MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315 Page 1 of 15

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 2 of 15

\begin{tabular}{|c|c|c|}
\hline Q No. \& Answer \& marks \\
\hline 1 \& Any 10 \& 20 \\
\hline 1-a \& \begin{tabular}{l}
Ideal Gas law: \\
\(\mathrm{PV}=\mathrm{nRT}\) where P - pressure, V - volume, n - moles, K -absolute temperature and R - universal gas constant.
\end{tabular} \& 1 \\
\hline 1-b \& \begin{tabular}{l}
Vander Waal's equation of state:
\[
\left(\mathrm{P}+\mathrm{a} / \mathrm{V}^{2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{nRT}
\] \\
Where \(\mathrm{a} \& \mathrm{~b}\) are constants
\end{tabular} \& 2 \\
\hline 1-c \& \% Conversion: It is the ratio of amount of limiting reactant reacted to the amount of limiting reactant totally charged. Express in percentage. \& 2 \\
\hline 1-d \& \begin{tabular}{l}
Excess component: It is the reactant which is in excess of the theoretical or stoichiometric requirement. \\
ORIt is the component which decides the extend of a reaction.
\end{tabular} \& 2 \\
\hline 1-e \& \begin{tabular}{l}
Sensible Heat : \\
Sensible heat is the heat that must be transferred to raise or lower the temperature of a substance or mixture of substance. \\
Latent Heat : When matter undergoes a phase change, the enthalpy change associated with unit amount of matter at constant temperature and pressure is known as Latent Heat of phase change.
\end{tabular} \& 1

1

\hline 1-f \& Material balance diagram for crystallisation \& 2

\hline
\end{tabular}

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 3 of 15

\begin{tabular}{|c|c|c|}
\hline \& \& \\
\hline 1-g \& \begin{tabular}{l}
Standard heat of combustion: \\
It is the amount of heat liberated when one mol of a compound is combusted or burned in oxygen at standard conditions. \(\left(25^{\circ} \mathrm{C}\right.\) and 1 atm pressure)
\end{tabular} \& 2 \\
\hline 1-h \& Heat capacity at constant volume: It is the amount of heat required to increase the temperature of one gram of substance by one degree. (under constant volume) \& 2 \\
\hline 1-i \& \begin{tabular}{l}
Raoult's law:It states that at a given temperature, the equilibrium partial pressure of a component of a solution in the vapour phase is equal to the product of the mole fraction of the component in the liquid phase and the vapour pressure of the pure component.
\[
\mathrm{p}_{\mathrm{A}}=\mathrm{p}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}
\] \\
\(\mathrm{p}_{\mathrm{A}^{-}}\)partial pressure \\
\(\mathrm{p}_{\mathrm{A}}^{0}\) - vapour pressure vapour \\
\(\mathrm{X}_{\mathrm{A}}\) - mole fraction of the component in the liquid phase
\end{tabular} \& 1

1

\hline 1-j \& | Law of conservation of energy: |
| :--- |
| Energy input= energy output + accumulation | \& 2

\hline 1-k \& | 1)Stoichiometric Equation : |
| :--- |
| The stoichiometric equation of a chemical reaction is the statement indicating relative moles of reactant and products that take part in the reaction. |
| 2) Stoichiometric ratio : |
| it is the ratio of stoichiometric coefficient of two molecular species or Components in the balanced reaction | \& 1

1

\hline 1-1 \& Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures \& 1

\hline
\end{tabular}

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
Page 4 of 15

	Mathematical Statement: $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$ where P is the total pressure of gas mixture, $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are partial pressures	1
2	Any 2	16
2-a	Recycling: It is returning back a portion of stream leaving a process unit to the entrance of the process unit for further processing Recycling is used for maximum utilisation of the valuable reactants, improvement of the performance of the operation, utilization of the heat being lost in the exit stream, improvement in the selectivity of the products, maintaining process rate at a high value and enrichment of a product. Bypass Operation : In these operations, a fraction of the feed stream to a process unit is diverted around and combined with the output stream. - Bypassing is practiced industrially whenever accurate control of the	2 2 2 1

