MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)
 SUMMER-16 EXAMINATION
 Model Answer

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-16 EXAMINATION

Model Answer

\begin{tabular}{|c|c|c|c|}
\hline Q No. \& Answer \& marks \& Total marks \\
\hline 1-A \& Any 4 \& \& 8 \\
\hline 1A-a \& \begin{tabular}{l}
Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures \\
Mathematical Statement: \(\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\) \\
where P is the total pressure of gas mixture, \(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\) are partial pressures \\
Amagat's law: It states that the total volume exerted by a gas mixture is equal to the sum of pure component volumes \\
Mathematical Statement: \(V=V_{1}+V_{2}+V_{3}\) \\
where V is the total volume of gas mixture, \(\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}\) are pure component volumes
\end{tabular} \& 1

1 \& 2

\hline 1A-b \& | Limiting reactant: It is the component or reactant which gets over first in a chemical reaction or it is the reactant which decides the extent of a reaction or it is the reactant which is added in limited quantity. |
| :--- |
| Excess reactant: It is the reactant which is in excess of the theoretical or stoichiometric requirement. | \& 1

1 \& 2

\hline 1A-c \& | Ideal Gas law: |
| :--- |
| $\mathrm{PV}=\mathrm{nRT}$ where P - pressure, V - volume, n - moles, K -absolute temperature and R - universal gas constant | \& 2 \& 2

\hline 1A-d \& | Raoult's law: Raoult's law states that equilibrium partial pressure of a constituent at a given temperature is equal to the product of its vapour pressure in pure state and its mol fraction in the liquid phase. $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}$ |
| :--- |
| Henry's law:It states that the partial pressure of the solute gas in gas phase is directly proportional to the mole fraction of a solute gas dissolved in a liquid | \& 1

1 \& 2

\hline
\end{tabular}

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)
Page 3 of $\mathbf{2 3}$

	equilibrium above the liquid surface.		
1 A-e	Hess's law: It states that the heat involved in a chemical reaction is same whether the reaction takes place in a single or in several steps. Then $\Delta \mathrm{T}=\Delta \mathrm{T} 1+\Delta \mathrm{T} 2+\Delta \mathrm{T} 3$	2	2
1A-f	1)Stoichiometric Equation : The stoichiometric equation of a chemical reaction is the statement indicating relative moles of reactant and products that take part in the reaction . 2) Stoichiometric Coefficient : It is the number that precedes the formula of each component involved in a chemical reaction.	1 1	2
1-B	Any 2		12
1B-a	Basis: 100 kmoles of air Average mol.wt of air $=0.79 * 28+0.21 * 32=28.84$ Density of air $=\mathrm{P} * \mathrm{Mav} / \mathrm{RT}$ At NTP, $\mathrm{P}=101.325 \mathrm{KPa}, \mathrm{R}=8.314, \mathrm{~T}=273 \mathrm{~K}$ Density $=\mathbf{1 . 2 9} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$	1 2 1 2	6
1B-b	Basis: 0.577 mol fr of acetone in.the mixture Mol fr. of butane $=1-0.577=0.423$ Partial pr of butane $=698 \mathrm{~mm} \mathrm{Hg}$ Applying Raoults law to butane Partial pr $=\mathrm{Mol} \mathrm{fr} *$ vapour pr	2 2	6

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	$\begin{aligned} \text { Vapour pressure } & =\text { Partial pressure } / \mathrm{mol} \mathrm{fr} \\ & =698 / 0.423 \\ & =1650 \mathrm{~mm} \mathrm{Hg} \end{aligned}$	2	
1B-c	Basis: Gas mixture containing $0.274 \mathrm{kmol} \mathrm{HCl}, 0.337 \mathrm{kmol} \mathrm{N}_{2}, 0.089 \mathrm{kmol} \mathrm{O}_{2}$. Total moles of the gas mixture $=0.274+0.337+0.089=0.7 \mathrm{kmol}$ Mole fraction of $\mathrm{HCl}\left(\mathrm{X}_{\mathrm{HCl}}\right)=0.274 / 0.7=0.399$ Mole fraction of $\mathrm{N}_{2}\left(\mathrm{X}_{\mathrm{N} 2}\right)=0.337 / 0.7=0.481$ Mole fraction of $\mathrm{O}_{2}\left(\mathrm{X}_{\mathrm{O} 2}\right)=0.089 / 0.7=0.127$ (i)Volume occupied by this mixture $\begin{aligned} & \mathrm{T}=303 \mathrm{~K} \quad \mathrm{P}=405.3 \mathrm{kPa} \\ & \mathrm{PV}=\mathrm{nRT} \\ & \therefore \mathrm{~V}=\frac{\mathrm{nRT}}{\mathrm{P}} \\ & \\ & =\frac{0.7 \times 8.3145 \times 303}{405.3} \\ & \\ & \end{aligned}$	1	6

