MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)
 WINTER-15 EXAMINATION
 Model Answer

Subject code :(17315)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-15 EXAMINATION

Model Answer

Q No.	Answer	marks	Total marks
1-A	Any 4		8
1A-a	Ideal Gas law: $\mathrm{PV}=\mathrm{nRT}$ where P - pressure, V - volume, n- moles, K-absolute temperature and R - universal gas constant	1 1	2
1A-b	Principle involved in solving material balance problems without chemical reaction: Law of conservation of mass: It states that For any process input= output+accumulation	2	2
1A-c	Amagat's law: It states that the total volume exerted by a gas mixture is equal to the sum of pure component volumes Mathematical Statement: $V=V_{1}+V_{2}+V_{3}$ where V is the total volume of gas mixture, $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}$ are pure component volumes	1 1	2
1A-d	Raoult's law: Raoult's law states that equilibrium partial pressure of a constituent at a given temperature is equal to the product of its vapour pressure in pure state and its mol fraction in the liquid phase. $\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}$	2	2
1 A-e	Adiabatic reaction : It is the reaction which proceeds without loss or gain of heat. Adiabatic reaction temperature: Temperature of product under adiabatic condition is called adiabatic reaction temperature.	1 1	2
1A-f	\% Conversion: It is the ratio of amount of limiting reactant reacted to the amount of limiting reactant totally charged. Express in percentage. \%Yield of desired product $=($ moles of limiting component reacted to form	1 1	2

	desired product/ total moles of limiting component reacted)* 100		
1-B	Any 2		12
1B-a	Basis: 100 kmoles of air Average mol.wt of air $=0.79 * 28+0.21 * 32=28.84$ Density of air $=\mathrm{P}^{*} \mathrm{Mav} / \mathrm{RT}$ At NTP, $\mathrm{P}=101.325 \mathrm{KPa}, \mathrm{R}=8.314, \mathrm{~T}=273 \mathrm{~K}$ Density $=\mathbf{1 . 2 9} \mathbf{~ k g} / \mathbf{m}^{\mathbf{3}}$	1 1 1 1	4
1B-b	$\text { Partial pressure of } \begin{aligned} \mathrm{CO}_{2} \text { in gas phase } \mathrm{P}_{\mathrm{CO} 2} & =\mathrm{H} * \mathrm{x}_{\mathrm{CO} 2} \\ & =7 * 10^{6} * 4 * 10^{-6} \\ & =\mathbf{2 8} \mathbf{~ K P a} \end{aligned}$	2 2	4
1B-c	Basis: $0.8 \mathrm{~m}^{3}$ fixed mass of gas at constant temperature $\begin{aligned} & \mathrm{P}_{1}=1 \quad \mathrm{~V}_{1}=0.8 \mathrm{~m}^{3} \quad \mathrm{~T}_{1}=\mathrm{T}=\mathrm{T}_{2} \\ & \mathrm{P}_{2}=1.5 \quad \mathrm{~V}_{2}=? \mathrm{~m}^{3} \\ & \mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2} \\ & 1 * 0.8 / \mathrm{T}=1.5 * \mathrm{~V}_{2} / \mathrm{T} \\ & \text { Or } \mathrm{V}_{2}=\mathbf{0 . 5 3 3} \mathbf{~ m}^{3} \end{aligned}$	1 1	4
2	Any 4		16
2-a	Steps involved in solving material balance calculations: 1.Assume suitable basis of calculation as given in problem. 2. Adopt weight units in case of problem of process without chemical reaction. 3. Draw block diagram of process 4. Show input and output streams 5. Write overall material balance 6. Write individual material balance 7. Solve above two algebric equations	$1 / 2$ mark each	4

