated	acids	
	Let x, y and z be the kg of wast	e acid, concentrated sulphuric aci	d and	
	concentrated nitric acid required t	o make 1000 kg desired acid.		
	Overall material Balance:			
	x + y	z + z = 1000(i)		1
	Material Balance of H ₂ SO ₄ :			
	0.28 x + 0.	98 y = 0.4 x 1000(ii)		1
	0.28 x + 0.98 y =	= 400		
	Material Balance of HNO ₃ :			
	0.35 x + 0.72 z =	= 0.41 x 1000		
	0.35 x + 0.72 z =	= 410(iii)		1
	Solving the above three equations	s, we get		
	X=98.14			
	Y= 380.12			
	Z= 521.74			
	Amount of waste acid required	= 98.14kg		3
	Amount of concentrated sulphu	ric acid required = 380.12 kg		
	Amount of concentrated nitric a	• 0	ns	
3-b	Basis: 50 kmoles /hr butane			

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject Title: Stoichiometry Subject code : 17315	Page 8 of 15
$C_4H_{10} + 6.5 \text{ O}_2 \rightarrow 4CO_2 + 5 \text{ H}_2O$	1
100 kmol air fed = 21 kmol O_2 fed	
2100 kmol air fed = ?	
$O_2 \text{ fed} = 2100 * 21/100 = 441 \text{ kmoles}$	2
1 kmol C_4H_{10} fed = 6.5 kmol O_2 theoretically required	
$50 \text{ kmol } C_4 H_{10} \text{ fed} = ?$	
O_2 theoretically required = 325 kmol	2
% excess= $(O_2 \text{ fed-}O_2 \text{ theoretical})*100/O_2$ theoretical	1
= (441-325)*100/325	
= 35.69%	2
3-c Steps involved in solving material balance calculations:	1 mark
1.Assume suitable basis of calculation as given in problem.	each
2. Adopt weight units in case of problem of process without chemical	
reaction.	
3. Draw block diagram of process	
4. Show input and output streams	
5. Write overall material balance	
6. Write individual material balance	
7. Solve above two algebraic equations	
8. Get values of two unknown quantities.	
9.Write balances as follows:	
feed product Component	
removed	
Unchanging	
component	
Outgoing	

	component				
4	Any 2				1
4-a	$C_2H_4 + \frac{1}{2}O_2 \longrightarrow C_2$	C ₂ H ₄ O			
	$C_2H_4 + 3O_2 \longrightarrow 2$	$CO_2 + 2H_2O$			
	Basis : 100 kmol eth	ylene and 100 kmol O ₂	fed		
	Conversion of ethyle	ene $= 85\%$			
	Conversion of ethyle	ene = (kmol ethylene r	eacted / kmol eth	ylene fed) * 100	
	85 = (kmol ethylen	e reacted / 100) * 100			
	kmol ethylene react	ed = 85			
	% yield of $C_2H_4O =$	(kmol C ₂ H ₄ reacted to	form C ₂ H ₄ O/tota	al C ₂ H ₄	
		reacted) * 100			
	94.12 = $(\text{ kmol } C_2 H)$	$_4$ reacted to form C ₂ H ₄ O	O/85) * 100		
	kmol C ₂ H ₄ reacted t	to form $C_2H_4O = 80$ km	ol		
	kmol C ₂ H ₄ reacted f	for 2^{nd} reaction = $85 - 8$	30 = 5 kmol		
	CO_2 formed = 2 * 5	= 10 kmol			
	H_2O formed = 2 * 5	= 10 kmol			
	O_2 reacted = (80 * 0	.5 + 3 * 5) = 55 kmol			
	O_2 unreacted = (100)	– 55) = 45 kmol			
	C_2H_4 unreacted = (1)	(00 - 85) = 15 kmol			
	Component	Kmol	Mole %	6	
	C_2H_4	15	9.38		
	C ₂ H ₄ O	80	50		
	O ₂	45	28.12		
	CO ₂	10	6.25		
	H ₂ O	10	6.25		