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 5 of 15

	composition or concentration of the process exit stream is expected. - The composition and properties of the product may be varied by varying the fraction of the feed that is bypassed. Example: A juice concentration process in which the dehydration process runs most efficiently by removing more water than is desired. A portion of the feed may be directed around the dehydrator in a bypass loop, to be mixed with unprocessed feed. Or any other example	
2-b	Basis: 100 kmol air $\begin{aligned} \text { Avg. mol.wt of air } & =\mathrm{M}_{1} \mathrm{X}_{1}+\mathrm{M}_{2} \mathrm{X}_{2} \\ & =28 * 0.79+32 * 0.21 \\ & =\mathbf{2 8 . 8 4} \end{aligned}$ $\begin{aligned} \text { Density } & =\mathrm{P} * \text { Mav } / \mathrm{RT} \\ & =101.325 * 28.84 / 8.314 * 273 \\ & =\mathbf{1 . 2 8 7} \mathbf{~ K g} / \mathbf{m}^{\mathbf{3}} \end{aligned}$	2 2 2 2
2-c	Case -I: Basis: $100 \mathrm{Kg} / \mathrm{hr}$ of solid handling capacity of the evaporator. Let X be the be the $\mathrm{Kg} / \mathrm{hr}$ of weak liquor then we have. $\begin{aligned} 0.05 \mathrm{X} & =100 \\ \mathrm{X} & =2000 \mathrm{Kg} / \mathrm{hr} \end{aligned}$ Y be the be the $\mathrm{Kg} / \mathrm{hr}$ of thick liquor then we have. $0.5 \mathrm{Y}=100$	11

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 6 of 15

	$\mathrm{Y}=200 \mathrm{~kg} / \mathrm{hr}$ Overall Material Balance: $\mathrm{Kg} / \mathrm{hr}$ of weak liquor $=\mathrm{Kg} / \mathrm{hr}$ of thick liquor $+\mathrm{Kg} / \mathrm{hr}$ of Water evaporated $2000=200+\mathrm{Kg} / \mathrm{hr} \text { of Water evaporated }$ $\mathrm{Kg} / \mathrm{hr}$ of Water evaporated $=1800 \mathrm{Kg} / \mathrm{hr}$ Case -II: Basis: $1800 \mathrm{Kg} / \mathrm{hr}$ of Water evaporated Let A be the be the $\mathrm{Kg} / \mathrm{hr}$ of weak liquor B be the be the $\mathrm{Kg} / \mathrm{hr}$ of thick liquor Overall Material Balance: $A=B+1800$ Material Balance of Solids : $\begin{aligned} 0.06 \mathrm{~A} & =0.36 \mathrm{~B} \\ \mathrm{~A} & =6 \mathrm{~B} \end{aligned}$ Putting in above equation $\begin{gathered} 6 \mathrm{~B}=\mathrm{B}+1800 \\ \mathrm{~B}=360 \mathrm{Kg} / \mathrm{hr} \\ \mathrm{~A}=360+1800=2160 \mathrm{Kg} / \mathrm{hr} \end{gathered}$ Solid in weak liquor $=0.06 \times 2160=129.6 \mathrm{Kg} / \mathrm{hr}$ Solid handling Capacity $=\mathbf{1 2 9 . 6} \mathbf{K g} / \mathbf{h r}$ Ans.	1
3	Any 2	16
3-a	SOLUTION : BASIS : 1000 kg of desired mixed acid. Waste acid, $28 \% \mathrm{H}_{2} \mathrm{SO}_{4}, 35 \% \mathrm{HNO}_{3}$	1 1

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315

	Let x , y and z be the kg of waste acid, concentrated sulphuric acid and concentrated nitric acid required to make 1000 kg desired acid. Overall material Balance: $x+y+z=1000 \ldots . . \text { (i) }$ Material Balance of $\mathbf{H}_{\mathbf{2}} \mathrm{SO}_{4}$: $\begin{align*} & 0.28 \mathrm{x}+0.98 \mathrm{y}=0.4 \mathrm{x} 1000 \tag{ii}\\ & 0.28 \mathrm{x}+0.98 \mathrm{y}=400 \end{align*}$ Material Balance of HNO_{3} : $\begin{align*} & 0.35 \mathrm{x}+0.72 \mathrm{z}=0.41 \mathrm{x} 1000 \\ & 0.35 \mathrm{x}+0.72 \mathrm{z}=410 \ldots . . \text { (iii) } \tag{iii} \end{align*}$ Solving the above three equations, we get $\begin{aligned} & \mathrm{X}=98.14 \\ & \mathrm{Y}=380.12 \\ & \mathrm{Z}=521.74 \end{aligned}$ Amount of waste acid required $=98.14 \mathrm{~kg}$ Amount of concentrated sulphuric acid required $=\mathbf{3 8 0 . 1 2} \mathbf{~ k g}$ Amount of concentrated nitric acid require $=521.74 \mathbf{~ k g}$	1 1 1 1 1 1 3
3-b	Basis: 50 kmoles /hr butane	