	8. Get values of two unknown quantities.		
2-b	Basis: 1 kg air NH3 balance is $\left.\begin{array}{l} 0.2=0.004+\mathrm{X} \\ \mathrm{X}=0.196 \mathrm{Kg} \\ \text { \% recovery of ammonia } \end{array}=(\mathrm{NH} 3 \text { absorbed } / \mathrm{NH} 3 \text { original }) * 100\right\}$	1 1 1 1	4
2-c	Excess component: It is the reactant which is in excess of the theoretical or stoichiometric requirement. Limiting component: It is the reactant which would disappear first if a rection goes to completion.Or it is the reactant which decides the extent of a reaction.	2 2	4
2-d	Basis: 100 of ethanol charged. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}-----\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2}$ I kmol $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ reacted $=1 \mathrm{kmol}_{\mathrm{CH}}^{3} \mathrm{CHO}$ formed $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ reacted to produce $45 \mathrm{kmol} \mathrm{CH} \mathrm{H}_{3} \mathrm{CHO}=45 \mathrm{kmol}$ Conversion of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}=\left(\right.$ kmole of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ reacted/ kmoles Of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ fed)* ${ }^{100}$	1 1 1	4

Subject code :(17315)

	$\begin{aligned} &=(45 / 100) * 100 \\ & \% \text { conversionof ethanol }=\mathbf{4 5} \% \end{aligned}$	1	
2-e	Basis - $100 \mathrm{Kmol} \mathrm{SO}_{2}$ charged O_{2} fed=75 kmoles Reaction $\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{SO}_{3}$ Theorctical requirement of O_{2} $1 \mathrm{Kmol} \mathrm{SO}_{2} \equiv 0.5 \mathrm{Kmol} \mathrm{O}_{2}$ theoretical $100 \mathrm{kmol} \mathrm{SO}=\frac{0.5}{1} \times 100$ Theorctical $\mathrm{O}_{2}=50 \mathrm{Kmol}$ $\therefore \%$ excess of O_{2} used $\begin{aligned} & =\frac{\mathrm{O}_{2} \text { in supplied }-\mathrm{O}_{2} \text { theo read }}{\mathrm{O}_{2} \text { theo read }} \\ & =\frac{75-50}{50} \times 100 \\ & =50 \\ & \therefore \% \text { excess air used }=\mathbf{5 0 \%} \end{aligned}$	1	4
2-f	Basis: $100 \mathrm{Kg} / \mathrm{hr} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ $\begin{aligned} & \mathrm{m}=100 \mathrm{Kg} / \mathrm{hr} \\ & \lambda=202 \mathrm{kcal} / \mathrm{kg} \\ & \text { Latent heat } \end{aligned}=\mathrm{m} . \lambda \text {. } \quad \begin{aligned} & \lambda \\ &=100 * 202 \\ &=\mathbf{2 0 2 0 0} \text { Kcal } / \mathbf{h r} \end{aligned}$	1 2 1	4
3	Any 2		16
3-a	SOLUTION :		8

WINTER-15 EXAMINATION

Model Answer

Subject code :(17315)

	BASIS : 100 mol of ethylene Reaction I $\mathrm{C}_{2} \mathrm{H}_{4}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ Reaction II $\mathrm{C} 2 \mathrm{H} 4+3 \mathrm{O} 2 \longrightarrow \quad 2 \mathrm{CO} 2+2 \mathrm{H} 2 \mathrm{O}$ From reaction I, 1 Kmol of C 2 H 4 O formed $=1 \mathrm{Kmol} \mathrm{C} 2 \mathrm{H} 4$ reacted $\therefore \mathrm{C} 2 \mathrm{H} 4$ reacted to form 80 kmol C 2 H 4 O $=\frac{1}{1} \times 80=80 \mathrm{Kmol}$ From reaction II, $2 \mathrm{kmol} \text { of } \mathrm{CO} 2 \text { formed }=1 \mathrm{Kmol} \mathrm{C} 2 \mathrm{H} 4 \text { reacted }$ $\therefore \mathrm{C} 2 \mathrm{H} 4$ reacted to form 10 kmol CO 2 $=\frac{1}{2} \times 10=5 \mathrm{Kmol}$ $\therefore \mathrm{C} 2 \mathrm{H} 4$ totally reacted $=80+5=85$ $\therefore \%$ conversion of $\mathrm{C} 2 \mathrm{H} 4=\frac{85}{100} \times 100$ $=85 \%$ \% yield of $\mathrm{C} 2 \mathrm{H} 4 \mathrm{O}=\frac{80}{85} \times 100$ $=94.12 \%$	2 1 1 1 1 2 2	
3-b	SOLUTION : BASIS : 100 kg of mixed acid $\begin{aligned} \therefore \mathrm{H}_{2} \mathrm{SO}_{4} & =45 \mathrm{Kg} \\ \mathrm{HNO}_{3} & =42 \mathrm{Kg} \end{aligned}$		8