Subject Title: St	Subject Title: Stoichiometry		17315	Page 10 c	of 15
	Molal flow rate of gas mixture = 5 kmol/h				
	$X N_2 = 25/100 = 0.25$				
	$X H_2 = 75/100 = 0.75$			1	
	$C_{P}^{o} \text{ mix} = \Sigma C_{P}^{o} \text{ mix} . X \text{ i} = X N_{2} . C_{P}^{o} N_{2} + X H_{2}$ $= 0.25 (29.5909 - 5.141 \text{ x} 10^{-3} \text{ T} + 13.1829 \text{ x} 10$ $+ 0.75 (28.6105 + 1.0194 \text{ x} 10^{-3} \text{ T} - 0.1476 \text{ x} 10$ $= 28.8556 - 0.5207 \text{ x} 10^{-3} \text{ T} + 3.185 \text{ x} 10^{-6} \text{ T}^{2} - 0.66$	$^{-6}T^2 - 4.968 \times 10^{-9}T^3)$ $^{-6}T^2 + 0.769 \times 10^{-9}T^3)$,	2	
	Q = Heat added				
	$Q = n \int_{T_1}^{T_2} C^o p \text{ mix } dT$			1	
	$Q = n \int_{T_1}^{T_2} [28.8556 \cdot 0.5207 \text{ x } 10^{-3} \text{ T} + 3.185 \text{ x} 10^{-6} \text{T}^2 -0.6652 \text{ x} 10^{-9} \text{T}^3] \text{ dT}$				
	0.5207×10^{-3} $= n [28.8556 (T_2 - T_1) - \dots (T_2)^2]$ $3.185 \times 10^{-6} \qquad 0.6652 \times 10^{-6}$ $+ \dots (T_2)^3 - T_1^3) - \dots (T_2)^3$) -9		2	
	Where , n= 15 Kmol/h , T ₂ = 473 K , T ₁ = 298 K				
	$= 15 [28.8556 (473 - 298) - \frac{0.5207 \times 10^{-3}}{2} \\ 3.185 \times 10^{-6} 0.6652 \times 10^{-6}$				

ct Title: Stoichiometry Subject code : 17315		Page 11 of 1
	$+ (473^{3} - 298^{3}) (473^{4} - 298^{4})]$ $3 \qquad 4$	
	Q = 15(5049.73 - 35.13 - 7.01)	
	Q = 76377.6 KJ/h = 21.216 kJ/s = 21.216 kW ans	2
4-c	Basis: 1 mol liquid C ₅ H ₁₂	1
	$\Delta H^0_R = \Sigma \Delta H^0_{f(pr)} - \Sigma \Delta H^0_{f(react)}$	2
	= [(-393.51*5)+(-285.83*6)]- (-173.49)	2
	= -3509.04KJ	3
5	Any 2	16
5-a	Basis: 10000 kg/hr of feed	
	Distillate X kg/hr 10000 kg/hr solution 30 % methanol distillation Waste solution Y kg/hr 1% methanol	1
	Overall balance is	1
	$10000 = X + Y \dots (1)$	
	Individual balance for CH_3OH is 0.3*10000 = 0.97X+0.01*Y(2)	1
	Solving the equations	
	X= 3020.83 Kg/hr	2
	Y= 6979.17 kg/hr	2
	CH_3OH in bottom product = $0.01*6979.17 = 69.79Kg/hr$	1
	% loss of CH ₃ OH=(CH ₃ OH in bottom product/ CH ₃ OH in feed)*100	1
	= (69.79/3000)*100	1
	= 2.32%	1
5-b	Henry's law is $p_A = H X_A$	1

Subject Title: S	Subject Title: Stoichiometry		17315	Page 12 o	of 15
	$25.33 = 4.46*10^6 X_A$			1	
	Or $X_A = 5.68 \times 10^{-6}$			2	
	i.e mole fraction of $O_2 = 5.68 \times 10^{-6}$				
	mole fraction of O_2 = moles of O_2 / (moles of O_2 -	+ moles of solven	t)	1	
	If the solution is very dilute			1	
	mole fraction of O_2 = moles of O_2 / (moles of solv	vent)			
	$5.68*10^{-6} = 5.68*10^{-6}/1$			1	
	Solubility of $O_2 = 5.68 \times 10^{-6}$			1	
5-c	BASIS : 100 mol of ethylene			1	
	Reaction I				
	$C_2H_4 + \frac{1}{2}O_2 \longrightarrow C_2H_4O$			1	
	Reaction II				
	C2H4 + 3O2 → 2CO2 + 2H2O			1	
	From reaction I,				
	1Kmol of C2H4O formed = 1Kmol C2H4 reacted				
	∴ C2H4 reacted to form 80 kmol C2H4O				
	$=\frac{1}{1} \times 80 = 80 \text{Kmol}$			1	
	From reaction II,				
	2kmol of CO2 formed = 1Kmol C2H4 reacted				
	∴ C2H4 reacted to form 10 kmol CO2				
	$=\frac{1}{2}$ x10 = 5Kmol			1	
	$\therefore C2H4 \text{ totally reacted} = 80 + \Box 5 = 85$			1	
	$\therefore \% \text{ conversion of C2H4} = \frac{85}{100} \times 100$			1	
	= 85%				
	% yield of C2H4O = $\frac{80}{85}$ x100			1	

