

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code:

17315

Page 1 of 18

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code:

17315

Page 2 of 18

Q No.	Answer	marks
1-A	Any 4	
1A-a	Sensible Heat: - Sensible heat is the heat that must be transferred to raise or	1
	lower the temperature of a substance or mixture of substance.	
	Heat capacity: It is the amount of heat required to increase the temperature of	1
	one gram of substance by one degree.	
1A-b	Law of conservation of mass: It states that	2
	For any process input= output+accumulation	
1A-c	Value of R:	1
	1.987 Kcal/kmol.K	
	8.315 J/mol.K	1
1A-d	CO+2H ₂ →CH ₃ OH	2
	Stoichiometric coefficient of $CO:H_2 = 1:2$	
1 A-e	Law for real gas is	1
	Vander Waal's equation of state:	
	$(P+a/V^2)(V-b) = nRT$	1
	Where a & b are constants	
1A-f	Law of conservation of energy:	1
	Energy input= energy output + accumulation	1
1-B	Any 2	12
1B-a	Basis: 100 kmoles of feed	
	A fed= 60 kmol	
	B fed=30 kmol	
	Inert fed = 10 kmol	
	Reaction is 2A+B→C	2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

		Subject and a	17215	Dage 2 of 1
		Subject code:	17315	Page 3 of 1
Conversion of A =80%				
A converted= (80/100) *6	60 = 48 kmol			
A unreacted= $60-48 = 12$	kmol			
B reacted = 24 kmol				
B unreacted = $30-24 = 6$ k	kmol			
C formed= 24 kmol				2
Inert= 10 kmol				
Composition of product	stream:			
component	kmol	Mol%		
A	12	23.07		
В	6	11.54		
С	24	46.15		2
Inert	10	19.23		
total	52			
Basis: 1000 kg benzene-to 1000 Kg feed 28% benzene		Distillate Xkg 52% benzene,		1
72% toluene Overall balance is		Bottom product Y 5% benzene	kg	
1000= X+ Y				1
Benzene balance is				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code: 17315

Page **4** of **18**

	17313	
	(28/100)* 1000 = 0.52 X + 0.05 Y	1
	Solving	
	X = 489.36kg and $Y = 510.64$ Kg	
	Distillate= 489.36kg	2
	Bottom product = 510.64 Kg	
1B-c	Basis: 1 Kg HCl acid	1
	$4HCl + O_2 \rightarrow 2Cl_2 + 2 H_2O$	
	$HCl \ fed = 1/36.5 = 0.027 \ kmoles$	1
	From reaction	
	Oxygen theoretically required = $0.027/4 = 6.85*10^{-3}$	1
	% excess = 30	
	Oxygen fed = $8.9*10^{-3}$ kmoles	1
	Air fed = 0.042 kmoles	1
	= 1.22 kg	1
2	Any 4	16
2-a	Basis: 1000 Kg/hr HCHO formed	
	$CH_3OH \rightarrow HCHO + H_2$	
	HCHO formed = 1000/ 30 = 33.33 kmole/h	1
	From reaction, CH ₃ OH reacted = 33.33 kmole/h	1
	Conversion = 65%	
	Conversion= (kmoles of CH ₃ OH reacted/kmoles of CH ₃ OH fed)* 100	1
	Therefore CH ₃ OH fed = 51.28	
	Feed rate of methanol= 51.28 * 32 kmol/h	
	= 1640.96 Kg/h	1
2-b	Hess's law:	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code: 17315