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

| | (ii) Average molecular weight of the Gaseous mixture
 Mavg $=\Sigma \mathrm{MiXi}$ | |
| :--- | :--- | :--- | :--- |

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	6. Enrichment of a poduct		

2-c \quad Basis : 100 Kmol of feed
Feed contains $60 \mathrm{kmol} \mathrm{A}, 30 \mathrm{kmol}$ B and 10 kmol inerts
Let X be the kmol of A reacted by reaction :

$$
2 \mathrm{~A}+\mathrm{B}----\mathrm{C}
$$

From reaction $2 \mathrm{kmol} \mathrm{A}=1 \mathrm{kmol} \mathrm{B}=1 \mathrm{kmol} \mathrm{C}$
B reacted $=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} \mathrm{kmol}$
C formed $=(1 / 2) * X=0.5 \mathrm{X}$ kmol
Material Balance of A give
A unreacted $=(60-X) \mathrm{kmol}$

Material Balance of Inerts :

Inerts in feed $=$ Inert in product $=10 \mathrm{kmol}$
C formed $=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} \mathrm{kmol}$
B unreacted $=(30-0.5 \mathrm{X}) \mathrm{kmol}$
Total moles of product stream $=(60-\mathrm{X})+(30-0.5 \mathrm{X})+10=0.5 \mathrm{X}$

$$
=100-\mathrm{X} \mathrm{Kmol}
$$

Mole $\%$ of A in product stream $=2 \%$

> Kmol A in product stream

Mole \% of $\mathrm{A}=$ \qquad * 100

Total kmol of product stream

$$
\begin{aligned}
2 & =(60-X) 100 /(100-X) \\
X & =59.184 \mathrm{kmol}=\text { amount of A reacted }
\end{aligned}
$$

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)
Page 8 of $\mathbf{2 3}$

	Total $\quad 53.62$		
2-e	Basis: $100 \mathrm{k} \mathrm{mol} \mathrm{SO}_{2}$ fed $\mathrm{C}_{2} \mathrm{H}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow--\rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ Theoretical O_{2} required $=100 * 0.5=50 \mathrm{kmol}$ $\%$ excess O_{2} is 20 $\begin{aligned} \mathrm{O}_{2} \text { fed } & =50+0.2 * 50=60 \mathrm{kmol} \\ \text { Air fed } & =60 * 100 / 21=285.71 \mathrm{kmol} \\ & =285.71 * 28.84 \\ & =\mathbf{8 2 4 0} \mathbf{~ K g} \end{aligned}$	1 1 1 1	4
2-f	$\begin{aligned} \mathrm{Cp} & =21.3655+64.2841 * 10^{-3} \mathrm{~T}-41.0506^{*} 10^{-6}+9.7999^{*} 10^{-9} \\ \mathrm{~T} 1= & 298 \mathrm{~K} \mathrm{~T} 2=383 \mathrm{~K} \\ \mathrm{Q}= & 100\left[21.3655(383-298)+64.2841 * 103 / 2\left(383^{2}-298^{2}\right)-41.0506^{*}\right. \\ & 10^{-6} / 3\left(383^{3}-298^{3}\right)+9.7999 * 10^{-9} / 4\left(383^{4}-298^{4}\right) \\ = & \mathbf{3 3 0 3 3 6} \mathbf{K J} / \mathbf{m i n} \end{aligned}$	1 2 1	4
3	Any 2		16
3-a	Solution :Basis: 100kg of product gases leaving the oxidizer Reaction: $4 \mathrm{HCl}+\mathrm{O}_{2} \rightarrow 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Product gases contain $13.2 \mathrm{~kg} \mathrm{HCl}, 6.3 \mathrm{~kg} \mathrm{O}_{2}, 42.9 \mathrm{~kg} \mathrm{~N}_{2}, 30 \mathrm{~kg} \mathrm{Cl}_{2}$ and $7.6 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$. Quantity of HCl unreacted $=\mathrm{HCl}$ in product gases $=13.2 \mathrm{~kg}$ Cl_{2} produced $=\mathrm{Cl}_{2}$ in product gases $=30 \mathrm{~kg}$	01	8