Let, X be the kg of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and
Y be the kg of HNO_{3}
$x+y=100$
Material Balance on $\mathrm{H}_{2} \mathrm{SO}_{4}$:-
$0.98 x=45$
$\therefore \mathrm{x}=45 / 0.98$
$\mathrm{x}=45.91$
\therefore weight of $\mathrm{H}_{2} \mathrm{SO}_{4}=45.91 \mathrm{~kg}$
\therefore weight of $\mathrm{HNO}_{3}=100-45.91=54.09 \mathrm{~kg}$
Let, y is strength of HNO_{3}
$\therefore 54.09 \mathrm{y}=42$

$$
\begin{aligned}
& y=42 / 54.09 \\
& y=0.7764
\end{aligned}
$$

\therefore strength of $\mathrm{HNO}_{3}=0.7764 \times 100$
$=77.64 \% \ldots A n s$.
Weight ratio of $\mathrm{H}_{2} \mathrm{SO}_{4}$
45.91

Weight ratio of HNO_{3}

	= 0.8487..............Ans.
$3-\mathrm{c}$	SOLUTION : BASIS : $20,000 \mathrm{~kg} / \mathrm{h}$ of 25% methanol feed solution to coloum

25% methanol

Block diagram for distillation of $\mathbf{2 5} \%$ methanol feed

Let x and y be the mass flow rates of distillate / product and waste solution (bottom product) respectively.

Overall Material Balance :

$$
x+y=20000 \ldots . .(i)
$$

Material Balance of Methanol :

$$
\begin{align*}
& 0.98 \mathrm{x}+0.01 \mathrm{y}=0.25 \mathrm{x} 20000 \\
& 0.98 \mathrm{x}+0.01 \mathrm{y}=5000 \tag{ii}
\end{align*}
$$

From equation(i),

Model Answer

Subject code :(17315)

	$\begin{equation*} y=20000-x \tag{iii} \end{equation*}$ Put the value of y from equation (iii) in eqn (ii) and solve for x . $\begin{gathered} 0.98 \mathrm{x}+0.01(20000-\mathrm{x})=5000 \\ 0.98 \mathrm{x}-0.01 \mathrm{x}=5000-200 \\ 0.97 \mathrm{x}=4800 \\ \mathrm{x}=4948.45 \mathrm{~kg} / \mathrm{h} \\ \therefore \mathrm{y}=20000-\mathrm{x}=20000-4948.45=15051.55 \mathrm{~kg} / \mathrm{hr} \end{gathered}$ Mass flow rate of distillate $=\mathbf{4 9 4 8 . 4 5} \mathbf{~ k g} / \mathrm{h}$ Mass flow rate of waste solution $=\mathbf{1 5 0 5 1 . 5 5} \mathbf{~ k g} / \mathbf{h r}$ \qquad Methanol in waste solution $=0.01 \times 15051.55=150.51 \mathrm{~kg} / \mathrm{h}$ Methanol in Feed $=0.25 \times 20000=5000 \mathrm{~kg} / \mathrm{h}$ $\begin{aligned} \% \text { loss of methanol }= & \frac{\text { Methanol in waste solution }}{\text { Methanol feed solution }} \times 100 \\ & =\frac{150.51}{5000} \times 100 \\ & =\mathbf{3 . 0 1 \%} \quad \text {...Ans } \end{aligned}$	2	
4	Any 2		16
4-a	SOLUTION : Basis : 1 mol of C4H6 (liq) 1. $\mathrm{C}(\mathrm{s})+\mathrm{O} 2(\mathrm{~g})----->\mathrm{CO} 2(\mathrm{~g})$ $\Delta \mathrm{H} 1=-393.51 \mathrm{KJ} / \mathrm{mol}$ 2. $\mathrm{H} 2(\mathrm{~g})+1 / 2 \mathrm{O} 2(\mathrm{~g})----->\mathrm{H} 2 \mathrm{O}(\mathrm{l})$ $\Delta \mathrm{H} 1=-285.83 \mathrm{KJ} / \mathrm{mol}$	1 1	8