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page $\mathbf{8}$ of $\mathbf{1 5}$

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 9 of 15

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry

Subject code :
17315
Page 10 of 15

Subject Title: Stoichiometry \quad Subject code : 17315 Page 11 of 15

\begin{tabular}{|c|c|c|}
\hline \& \& 2 \\
\hline 4-c \& Basis: 1 mol liquid \(\mathrm{C}_{5} \mathrm{H}_{12}\)
\[
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{R}}^{0} \& =\Sigma \Delta \mathrm{H}_{\mathrm{f}(\mathrm{pr})}^{0}-\Sigma \Delta \mathrm{H}_{\mathrm{f}(\text { react })}^{0} \\
\& =[(-393.51 * 5)+(-285.83 * 6)]-(-173.49) \\
\& =\mathbf{- 3 5 0 9 . 0 4 K} \mathbf{J}
\end{aligned}
\] \& 1
2
2
3 \\
\hline 5 \& Any 2 \& 16 \\
\hline 5-a \& \begin{tabular}{l}
Basis: \(10000 \mathrm{~kg} / \mathrm{hr}\) of feed \\
Overall balance is
\[
\begin{equation*}
10000=X+Y \tag{1}
\end{equation*}
\] \\
Individual balance for \(\mathrm{CH}_{3} \mathrm{OH}\) is
\[
\begin{equation*}
0.3 * 10000=0.97 \mathrm{X}+0.01 * \mathrm{Y} \tag{2}
\end{equation*}
\] \\
Solving the equations
\[
\begin{aligned}
\& \mathrm{X}=3020.83 \mathrm{Kg} / \mathrm{hr} \\
\& \mathrm{Y}=6979.17 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
\] \\
\(\mathrm{CH}_{3} \mathrm{OH}\) in bottom product \(=0.01 * 6979.17=69.79 \mathrm{Kg} / \mathrm{hr}\) \\
\% loss of \(\mathrm{CH}_{3} \mathrm{OH}=\left(\mathrm{CH}_{3} \mathrm{OH}\right.\) in bottom product/ \(\mathrm{CH}_{3} \mathrm{OH}\) in feed \() * 100\)
\[
\begin{aligned}
\& =(69.79 / 3000) * 100 \\
\& =\mathbf{2 . 3 2 \%}
\end{aligned}
\]
\end{tabular} \& 1

1
1
1
1
1
2
1
1
1

\hline 5-b \& Henry's law is $\mathrm{p}_{\mathrm{A}}=\mathrm{H} \mathrm{X}_{\mathrm{A}}$ \& 1