SUMMER-16 EXAMINATION

Model Answer

We have from the reaction, $4 \mathrm{kmolHCl}=2 \mathrm{kmol} \mathrm{Cl}_{2}$
i.e., $146 \mathrm{~kg} \mathrm{HCl}=142 \mathrm{~kg} \mathrm{Cl}_{2}$ (on weight basis)
\therefore Quantity of HCl reacted to produce $30 \mathrm{~kg} \mathrm{Cl}_{2}$
$=\frac{146}{142} \times 30=30.85 \mathrm{~kg}$

Material balance of HCl :

HCl charged $=\mathrm{HCl}$ reacted +HCl unreached
$\therefore \mathrm{HCl}$ charged $=30.85+13.2=44.05 \mathrm{~kg}$
Moles of HCl Charged $=\frac{44.05}{36.5}=1.2068 \mathrm{kmol}$
We have, $4 \mathrm{kmolHCl}=1 \mathrm{knol} \mathrm{O}_{2} \ldots$. Mole basis
$\therefore 146 \mathrm{~kg} \mathrm{HCl}=32 \mathrm{~kg} \mathrm{O}_{2} \ldots$. Weight basis
\therefore Quantity of O2 reacted with $30.85 \mathrm{~kg} \mathrm{HCl}=\frac{32}{146} \times 30.85=6.76 \mathrm{~kg}$

Material balance of $\mathbf{O}_{\mathbf{2}}$:

O_{2} charged $=\mathrm{O}_{2}$ reacted $+\mathrm{O}_{2}$ unreacted
$=6.76+6.3=13.06 \mathrm{~kg}$
N_{2} charged $=\mathrm{N}_{2}$ in product gaes $=42.9 \mathrm{~kg}$
\therefore Air charged $=\left(\mathrm{O}_{2}+\mathrm{N}_{2}\right)$ in air charged
$=13.06+42.9=55.96 \mathrm{~kg}$
Mol. Wt. of air $=28.84$
Moles of air charged or supplied $=\frac{55.96}{28.84}=1.94 \mathrm{kmol}$
Theoretical O_{2} required for 1.2068 kmolHCl charged, form the reaction
$=\frac{1}{4} \times 1.2068=0.3017 \mathrm{kmol}$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-16 EXAMINATION

Model Answer

	Theoretical air required $=0.3017 \times \frac{100}{21}=1.44 \mathrm{kmol}$ $\begin{aligned} & \% \text { excess air }=\frac{\text { airsupplied-airtheoreticallyrequired }}{\text { airtheoreticallyrequired }} \times 100 \\ & =\frac{1.94-1.44}{1.44} \times 100=34.72 \quad \ldots \ldots . \text { Ans. (a) } \end{aligned}$ Composition of Gases Entering the Reactor : Ans. (b) The degree of completion of oxidation is nothing but the percent conversion of hydrochloric acid gas (limiting reactant). \therefore Degree of completion of oxidation $=\frac{30.85}{44.05} \times 100=70 \% \quad \ldots \ldots$. Ans. (\mathbf{C}) i.e., Oxidation is 70% complete.	01 01 01	
3-b	.Basis - 100kg of mixed acid Acl ' x ' kg of nitric acid \& ' y ' kg of $\mathrm{H}_{2} \mathrm{SO}_{4} 68.3$	1	8