Page **5** of **18**

	17313	
	It states that the heat involved in a chemical reaction is same whether the	2
	reaction takes place in a single or in several steps.	
	A — ★ B ΔT1	
	$B \longrightarrow C \Delta T2$	2
	$C \longrightarrow D \Delta T3$	
	$A \longrightarrow D \Delta T$	
	Then	
	$\Delta T = \Delta T 1 + \Delta T 2 + \Delta T 3$	
2-c	Basis: 4.73 kg coal	
	C+O ₂ →CO ₂	
	At NTP, P= 101.325 KPa	
	T= 273 K	1
	PV=nRT	
	Or n= PV/RT	
	Moles of $CO_2 = 0.237$ kmoles	1
	Weight of $CO_2 = 0.237*44 = 10.428 \text{ kg}$	
	Carbon in the sample = $(12/44)10.428 = 2.844 \text{ kg}$	1
	Carbon content in the sample = $(2.844/4.73)100$	
	= 60.13%	1
2-d	Basis: 2000 kg wet solid	
		1
	→ Water Xkg	
	2000 Kg feed	
	70% solid dryer	
	Product Y kg	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code: 17315

Page **6** of **18**

Overall balance is 2000 = X+ Y Balance for solid 0.70 * 2000 = 0.99 * Y Y = 1414.14 kg X = 585.86 Water removed = 585.86 kg Product obtained = 1414.14 kg 2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K PV=nRT	1
2000 = X+ Y Balance for solid 0.70 * 2000 = 0.99 * Y Y = 1414.14 kg X = 585.86 Water removed = 585.86 kg Product obtained = 1414.14 kg 2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	1
Balance for solid 0.70 * 2000 = 0.99 * Y Y = 1414.14 kg X = 585.86 Water removed = 585.86 kg Product obtained = 1414.14 kg 2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	1
0.70 * 2000 = 0.99 * Y Y = 1414.14 kg X = 585.86 Water removed = 585.86 kg Product obtained = 1414.14 kg 2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	
Y = 1414.14 kg X = 585.86 Water removed = 585.86 kg Product obtained = 1414.14 kg 2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	
X = 585.86 Water removed = 585.86 kg Product obtained = 1414.14 kg 2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	1
Water removed = 585.86 kg Product obtained = 1414.14 kg 2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	
Product obtained = 1414.14 kg 2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	
2-e Basis:15 kg propane Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	1
Moles n= 15/44 = 0.341 kmoles At NTP, P= 101.325 KPa T= 273 K	
At NTP, P= 101.325 KPa T= 273 K	
T= 273 K	1
	1
PV=nRT	
	1
Or $V = nRT/P$	
= 0.341* 8.314 * 273/101.325	1
$= 7.64 \text{ m}^3$	
2-f Basis: 1 mol liquid C ₅ H ₁₂	
$\Delta H^0_R = \Sigma \Delta H^0_{f(pr)} - \Sigma \Delta H^0_{f(react)}$	2
= [(-393.51*5)+(-285.83*6)]- (-173.49)	
= -3509.04KJ	2
3 Any 4	16
3-a Basis: Fixed mass of gas at at constant temperature	
Initial volume V1= 1m ³	1
Initial pressure P1= P1atm	
Final volume V1= V2m ³	

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code:

17315

Page **7** of **18**

	Final pressure P2= 1.85P1atm	1
	P1V1/T1 = P2V2/T2	1
	P1*1/T = 1.85P1*V2/T	
	$V2 = 0.5405 \text{ m}^3$	1
3-b	Basis: 1 kmol methane gas	
	$Q = n[19.2494(T2-T1) + 52.1135*10^{-3}/2(T2^{2} - T1^{2}) + 11.973*10^{-6}/3 (T2^{3} - T1^{2}) + 11.973*10^{-6}/3 (T2^{3$	2
	$T1^3$) - 11.3173 * $10^{-9}/4$ ($T2^4 - T1^4$)	
	$Q = 1[19.2494(523-303) + 52.1135*10^{-3}/2(523^2 - 303^2) + 11.973*10^{-6}/3 $	1
	$523^3 - 303^3$) - 11.3173 * $10^{-9}/4$ ($523^4 - 303^4$)	
	= 4234.86 + 4735.03+459.9 - 187.84	1
	= 9241.96 KJ	
3-c	Basis:100 kg coal	
	→Burnt C Xkg	
	1000 Kg feed	1
	63% C burner	
	24% ash	
	Refuse Y kg	
	7% C, 93% ash	
	Component balance for ash	
	24= 0.93 Y	1
	Or $Y = 25.80 \text{ Kg}$	
	Balance for carbon	
	63= X+ 0.07*25.80	
	X= 61.194 Kg	1
	I	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code: 17315