Title: StoichiometrySubject code :17315		Page 13 of	
	= 94.12%		
		1	
6	Any 4	16	
6-a	Basis: 2000 kg wet solid		
		1	
	→ Water Xkg		
	2000 Kg feed		
	70% solid \longrightarrow dryer		
	$\longrightarrow Product Y kg$		
	1% moisture		
	Overall balance is		
	2000 = X + Y	1	
	Balance for solid		
	0.70 * 2000 = 0.99 * Y	1	
	Y = 1414.14 kg		
	X = 585.86		
	Water removed = 585.86 kg	1	
	Product obtained = 1414.14 kg		
6-b	$CO + 2H_2 \longrightarrow CH_3OH$		
	a) Stoichiometric ratio of H_2 to $CO = 2:1$	1	
	b) Kmoles of CH_3OH produced per kmol CO reacted = 1	1	
	c) Weight ratio of CO to $H_2 = 28:4 = 7$	1	
	d) Quantity of CO required to produce $1000 \text{ kg} \text{ CH}_3\text{OH}$		
	= 1000/32 * 28 = 875 kg	1	
6-c	General Material Balance Procedure	4	

Subject Title: Stoichiometry Subject code : 17315	Page 14 of 15
1) Assume Suitable Basis of calculation.	
2) Adopt weight basis for without chemical reactions and molar basis for with	
chemical reactions.	
3) In case of material balance with chemical, write balance chemical reaction	
and search out limiting component.	
4) In with chemical reaction, the quantity of a reacting component appearing in	
the product stream is the quantity of that material remains unreacted.	
5) Supplied quantity of an excess reactant calculated from the theoretical	
requirement is based on the quantity of a limiting reactant fed.	
6-d Hess's law:	2
It states that the heat involved in a chemical reaction is same whether the	
reaction takes place in a single or in several steps.	
$A \longrightarrow B \Delta T1$	
$B \longrightarrow C \Delta T2$	
$C \longrightarrow D \Delta T3$	
$A \longrightarrow D \Delta T$	
Then	
$\Delta T = \Delta T1 + \Delta T2 + \Delta T3$	
Application of Hess's law: Using this law we can calculate the heat of	2
formation of a compound from a series of reactions that do not involve the	
direct formation of the compound from its elements.	
6-e Basis: 1m ³ fixed mass of gas at constant temperature	
$P_1 = 1 atm$ $V_1 = 1 m^3 T_1 = T = T_2$	1
$P_2 = ? V_2 = 0.5 m^3$	
$P_1V_1/T_1 = P_2V_2/T_2$	1
1*1/T = P2*0.5/T	
$Or P_2 = 2 atm$	1

ject Title: S	toichiometry		Subject code : 1732	15 Page 15
	Increase in pressure	= (2-1/1) *100		
		= 100 %		1
6-f	Basis : 100 kmol product stream			
	Reaction is $2A + B \longrightarrow C$			
	Kmol of inerts in product stream $= 19.23$ kmol			
	Kmol of A in product stream $= 23.08$ kmol (unreacted)			
	Kmol of B in product stream $= 11.54$ kmol (unreacted)			1
	Kmol of C in product stream = 46.15 kmol (product)			
	Kmol of A reacted (from reaction) $2 * 46.15 = 92.3$			
	Kmol of A fed = Kmol of A reacted + Kmol of A unreacted			
	= 92.3 + 23.08 = 115.38 kmol			1
	Kmol of B reacted (from reaction) = 46.15			
	Kmol of B fed = Kmol of B reacted + Kmol of B unreacted			
	= 46.15 + 11.54 = 57.69 kmol			1
	Inerts = 19.23 kmol			
	Component	Kmol	Mole %	\neg
	A	115.38	60	
	В	57.69	30	1
	Inerts	19.23	10	
				<u> </u>