Subject code :(17315)

	\therefore Overall balance $x+y=100$ Material balance of Nitric acid $\begin{aligned} & 0.683 \mathrm{x}=39 \\ & \therefore \mathrm{x}=\frac{39}{0.683} \end{aligned}$ Weight of $\mathrm{HNO}_{3}=57.1$ $\begin{aligned} \therefore \text { Weight of } \mathrm{H}_{2} \mathrm{SO}_{4} & =100-57.1 \\ & =42.9 \mathrm{~kg} \end{aligned}$ Strength of $\mathrm{H}_{2} \mathrm{So}_{4}$ $\begin{aligned} & 0.429 \mathrm{y}=42 \\ & \therefore \mathrm{y}=\frac{42}{0.429} \\ & =97.9 \end{aligned}$ $\text { Weigth ratio of } \begin{aligned} \mathrm{HNO}_{3} & =\frac{\mathrm{Kg} \text { of } \mathrm{HNO}_{3}}{\mathrm{Kg} \text { of } \mathrm{H}_{2} \mathrm{So}_{4}} \\ & =\frac{57.1}{42.9} \\ & =1.33 \end{aligned}$	1 1 1 1 1 1 1 2	
3-c	Basis : 1000 kmol Benzen- Toluene mixture	1	8

SUMMER-16 EXAMINATION

Model Answer

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	$3 \mathrm{CaSO}_{4}(\mathrm{~S})+3 \mathrm{SiO}_{2}(\mathrm{~S}) \rightarrow 3 \mathrm{CaO} \cdot \mathrm{SiO}_{2}(\mathrm{~S})+3 \mathrm{SO}_{2}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g})$ The standard heat of reaction at 298 K is given by the relation The given reaction is not balanced. Based on the given equation the problem is solved as below. Heat of reaction is $=[$ sum of heat of formation of products $]-$ [sum of heat of formation of reactants.] $\begin{aligned} & =3(-2879)+3(-296.81)-[3(-1432.7)+3(-903.5)] \\ & =-2518.83 \mathrm{KJ} \end{aligned}$ Due consideration should be given for any other solution also.	4 3	
4-b	Solution: Basis: 100 kg of wet solids. Solids in the feed $=0.08 \times 100=80 \mathrm{~kg}$ Water in the feed $=0.2 \times 100=20 \mathrm{~kg}$ Water removed $=0.8 \times 20=16 \mathrm{~kg}$ Water in solids leaving the dryer $=20-16=4 \mathrm{~kg}$ \therefore wet solids leaving the dryer $=80+4=84 \mathrm{~kg}$ \therefore mass fraction of dry solids in the wet solids leaving the dryer $\begin{equation*} =\frac{80}{84}=\mathbf{0 . 9 5 2 3} \tag{a} \end{equation*}$ Weight ratio of water removed to wet solids leaving the dryer $=\frac{16}{84}=0.19: 1$ Ans. (b) Additional water to be removed to dry the 100 kg wet solids completely $=4 \mathrm{~kg}$	01 01 02 02	8

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	\therefore Additional water to be removed to dry completely $1000 \mathrm{~kg} /$ day wet solids $=\frac{4}{100} \times 1000=40 \mathrm{~kg}$ Ans. (c) This is in addition to $\frac{16}{100} \times 1000=160 \mathrm{~kg}$ water removed.	02	
4-c	Solution: Basis: 3000 kg of monochloroacetic acid production per batch. Mol. Wt. of $\mathrm{CH} 2 \mathrm{ClCOOH}=94.5$ Moles of CH 2 ClCOOH produced per batch $=\frac{3000}{94.5}=31.75 \mathrm{kmol}$ Reaction: $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{2} \mathrm{ClCOOH}+\mathrm{HCl}$ From the reaction, $1 \mathrm{kmol} \mathrm{CH}_{2} \mathrm{ClCOOH} \equiv 1 \mathrm{kmol} \mathrm{CH}_{2} \mathrm{ClCOOH}$ i.e., for producing $1 \mathrm{kmol} \mathrm{CH}_{2} \mathrm{ClCOOH}, 1 \mathrm{kmol}$ acetic acid is consumed. $\mathrm{CH}_{3} \mathrm{COOH}$ reacted for $31.75 \mathrm{kmol} \mathrm{CH}_{2} \mathrm{ClCOOH}$ production $=31.75 \times \frac{1}{1}=31.75 \mathrm{kmol}$ Given : The reaction is 95% complete, i.e., conversion of acetic acid is 95\%. $\begin{aligned} & \therefore \mathrm{CH}_{3} \mathrm{COOH} \text { charged }=\frac{\mathrm{CH}_{3} \mathrm{COOH} \text { reacted } \times 100}{\% \text { conversion }} \\ & =\frac{31.75}{0.95}=33.42 \mathrm{kmol} \end{aligned}$ From the reaction, $1 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{COOH} \equiv 1 \mathrm{kmol} \mathrm{Cl}_{2}$ i.e., for $1 \mathrm{kmol}_{\mathrm{CH}}^{3} \mathrm{COOH}$, theoretical Cl_{2} required is 1 kmol . Therefore,	01	8