Page **8** of **18**

	· · · · · · · · · · · · · · · · · · ·	
	Unburnt carbon = 0.07*25.80 = 1.806 Kg	
	% of original C unburnt = (1.806/63)*100	1
	= 2.867%	
3-d		
	$N_2 + 3H_2 \longrightarrow 2NH_3$	1
	$1 \text{ kmol } N_2 = 3 \text{ kmol } H_2$	
	25 " = ?	
	Molal flow rate of $H_2 = 75$ kmol/hr	1
	% conversion of $N_2 = (N2 \text{ reacted/ } N2 \text{ fed})*100$	
	25 = (N2 reacted/ 25)*100	
	N_2 reacted = 6.25 kmol/h	1
	From reaction NH ₃ formed = 12.50 Kmol/h	
	$Kg NH_3 formed = 12.50 *17 = 212.5 Kg$	1
3-е	Basis: 1 kmol NH ₃	
	$Q = n[Cpm2(T_2-T_0) - Cpm1(T_1-T_0)]$	2
	$= 1[\ 37.\ 7063(422-298) - 35.8641(311-298)]$	
	= 4209.35 KJ	2
3-f	Basis: 100 kmol air	
	Avg. mol.wt of air = $M_1X_1+M_2X_2$	1
	= 28 * 0.79 + 32 * 0.21	
	= 28.84	1
	Density = P* Mav / RT	1
	= 101.325 * 28.84/ 8.314 * 273	
	$= 1.287 \text{ Kg/m}^3$	1
4	Any 2	16
L		I.

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code:	17315	Page 9 of 18
z weject to we.	17313	. ago . o

	<u></u>		
4-a	Basis: Mixture of N ₂ , CO ₂ , O ₂		
	Let X_1 , X_2 , X_3 be the mol fraction of N_2 , CO_2 , O_2 respectively.	1	
	1st person 28 $X_1 + 44 X_2 + 32 X_3 = 30.08$	1	
	2^{nd} person 14 $X_1 + 44$ $X_2 + 32$ $X_3 = 30.08$	1	
	$X_1 + X_2 + X_3 = 1$	1	
	Solving the equations, we get		
	$X_1 = 0.81$		
	$X_2 = 0.11$	2	
	$X_3 = 0.08$		
	Volume % of $N_2 = 81\%$		
	Volume % of $CO_2 = 11\%$	2	
	Volume % of $O_2 = 8\%$		
4-b	Basis: Mixture of N ₂ , CO ₂		1
	$X_{CO2} = 1 - X_{N2}$		1
	Avg. mol.wt = $M_1X_1+M_2X_2$		1
	$31 = 28 X_{N2} + 44(1-X_{N2})$		
	Solving, $X_{N2} = 0.8125$		2
	$X_{CO2} = 0.1875$		
	Partial pressure of N_2 = Total pressure * mol.fr		1
	= 101.325 * 0.8125		2
	= 82.33 KPa		
4-c	Basis: 100 kg flaked seeds		
	Hexane+oil		1
	seeds extractor		1
	18.6% oil,		
	69% solid cake Y kg0.8% oil, 87.7% solid		

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code:

17315

Page **10** of **18**

	Component balance for solids	
	69 = 0.877 Y	1
	Or $Y = 78.68 \text{ Kg}$	1
	Oil in cake = $(0.8/100)78.68$	
	= 0.63 Kg	1
	Oil balance is	
	18.6 = 0.63 + oil recovered	1
	Oil recovered = 17.97 kg	1
	% oil recovery = (17.97/18.6)* 100 = 96.61%	1
5	Any 2	16
5-a	Basis : 100 Kg of coke Amount of carbon in coke = 0.9 x 100 = 90 Kg	
	Amount of $C = 90/12 = 7.5 \text{ katom}$	1
	Reaction : $C + O_2> CO_2$	
	From reaction , 1 katom $C = 1 \text{ kmol } O_2$ 12 Kg $C = 32 \text{ Kg } O_2$ 90 Kg $C = (32/12) \times 90 \text{ Kg } O_2$	
	O_2 theoretically required = (32/12) x 90 = 240 Kg	
	O_2 theoretically required = $(240 \times 1000) / 32 = 7500 \text{ mol}$	1
	Moles of O_2 theoretically required for 100 kg coke for complete combustion = 750 mol ans (a)	
	O_2 theoretically required = 240 / 32 = 7.5 kmol	1
	Air theoretically required = $7.5 * (100/21) = 35.71 \text{ kmol}$	
	% excess	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code: 17315