	3. C 4 H 6 (liq.) $+5.5 \mathrm{O} 2(\mathrm{~g})----->4 \mathrm{CO} 2(\mathrm{~g})+3 \mathrm{H} 2 \mathrm{O}(\mathrm{l})$ $\Delta \mathrm{H} 0 \mathrm{c}=-2520.11 \mathrm{~kJ} / \mathrm{mol}$ 4. $4 \mathrm{C}(\mathrm{s})+3 \mathrm{H} 2(\mathrm{~g})----->\mathrm{C} 4 \mathrm{H} 6$ (liq.) $\Delta \mathrm{H}^{0} \mathrm{f}=$? $\Delta \mathrm{H}^{0} \mathrm{f}=$ Standard heat of formation of gaseous ethyl alcohol at 298.15 K Reaction(4) $=$ 4* Reaction (1) + 3* Reaction (2) - Reaction (3) $\begin{aligned} & \Delta \mathrm{H}^{0} \mathrm{f}=4^{*} \Delta \mathrm{H} 1+3^{*} \Delta \mathrm{H} 2-\Delta \mathrm{H}^{0} \mathrm{c} \\ &=4(-393.51)+3^{*}(-285.83)-(-2520.11) \\ &=(-1547.04)+(-857.49)+1410.09 \\ &=88.58 \mathrm{KJ} / \mathrm{mol} \\ & \Delta \mathrm{H} 0 \mathrm{f}=\mathbf{8 8 . 5 8} \mathbf{~ K J} / \mathbf{m o l}------ \text { Ans. } \end{aligned}$	1 1 1 2 1	
4-b	SOLUTION : BASIS : 1000 kg of wet solid Weight of solid in feed $=1000 * 0.85$ $=850 \mathrm{~kg}$ Weight of water in feed $=150 \mathrm{~kg}$ Let, weight of dried producy $=\mathrm{xkg}$	1 1 1 1	8

	It contain 99.5% solid and solid is unchanging component. $\begin{aligned} & \therefore \text { solid balance, } \\ & 0.995 \mathrm{x}=850 \\ & \mathrm{x}=850 / 0.995 \\ & \mathrm{x}=854.27 \mathrm{~kg} \end{aligned}$ \therefore weight of water in dried product $=854.27-850=4.27 \mathrm{~kg}$ Water removed in dryer $=150-4.27=145.73 \mathrm{~kg}$ $\therefore \quad$ original water removed $=\frac{145.73}{150} \times 100$ $\text { = } 97.15 \% \text {...............................Ans. }$	1 1 1 1	
4-c	SOLUTION : BASIS : 100 kmol of SO_{2} $\begin{aligned} & \mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{SO}_{3} \\ & \therefore 1 \mathrm{kmol} \text { of } \mathrm{SO}_{2} \equiv 1 / 2 \mathrm{kmol} \mathrm{O}_{2} \\ & \therefore \text { kmol O} \\ & 2 \text { required }=100 * 0.5 \\ & =50 \mathrm{kmol} \end{aligned} \quad \begin{array}{r} \therefore \mathrm{O}_{2} \text { supplied }=50 * 1.8 \\ =90 \mathrm{kmol} \end{array}$ $\begin{aligned} \mathrm{N}_{2} \text { supplied } & =\frac{79}{21} \times 90 \\ & =338.57 \mathrm{kmol} \\ \mathrm{SO}_{2} \text { reacted } & =100 \times 0.70 \\ & =70 \mathrm{kmol} \end{aligned}$ $\mathrm{O}_{2} \text { required }=70 \times 0.5$ $=35 \mathrm{kmol}$ SO_{3} formed $=70 \mathrm{kmol}$ Composition of gases leaving reactor :-	1 1 1 1 1 1 1 1 1 1 1	8

Let X be the be the $\mathrm{Kg} / \mathrm{hr}$ of weak liquor then we have.

$$
\begin{aligned}
0.05 \mathrm{X} & =100 \\
\mathrm{X} & =2000 \mathrm{Kg} / \mathrm{hr}
\end{aligned}
$$