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	Theoretical requirement of Cl_{2} For $33.42 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{COOH}=\frac{1}{1} \times 33.42=33.42 \mathrm{kmol}$ Given : 15% excess Cl_{2} is used. Therefore, $\mathrm{Cl}_{2} \mathrm{fed} /$ supplied $=33.42 \times\left(1+\frac{15}{100}\right)=38.43 \mathrm{kmol}$ \therefore Amount of Cl_{2} required per batch $=38.43 \times 71=\mathbf{2 7 2 8 . 5} \mathbf{~ k g}$ Amount of $\mathrm{CH}_{3} \mathrm{COOH}$ required per batch $=33.42 \times 60=\mathbf{2 0 0 5 . 5} \mathbf{~ k g}$	01 01 01 01 01	
5	Any 2		16
5-a	Attempt any TWO of the following Basis : 100 mol of gas burnt It contain $25 \mathrm{~mol} \mathrm{CO}, 5 \mathrm{~mol} \mathrm{CO}_{2}, 2 \mathrm{~mol} \mathrm{O}_{2}$ and $68 \mathrm{~mol} \mathrm{~N}_{2}$ $\begin{aligned} & \mathrm{CO}+1 / 2 \mathrm{O}_{2}---\rightarrow \mathrm{CO}_{2} \\ & 1 \mathrm{~mol} \mathrm{CO} \equiv 0.5 \mathrm{~mol} \mathrm{O}_{2} \end{aligned}$ Theoretical O_{2} requirement $=(0.5 / 1) \times 25=12.5 \mathrm{~mol}$ 25% excess air is used, O_{2} in air supplied $=1.25 \times 12.5=15.625 \mathrm{~mol}$ N_{2} in supplied air $=(79 / 21) \times 13.125=58.78 \mathrm{~mol}$ CO reacted $=0.9 \times 25=22.5 \mathrm{~mol}$ CO unreacted $=25-22.5=2.5 \mathrm{~mol}$ CO_{2} produced $=22.5 \mathrm{~mol}$ Total CO_{2} in gas leaving $=22.5+5=27.5 \mathrm{~mol}$ O_{2} reacted $=(1 / 2) \times 22.5=11.25 \mathrm{~mol}$ O_{2} unreacted $=15.625-11.25=4.375 \mathrm{~mol}$	01 mark 01 mark	8