Page **11** of **18**

			Subject code.	1/313	_ raye II oi	
	Air actually supplied	= Air theoretically requi				
		50	100			
	Air actually supplied	= 35.71 x (1+)	= 53.57 kmol		1	
	Air actually supplied					
	O_2 in air supplied =	= 53.57 x 0.21 = 11.25 k	rmol			
	N_2 in air supplied =	$53.57 \times 0.79 = 42.32 \text{ kg}$	mol		1	
	O_2 reacted for complete combustion of coke =7.5 kmol					
	Material Balance of	\mathbf{O}_2				
	O_2 in air supplied =	O ₂ reacted + O ₂ Unreac	cted		1	
	O_2 Unreacted = 11.25	5 -7.5 =3.75 kmol				
	CO_2 produced = $(1/1)$ x 7.5 = 7.5 kmol					
	Analysis of Gases at the end of Combustion:					
	Component	Quantity, Kmol	Mole%		2	
	CO_2	7.5	14			
	N_2	42.32	79			
	O_2	3.75	07			
	Total	53.57	100			
5-b	Basis : 15000 mol/h	of N ₂ - H ₂ mixture				
	Molal flow rate of gas	s mixture = 5 kmol/h				
	$X N_2 = 25/100 = 0.25$				1	
	$X H_2 = 75/100 = 0.75$					
	$C_P^o \text{ mix} = \Sigma C_P^o \text{ mix}$. $X i = X N_2$. $C_P^o N_2 + X H_2$. $C_P^o H_2$ = 0.25 (29.5909 -5.141x 10 ⁻³ T + 13.1829 x10 ⁻⁶ T ² - 4.968 x10 ⁻⁹ T ³)					
	$= 0.25 (29.5909 - 5.141x 10^{-3} T + 13.1829 x 10^{-1} - 4.968 x 10^{-1})$ + 0.75 (28.6105+1.0194 x 10 ⁻³ T - 0.1476 x 10 ⁻⁶ T ² +0.769 x 10 ⁻⁹ T ³)				2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

~			
Suhi	act	code	•
Subj	CCI	code	٠

17315

Page **12** of **18**

$= 28.8556 - 0.5207 \times 10^{-3} \text{ T} + 3.185 \times 10^{-6} \text{ T}^2 - 0.6652 \times 10^{-9} \text{ T}^3$		
Q = Heat added		
$Q = n \square C^{o}p \text{ mix } dT$ T_{1}		1
$Q = n \square [28.8556-0.5207 \times 10^{-3} \text{ T} + 3.185 \times 10^{-6} \text{T}^{2} \\ T_{1} \\ -0.6652 \times 10^{-9} \text{T}^{3}] \text{ dT}$		
0.5207×10^{-3} = n [28.8556 (T2-T1) (T2 ² -T1 ²) 2 3.185×10^{-6} $+ (T23-T13) (T24-T14)]$		2
Where , n= 15 Kmol/h , $T_2 = 473$ K , $T_1 = 298$ K		
0.5207×10^{-3} = 15 [28.8556 (473 - 298) (473 ² - 298 ²) 2 $3.185 \times 10^{-6} \qquad 0.6652 \times 10^{-9}$ + (473 ³ - 298 ³) (473 ⁴ - 298 ⁴)]	
Q = 15(5049.73 - 35.13 - 7.01)		
Q = 76377.6 KJ/h = 21.216 kJ/s = 21.216 kW ans		2
5-c Basis: 1 Kg of petrol		
Amount of H ₂ in petrol = 0.15 Kg, Amount of C in petrol = 0.85 kg	5	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code: 17315