\hline
\end{tabular}

SUMMER-17 EXAMINATION

Model Answer

Subject Title: Stoichiometry
Subject code :
17315
Page 12 of 15

\begin{tabular}{|c|c|c|}
\hline \& ```
$25.33=4.46^{*} 10^{6} \mathrm{X}_{\mathrm{A}}$
Or $\mathrm{X}_{\mathrm{A}}=5.68 * 10^{-6}$
i.e mole fraction of $\mathrm{O}_{2}=5.68 * 10^{-6}$
mole fraction of $\mathrm{O}_{2}=$ moles of $\mathrm{O}_{2} /$ (moles of $\mathrm{O}_{2}+$ moles of solvent $)$
If the solution is very dilute
mole fraction of $\mathrm{O}_{2}=$ moles of $\mathrm{O}_{2} /$ (moles of solvent)
$5.68 * 10^{-6}=5.68 * 10^{-6} / 1$
Solubility of $\mathrm{O}_{\mathbf{2}}=5.68 * 10^{-6}$

``` & 1
2

1
1
1 \\
\hline 5-c & \begin{tabular}{l}
BASIS : 100 mol of ethylene \\
Reaction I
\[
\mathrm{C}_{2} \mathrm{H}_{4}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}
\] \\
Reaction II
\[
\mathrm{C} 2 \mathrm{H} 4+3 \mathrm{O} 2 \longrightarrow 2 \mathrm{CO} 2+2 \mathrm{H} 2 \mathrm{O}
\] \\
From reaction I, \\
1 Kmol of C 2 H 4 O formed \(=1 \mathrm{Kmol} \mathrm{C} 2 \mathrm{H} 4\) reacted \\
\(\therefore \mathrm{C} 2 \mathrm{H} 4\) reacted to form 80 kmol C 2 H 4 O
\[
=\frac{1}{1} \times 80=80 \mathrm{Kmol}
\] \\
From reaction II, \\
2 kmol of CO 2 formed \(=1 \mathrm{Kmol} \mathrm{C} 2 \mathrm{H} 4\) reacted \\
\(\therefore \mathrm{C} 2 \mathrm{H} 4\) reacted to form 10 kmol CO 2
\[
=\frac{1}{2} \times 10=5 \mathrm{Kmol}
\] \\
\(\therefore \mathrm{C} 2 \mathrm{H} 4\) totally reacted \(=80+\square 5=85\) \\
\(\therefore \%\) conversion of \(\mathrm{C} 2 \mathrm{H} 4=\frac{85}{100} \times 100\)
\[
=\mathbf{8 5 \%}
\] \\
\% yield of \(\mathrm{C} 2 \mathrm{H} 4 \mathrm{O}=\frac{80}{85} \times 100\)
\end{tabular} & 1
1
1
1
1
1
1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & = 94.12\% & \\
\hline 6 & Any 4 & 16 \\
\hline 6-a & \begin{tabular}{l}
Basis: 2000 kg wet solid \\
Overall balance is
\[
2000=X+Y
\] \\
Balance for solid
\[
\begin{aligned}
& 0.70 * 2000=0.99 * \mathrm{Y} \\
& \mathrm{Y}=1414.14 \mathrm{~kg} \\
& \mathrm{X}=585.86
\end{aligned}
\] \\
Water removed \(=\mathbf{5 8 5 . 8 6} \mathbf{~ k g}\) \\
Product obtained \(=\mathbf{1 4 1 4 . 1 4} \mathbf{~ k g}\)
\end{tabular} & 1 \\
\hline 6-b & \begin{tabular}{l}
\(\mathrm{CO}+2 \mathrm{H}_{2} \quad--------\rightarrow \mathrm{CH}_{3} \mathrm{OH}\) \\
a) Stoichiometric ratio of \(\mathrm{H}_{2}\) to \(\mathrm{CO}=2: 1\) \\
b) Kmoles of \(\mathrm{CH}_{3} \mathrm{OH}\) produced per kmol CO reacted \(=1\) \\
c) Weight ratio of CO to \(\mathrm{H}_{2}=28: 4=7\) \\
d) Quantity of CO required to produce \(1000 \mathrm{~kg} \mathrm{CH}_{3} \mathrm{OH}\) \(=1000 / 32 * 28=\mathbf{8 7 5} \mathbf{~ k g}\)
\end{tabular} & 1
1
1
1 \\
\hline 6-c & General Material Balance Procedure & 4 \\
\hline
\end{tabular}

\section*{SUMMER-17 EXAMINATION}

Model Answer

Subject Title: Stoichiometry
Subject code : 17315
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
1) Assume Suitable Basis of calculation. \\
2) Adopt weight basis for without chemical reactions and molar basis for with chemical reactions. \\
3) In case of material balance with chemical, write balance chemical reaction and search out limiting component. \\
4) In with chemical reaction, the quantity of a reacting component appearing in the product stream is the quantity of that material remains unreacted. \\
5) Supplied quantity of an excess reactant calculated from the theoretical requirement is based on the quantity of a limiting reactant fed.
\end{tabular} & \\
\hline 6-d & \begin{tabular}{l}
Hess's law: \\
It states that the heat involved in a chemical reaction is same whether the reaction takes place in a single or in several steps. \\
Then
\[
\Delta \mathrm{T}=\Delta \mathrm{T} 1+\Delta \mathrm{T} 2+\Delta \mathrm{T} 3
\] \\
Application of Hess's law: Using this law we can calculate the heat of formation of a compound from a series of reactions that do not involve the direct formation of the compound from its elements.
\end{tabular} & 2 \\
\hline 6-e & Basis: \(1 \mathrm{~m}^{3}\) fixed mass of gas at constant temperature
\[
\begin{aligned}
& \mathrm{P}_{1}=1 \mathrm{~atm} \quad \mathrm{~V}_{1}=1 \mathrm{~m}^{3} \quad \mathrm{~T}_{1}=\mathrm{T}=\mathrm{T}_{2} \\
& \mathrm{P}_{2}=? \quad \mathrm{~V}_{2}=0.5 \mathrm{~m}^{3} \\
& \mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2} \\
& 1 * 1 / \mathrm{T}=\mathrm{P}_{2} * 0.5 / \mathrm{T} \\
& \text { Or } \mathrm{P}_{2}=\mathbf{2} \mathbf{~ a t m}
\end{aligned}
\] & 1
1
1 \\
\hline
\end{tabular}

\section*{SUMMER-17 EXAMINATION}

\section*{Model Answer}

\section*{Subject Title: Stoichiometry}

Subject code :
17315
Page 15 of 15
```