Y be the be the $\mathrm{Kg} / \mathrm{hr}$ of thick liquor then we have.

$$
\begin{aligned}
0.5 \mathrm{Y} & =100 \\
\mathrm{Y} & =200 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

Overall Material Balance:

$\mathrm{Kg} / \mathrm{hr}$ of weak liquor $=\mathrm{Kg} / \mathrm{hr}$ of thick liquor $+\mathrm{Kg} / \mathrm{hr}$ of

$$
\begin{aligned}
& \text { Water evaporated } \\
& 2000=200+\mathrm{Kg} / \mathrm{hr} \text { of Water evaporated }
\end{aligned}
$$

$\mathrm{Kg} / \mathrm{hr}$ of Water evaporated $=1800 \mathrm{Kg} / \mathrm{hr}$
Case -II: Basis: $1800 \mathrm{Kg} / \mathrm{hr}$ of Water evaporated
Let A be the be the $\mathrm{Kg} / \mathrm{hr}$ of weak liquor
B be the be the $\mathrm{Kg} / \mathrm{hr}$ of thick liquor
Overall Material Balance:

$$
\mathrm{A}=\mathrm{B}+1800
$$

Material Balance of Solids :

$$
\begin{aligned}
0.04 \mathrm{~A} & =0.35 \mathrm{~B} \\
\mathrm{~A} & =8.75 \mathrm{~B}
\end{aligned}
$$

Putting in above equation

\begin{tabular}{|c|c|c|c|}
\hline \& \(8.75 \mathrm{~B}=\mathrm{B}+1800\)
\(\mathrm{~B}=232.26 \mathrm{Kg} / \mathrm{hr}\)
\(\mathrm{A}=232.26+1800=2032.26 \mathrm{Kg} / \mathrm{hr}\)
Solid in weak liquor \(=0.04 \times 2032.26=81.3 \mathrm{Kg} / \mathrm{hr}\)
Solid handling Capacity \(=81.3 \mathrm{Kg} / \mathrm{hr} \quad-----\) Ans. \& 2 \& \\
\hline 5-c \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Basis: } 1 \text { mol of ethylene gas } \\
\& \quad \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+1 / 2 \mathrm{O}_{2} \text {---------- } \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{~g}) \\
\& \Delta \mathrm{H}_{\mathrm{R}}^{\mathrm{o}}=\text { Standard heat of reaction } \\
\& =\left[\Sigma \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}}\right] \text { product }-\left[\Sigma \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}}\right] \text { reactant } \\
\& =\left[\begin{array}{ll}
\left.\left.1 \mathrm{x} \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}}\right) \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{~g})\right]-\left[1 \mathrm{x} \Delta \mathrm{H}_{\mathrm{c}}^{\mathrm{o}} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\right. \\
= \& {[1 \times(-12.58)]-[1 \mathrm{~g}(12.50)+1 / 2 \times(0.0)]} \\
=-12.58-12.50 \\
=-25.08 \quad \mathrm{KJ} \text { per mol } \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{~g}) \text { produced. }
\end{array}\right.
\end{aligned}
\] \\
Change in the enthalpy for \(5 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}(\mathrm{g})\) produced
\[
=-25.08 \text { X } 5 \text { = -125.40 KJ ------Ans }
\]
\end{tabular} \& 2

3
3 \& 8

\hline 6 \& Any 4 \& \& 16

\hline 6-a \& | 1)Stoichiometric Equation : |
| :--- |
| The stoichiometric equation of a chemical reaction is the statement indicating relative moles of reactant and products that take part in the reaction . |
| For example, the stoichiometric equation $\mathrm{CO}+\mathrm{H}_{2}-\cdots---\rightarrow \mathrm{CH}_{3} \mathrm{OH}$ |
| Indicates that one molecule of CO react with two molecules of hydrogen to | \& 2 \& 4

\hline
\end{tabular}

Subject code :(17315)