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	Total $\mathrm{O}_{2}=4.375+2=6.375 \mathrm{~mol}$ N_{2} in leaving gas $=58.78+68=126.78 \mathrm{~mol}$ Analysis of flue gases :	01 mark 01 mark	
5-b	Basis : $15000 \mathrm{Kg} / \mathrm{hr}$ of weak solution fed to evaporator Let X, Y and Z be the kg / h of water evaporated ,thick liquor and NaCl precipitated as crystal Overall Material Balance : $\begin{equation*} 15000=X+Y \tag{1} \end{equation*}$ Material balance of $\mathbf{N a O H}$ NaOH in feed solution $=\mathrm{NaOH}$ in thick Liquor $\begin{equation*} 0.15 \times 15000=045 \mathrm{Y} \tag{2} \end{equation*}$ Material balance of $\mathbf{N a C l}$ Nacl in feed solution $=\mathrm{NaCl}$ in thick liquor +Nacl crystal obtained $0.10 \times 15000=0.02 \times 5000+Z$ $\mathrm{Z}=1400 \mathrm{~kg} / \mathrm{hr}$ Put X and Y in equation (1) $\begin{aligned} & X+5000+1400=15000 \\ & X=8600 \mathrm{~kg} / \mathrm{hr} \end{aligned}$ Water evaporated $=8600 \mathrm{~kg} / \mathrm{hr}$ Thick liquor obtained $=\mathbf{5 0 0 0} \mathbf{~ k g} / \mathbf{h r}$	1 1 1 1 1 1 1 1 1 2	8

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	$\mathbf{N a C l}$ precipitated as Crystal $=1400 \mathrm{~kg} / \mathrm{hr}$		
5-c		2	8

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(\Delta H_{0}=-96178\) \\
\(\Delta \mathrm{H}_{\mathrm{RT}}^{\mathrm{O}}=\) Standard heat of reaction at temperature T \\
The expression relating the standard heat of reaction and the temperature of the reaction is
\[
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{RT}}^{\mathrm{O}}= \& -96178-15.748 \mathrm{~T}+26.3995 \times 10^{-3} \mathrm{~T}^{2} \\
\& -15.4793 \times 10^{-6} \mathrm{~T}^{3}+3.382 \times 10^{-9} \mathrm{~T}^{4}
\end{aligned}
\] \\
Putting T \(=773{ }^{\circ} \mathrm{K}\)
\[
\begin{aligned}
\Delta \mathrm{H}_{\mathrm{RT}}^{\mathrm{O}}= \& -96178-15.748 \times 773+26.3995 \times 10^{-3} \times 773^{2} \\
\& -15.4793 \times 10^{-6} \times 773^{3}+3.382 \times 10^{-9} \times 773^{4} \\
\Delta \mathbf{H}_{\mathbf{R T}}^{\mathrm{O}}= \& \mathbf{- 9 8 . 5 1 9} \mathbf{k J} / \mathbf{m o l}
\end{aligned}
\]
\end{tabular} \& 2 \& \\
\hline 6 \& Any 4 \& \& 16 \\
\hline 6-a \& \begin{tabular}{l}
Basis: \(50 \mathrm{kmol} / \mathrm{hr}\) of butane
\[
\mathrm{C}_{4} \mathrm{H}_{10}+13 / 2 \quad \mathrm{O}_{2}----\rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
\] \\
Air flow rate \(=2100 \mathrm{kmol} / \mathrm{hr}\) \\
\(\mathrm{O}_{2}\) in air supplied \(=2100 \times 0.21=441 \mathrm{kmol} / \mathrm{hr}\) \\
From reaction, we have \\
\(1 \mathrm{kmol} \mathrm{C}_{4} \mathrm{H}_{10} \equiv 6.5 \mathrm{kmol} \mathrm{O}_{2}\) \\
Theoretical \(\mathrm{O}_{2}\) requirement \(=6.5 / 1 \times 50=325 \mathrm{kmol}\) \\
Theoretical requirement of air \(=325 \times(100 / 21)\)
\[
=1547.6 \mathrm{kmol} / \mathrm{hr}
\] \\
Air supplied to reactor \(=2100 \mathrm{kmol} / \mathrm{hr}\) \\
Theoretical requirement of air
\[
(2100-1547.6)
\]
\end{tabular} \& 1
1
1