Page **13** of **18**

540jeet code . [17313	
$H_2 + \frac{1}{2} O_2 \longrightarrow H_2O$	1
$C + O_2 \longrightarrow CO_2$	
From reactions : 1 kmol of $H_2 = 0.5$ kmol O_2	
$2 \text{ kg of H}_2 = 16 \text{ kg O}_2$	
1 katom of $C = 1$ kmol O_2	
$12 \text{ kg of C} = 32 \text{ kg O}_2$	1
The rotical requirement of O_2 for $H_2 = 0.15 \times (16/2) = 1.20 \text{ Kg}$	
The rotical requirement of O_2 for $C = 0.85 \times (32/12) = 2.27 \text{ Kg}$	
Total therotical requriment of $O_2 = 1.20 + 2.27 = 3.47$ Kg	
Amount of air required for combustion = (3.47/0.23) =15.09 kg ans	1
(Air contais 23% O_2 and 77 % N_2 on weight basis)	
Amount of air supplied = 15.09 x 1.15 = 17.35 kg	
N_2 in supplied air = (0.77 x 17.35) /28 = 0.477 kmol	
O_2 in supplied air = $(0.23 \text{ x } 17.35)/32 = 0.125 \text{ kmol}$	1
O_2 in dry product = $[0.23x(17.35-15.09)]/32 = 0.016$ kmol	
We have , $1 \text{ katom of } C = 1 \text{ kmol } CO_2$	
(0.85/12) katom C = ?	1
$CO_2 \text{ produced} = (1/1) \text{ x}(0.85/12) = 0.071 \text{ kmol}$	
The product flue gases contain CO ₂ , O ₂ and N ₂	1
For ideal gases, Volume % = Mole %	
Composition of Dry Product Gases :	
	l

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code:

17315

Page **14** of **18**

	Component	Quantity, Kmol	Mole%		2
	CO_2	0.071	12.6		
	N_2	0.016	2.8		
	O_2	0.477	84.6		
	Total	0.564	100		
6	Any 2				16
6-a	Solve any TWO of t	he following			
	Waste acid, 55 % H Con.nitric acid 90% HNO ₃ Con.sulphuric acid 95% H ₂ SO ₄	H ₂ SO ₄ ,20% HNO ₃ lending	Desired mi 00 kg H ₂ SO ₄ , 26% HNO ₃	xed acid	1
		kg of waste acid ,concentricid to make 1000 kg desire		and	1
	Overall material Balance:				
	X+Y+Z=1000(1)				1
	Material Balance Of H ₂ SO ₄				
	0.55X + 0.95 Y = 0.60) x 1000			
	0.55X + 0.95 Y = 600)			
	600 – 0.55 X				
	Y=				

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Cuh	ioot	anda	
Suu	ICC L	code	

17315

Page **15** of **18**

	Subject code: 1/3/5	Page 15 of
	0.95	1
	Y = 631.58 - 0.58 X - (2)	
	Material Balance Of HNO ₃	
	$0.2X + 0.90 Z = 0.26 \times 1000$	
	0.2X + 0.95Y = 260	
	260 - 0.2 X	
	Z =	
	0.90	
	Z = 288.9 - 0.222 X - (3)	1
	Putting values of Y and Z in equation (1) from (2) and (3) and solve for X	
	X + (631.58-0.58 X) +(288.9 -0.222 X) =1000	
	0.198 X = 79.52	1
	X = 401.6 kg	
	We have $Y = 631.58 - 0.58 X$	
	$Y = 631.58 - 0.58 \times 401.6 = 398.65 \text{ Kg}$	1
	We have $Z = 288.9 - 0.222 \text{ X}$	
	$Z = 288.9 - 0.222 \times 401.6 = 199.75 \text{ Kg}$	
	Waste acid = 401.6 kg	
	Concentrated sulphuric acid = 398.65 kg	
	Concentrated nitric acid = 199.75 kg	
6-b	Basis: 1 Kmol /h benzene fed to reactor	
	Benzene, HNO ₃ , H ₂ SO ₄ → Reactor	
	→ Product stream NB, DNB, HNO ₃ etc	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