	\% recovery of Oil $=$42.19 --------- 45\% recovery of Oil $=\mathbf{9 3 . 7 5 \%}$	1	
6-c			4
6-c	Let X and y be the kg of dilute acid and Commercial Grade required to prepare desired acid. Overall Material balance Kg dilute $\mathrm{acid}+\mathrm{kg}$ Commercial Grade $=\mathrm{Kg}$ of desired acid $\begin{equation*} X+Y=1000 \tag{1} \end{equation*}$ Material Balance of $\mathbf{H}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ in dilute acid $+\mathrm{H}_{2} \mathrm{SO}_{4}$ in Commercial Grade $=\mathrm{H}_{2} \mathrm{SO}_{4}$ in desired acid $0.25 \mathrm{X}+0.98 \mathrm{Y}=0.65 * 1000$	1	

	We have, $\begin{aligned} & X+Y=1000 \\ & 452+Y=1000 \\ & Y=548 \mathrm{Kg} \end{aligned}$ $\text { Dilute acid required }=452 \mathrm{Kg}$ Commercial Grade Acid required =548 kg	1	
6-d	Basis: 50 kmol of butane fed to combustion reactor Reaction, $\mathrm{C}_{4} \mathrm{H}_{10}+13 / 2 \mathrm{O}_{2}----4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}$ From reaction, 1 Kmol of $\mathrm{C}_{4} \mathrm{H}_{10}=6.5 \mathrm{kmol} \mathrm{O}_{2}$	1	4


	```50 Kmol of \(\mathrm{C}_{4} \mathrm{H}_{10}=(50 * 6.5) / 1 \mathrm{Kmol} \mathrm{O}{ }_{2}\) \(=325 \mathrm{Kmol} \mathrm{O}_{2}\) required Theoretical \(\mathrm{O}_{2}\) required \(=325 \mathrm{Kmol}\) \(\%\) Excess \(\mathrm{O}_{2}=35 \%\) Actual \(\mathrm{O}_{2} \mathrm{fed}=\) Theoretical \(\mathrm{O}_{2}\) required [ \(1+\%\) Excess \(/ 100\) ] Actual \(\mathrm{O}_{2}\) fed \(=\) Theoretical \(\mathrm{O}_{2}\) required [ \(1+35 / 100\) ] Actual \(\mathrm{O}_{2}\) fed \(=325^{*}[1+35 / 100]\) Actual \(\mathrm{O}_{2}\) fed \(=\mathbf{4 3 8 . 7 5} \mathbf{~ k m o l}\)---------------Ans.```	1 1 1	
6-e	Basis : 100 Kmol of feed   Feed contains $60 \mathrm{kmol} \mathrm{A}, 30 \mathrm{kmol}$ B and 10 kmol inerts   Let X be the kmol of A reacted by reaction : $2 \mathrm{~A}+\mathrm{B}----\mathrm{C}$   From reaction $2 \mathrm{kmol} \mathrm{A}=1 \mathrm{kmol} \mathrm{B}=1 \mathrm{kmol} \mathrm{C}$ $\begin{array}{ll} \text { B reacted }=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} & \mathrm{kmol} \\ \text { C formed }=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} & \mathrm{kmol} \end{array}$   Material Balance of A give $\text { A unreacted }=(60-X) \mathrm{kmol}$   Material Balance of Inerts :   Inerts in feed $=$ Inert in product $=10 \mathrm{kmol}$   C formed $=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} \quad \mathrm{kmol}$   $B$ unreacted $=(30-0.5 \mathrm{X}) \mathrm{kmol}$   Total moles of product stream $=(60-X)+(30-0.5 \mathrm{X})+10=0.5 \mathrm{X}$ $=100-\mathrm{X} \mathrm{Kmol}$   Mole $\%$ of A in product stream $=2 \%$   Kmol A in product stream   Mole \% of $\mathrm{A}=$ $\qquad$ * 100	1	4

\begin{tabular}{|c|c|c|c|}
\hline \&  \& 1

1 \& <br>

\hline 6-f \& | Sensible Heat : |
| :--- |
| Sensible heat is the heat that must be transferred to raise or lower the temperature of a substance or mixture of substance. |
| Latent Heat : When matter undergoes a phase change, the enthalpy change associated with unit amount of matter at constant temperature and pressure is known as Latent Heat of phase change. | \& 2

2 \& 4 <br>
\hline
\end{tabular}