1 \& 4

\hline
\end{tabular}

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	\% excess air $=$-------------------------- x 100 \% excess air $=\mathbf{3 5 . 7 \%}$	1	
6-b	Basis: 100 kg feed to extractor Pyridine in feed $=0.27 \times 100=27 \mathrm{~kg}$ Water in feed $=0.73 \times 100=73 \mathrm{~kg}$ Let X, Y, and Z be the quantities of extract phase , raffinate phase and solvent required Overall material balance Feed + Solvent $=$ Extract phase + Raffinate phase $\begin{equation*} 100+Z=X+Y \tag{1} \end{equation*}$ Material balance of Pyridine : $\begin{equation*} 0.11 \mathrm{X}+0.05 \mathrm{Y}=27 \tag{2} \end{equation*}$ Material balance of Water : $\begin{equation*} 0.009 \mathrm{X}+0.95 \mathrm{Y}=73 \tag{3} \end{equation*}$ Solving equation (2) and (3) $\mathrm{X}=211.4 \mathrm{~kg} \text { and } \mathrm{Y}=74.84 \mathrm{~kg}$ Quantity of extract phase (layer) $=211.4 \mathrm{~kg}$ Quantity of raffinate phase $=74.84 \mathrm{~kg}$ Put the value of X and Y in equation (1) $\begin{aligned} & 100+Z=211.4+74.84 \\ & Z=186.24 \mathrm{Kg} \end{aligned}$ Solvent (Chlorobenzene) required $=186.24 \mathrm{~kg}$	1	4

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

	$\text { Weight ratio of solvent to feed }=\frac{186.24}{100}=\mathbf{- - - - - - \mathbf { - }}=\mathbf{1 . 8 6 2}$	1	
6-c	Basis: Solution at 298 K Let ' X ' be the kg of solution after crystallization Molecular weight of $\mathrm{CaCl}_{2}=111$ Molecular weight of $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}=219$ Molecular weight of $6 \mathrm{H}_{2} \mathrm{O}=108$ Let ' Y ' be the kg of final solution at 298 K Material Balance for $\mathbf{C a C l}_{2}$: $\begin{aligned} & (60 / 100) \mathrm{X}+(111 / 219)(200)=(819.2 / 1819.2) \mathrm{Y} \\ & 0.625 \mathrm{X}+101.36=0.45 \mathrm{Y} \end{aligned}$ Material Balance for $\mathrm{H}_{2} \mathrm{O}$: $(100 / 160) \mathrm{X}+(108 / 219)(200)=(1000 / 1819.2) \mathrm{Y}$ $\begin{aligned} & 0.625 \mathrm{X}+98.63=0.55 \mathrm{Y} \\ & \mathrm{Y}=(0.625 \mathrm{X}+98.63) / 0.55 \end{aligned}$ Put the value of Y from equation (2) in equation (1) $\begin{aligned} & 0.375 \mathrm{X}+101.36=(0.45 / 0.55)(0.625 \mathrm{X}+90.63) \\ & 0.1363 \mathrm{X}=20.67 \\ & X=151.6 \mathrm{~kg} \end{aligned}$ Amount of Solution necessary $=151.6 \mathbf{k g}$	11	4

SUMMER-16 EXAMINATION

Model Answer

Subject code :(17315)

6-d	Basis: 1 Kg of hydrochloric acid gas charged Reaction: $4 \mathrm{HCl}+\mathrm{O}_{2} \quad-----\rightarrow 2 \mathrm{Cl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Moles of acid charged $=1 / 36.5=0.0274 \mathrm{kmol}$ From reaction, we have $4 \mathrm{kmol} \mathrm{HCl} \equiv 1 \mathrm{kmol} \mathrm{O} \mathrm{O}_{2}$ O_{2} theoretically required for oxidation of 0.0274 kmol acid $=(1 / 4) 0.0274=0.00685 \mathrm{kmol}$ Air is used 30% in excess of that theoretical requirement $\begin{aligned} \mathrm{O}_{2} \text { in supplied air } & =\text { Theoretically required } \mathrm{O}_{2}[1+\% \text { excess } / 100] \\ & =0.00685[1+(30 / 100)]=0.0089 \mathrm{kmol} \end{aligned}$ Air contains 21 \% by volume Air supplied $=0.0089 \mathrm{X}(100 / 20)=0.0424 \mathrm{kmol}$ Molecular weight of air $=28.84$ Air supplied per kg of acid $=\mathrm{kmol}$ air X Mol. weight of air $\begin{aligned} & =0.0424 \times 28.84 \\ & =\mathbf{1 . 2 2} \mathbf{~ k g} \text { of air per kg of acid } \end{aligned}$	1	4
6-e	Basis : $100 \mathrm{kmol} / \mathrm{hr}$ acetaldehyde charged to reactor Reaction : $\mathrm{CH}_{3} \mathrm{CHO}+1 / 2 \mathrm{O}_{2}--\cdots----\rightarrow \mathrm{CH}_{3} \mathrm{COOH}$	1	4