Subject code: 17315

Page **16** of **18**

$\mathrm{H}_{2}\mathrm{SO}_{4}$	
Reaction 1: $C_6H_6 + HNO_3 - C_6H_5NO_2 + H_2O$	
$ m H_2SO_4$	
Reaction 2: $C_6H_5NO_2 + HNO_3 - C_6H_4(NO_2)_2 + H_2O$	
Benzene reacted = $0.9 \times 1 = 0.9 \text{ kmol/h}$	
Let X be the dinitrobenzene formed per hour	
(kmol nitrobenzene /h) / (kmol dinitrobenzene /h) = 17/1	
Nitrobenzene produced = 17 x kmol	
From reaction 1 and 2	
1 kmol of $C_6H_6 = 1$ kmol of $C_6H_5NO_2$	
= 1 kmol of $C_6H_4(NO_2)_2$	
Benzene reacted to produce nitrobenzene = $(1/1) \times 17 \times \text{kmol/hr}$	
Benzene reacted to dinitrobenzene = $x \text{ kmol}$	
Benzene reacted = $0.9 = 17 x + x$	
x = 0.05 kmol/hr	
Nitrobenzene produce = $17(0.05) = 0.85 \text{ kmol/h}$	
$1 \text{ kmol of } C_6H_6 = 1 \text{ kmol } HNO_3$	
Stoichometric requriment of nitric acid for	
1 kmol benzene /h = $1/1 \times 1 = 1 \text{ kmol/h}$	
Nitric acid fed to reactor = 1 [$1 + (65/100)$] = 1.65 kmol/h	
Nitric acid fed to reactor = $1.65 \times 63 = 104.95 \text{ kg/h}$	
Nitrobenzene produce = $17(0.05) = 0.85 \times 123 = 104.55 \text{ kg/h}$	
Benzene fed to reactor = 1 x 78 = 78 kg/hr	
Nitric acid fed to reactor fed to produce of 2000 kg/hr of nitrobenzene =	
$(103.95/104.55) \times 2000 = $ 1988.5 kg/hr	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

		Subject code: 17315	Page 17 of 1	8
		Benzene fed to reactor fed to produce of 2000 kg/hr of nitrobenzene = (78/104.55) x 2000 = 1492.1kg/hr	1	
6	5-с	Basis: One day of operation	1	
		Wet solids handled = 1000 kg		
		Let X be the Kg of product obtained from first dryer and Y be the Kg of water removed in first dryer.		
		Material Balance of solids over First Dryer :		
		0.50 * 1000 = 0.80 * X	1	
		X = 625 Kg		
		Overall Material Balance over First Dryer :		
		X + Y = 1000		
		625 + Y = 1000	1	
		Y= 375 Kg Input to second dryer is 625 Kg of wet solid containing 20% moisture Material Balance of solids over Second Dryer:	1	
		0.8 * 625 = 0.98 * Z		
		Z = 510.20 Kg		
		Weight of final product = 510.20 Kg ans. (b)		
		Overall Material Balance over Second Dryer :	2	
		625 = 510.20 + Water removed		

Water removed in second dryer = 625-510.20 = 114.8 Kg

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-16 EXAMINATION Model Answer

C1-	4	1 -	
Niini	IPCT	COME	•
Sub	-	code	

17315

Page **18** of **18**

Water in wet solids fed to first dryer =0.5 * 1000 = 500 Kg	1
% of original water removed in first dryer	
= (375/500) *100 = 75 %	
% of original water removed in Second dryer	2
= (114.8/500) *100 = 22.96 %	
% of original water removed in first dryer = 75 %	
% of original water removed in Second dryer = 22.96 %	
ans. (a)	