SUMMER-16 EXAMINATION

Model Answer

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Let X be the kmol of product obtained per hour Acetic acid formed \(=0.5926 \mathrm{X} \mathrm{kmol} / \mathrm{hr}\) Acetaldehyde unreacted \(=0.1481 \mathrm{X} \mathrm{kmol} \mathrm{hr}\) From reaction,
\[
1 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{CHO} \equiv 1 \mathrm{kmol} \mathrm{CH}_{3} \mathrm{COOH}
\] \\
Acetaldehyde reacted to produce acetic acid
\[
=0.5926 \mathrm{X} \quad \mathrm{x} \quad(1 / 1)=05926 \mathrm{X} \mathrm{kmol} / \mathrm{hr}
\] \\
Material balance of \(\mathbf{C H}_{3} \mathbf{C H O}\) \\
\(\mathrm{CH}_{3} \mathrm{CHO}\) fed to reactor \(=\mathrm{CH}_{3} \mathrm{CHO}\) reacted \(+\mathrm{CH}_{3} \mathrm{CHO}\) unreacted
\[
100=0.5926 \mathrm{X}+0.1481 \mathrm{X}
\]
\[
\mathrm{X}=135 \mathrm{kmol} / \mathrm{hr}
\] \\
Acetaldehyde reacted \(=0.5926(135)=80 \mathrm{kmol} / \mathrm{hr}\) \\
\(\%\) conversion of \(\mathrm{CH}_{3} \mathbf{C H O}=(\mathbf{8 0} / 100) \times 100=\mathbf{8 0} \%\)
\end{tabular} \& 1 \& \\
\hline 6-f \& \begin{tabular}{l}
Basis : 1 mol of benzoic acid crystal \\
\(\begin{array}{ll}\text { 1. } \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})-----\mathrm{CO}_{2}(\mathrm{~g}) \& \Delta \mathrm{H}_{1}=-393.51 \mathrm{KJ} / \mathrm{mol} \\ \text { 2. } \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})-\ldots--->\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \& \Delta \mathrm{H}_{1}=-285.83 \mathrm{KJ} / \mathrm{mol} \\ 3 . \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}(\mathrm{c})+7.5 \mathrm{O}_{2}(\mathrm{~g})--\cdots-->\mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\ \& \Delta \mathrm{H}^{0} \mathrm{c}=-3226.25 \mathrm{KJ} / \mathrm{mol}\end{array}\) \\
4. \(7 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})----->\mathrm{C} 7 \mathrm{H}_{6} \mathrm{O}_{2}(\mathrm{~g})\)
\end{tabular} \& 1

1 \& 4

\hline
\end{tabular}

$\Delta \mathrm{H}^{0} \mathrm{f}=$?
$\Delta \mathrm{H}^{0} \mathrm{f}=$ Standard heat of formation of benzoic acid crystal
Reaction(4) $=7 \times$ Reaction (1) $+3 x$ Reaction (2) - Reaction (3)

$$
\begin{aligned}
\Delta \mathrm{H}^{0} \mathrm{f} & =7 \times \Delta \mathrm{H}_{1}+3 \times \Delta \mathrm{H}_{2}-\Delta \mathrm{H}^{0} \mathrm{c} \\
& =7 \times(-393.51)+3 \times(-285.83)-(-3226.25) \\
& =(-787.02)+(-857.49)-(-3226.25) \\
& =-385.11 \mathrm{KJ} / \mathrm{mol} \\
\Delta \mathbf{H}^{0} \mathbf{f} & =\mathbf{- 3 8 5 . 1 1} \mathbf{~ K J} / \mathrm{mol}-----\mathbf{a n s} .
\end{aligned}
$$

