Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

SUMMER-15 EXAMINATION

Model Answer

\begin{tabular}{|c|c|c|c|}
\hline Q No. \& Answer \& marks \& Total marks \\
\hline 1A-a \& Raoult's law: Raoult's law states that equilibrium partial pressure of a constituent at a given temperature is equal to the product of its vapour pressure in pure state and its mol fraction in the liquid phase.
\[
\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}
\] \& 1 \& 2 \\
\hline 1A-b \& \begin{tabular}{l}
Relationship between partial pressure and total pressure: \\
For a gaseous mixture, total pressure is equal to the sum of partial pressures of its components. This is called Dalton's law.
\[
\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}
\] \\
Where P is the total pressure of gas mixture and \(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\) are partial pressures
\end{tabular} \& 1
1 \& 2 \\
\hline 1A-c \& \begin{tabular}{l}
Ideal Gas law: \\
\(\mathrm{PV}=\mathrm{nRT}\) where P - pressure, V - volume, n - moles, K -absolute temperature and R - universal gas constant \\
Value and unit of R is \(\mathbf{8 . 3 1 4} \mathrm{KPa} \mathrm{m}^{3} / \mathbf{~ k m o l ~ K}\)
\end{tabular} \& 1
1 \& 2 \\
\hline 1A-d \& Material balance for solids is
\[
\mathrm{X}_{1} / 100 * \mathrm{~F}=\mathrm{X}_{2} / 100 * \mathrm{Y}
\] \& 1

1 \& 2

\hline
\end{tabular}

SUM M ER-15 EXAMINATION

Model Answer

Subject code :(17315)

$1 \mathrm{~A}-\mathrm{e}$	Limiting component: It is the component or reactant which gets over first in a chemical reaction or it is the reactant which decides the extent of a reaction or it is the reactant which is added in limited quantity. \% Conversion: (moles of limiting component reacted/ moles of limiting reactant fed) * 100	1	2
1A-f	Hess's law: It states that the heat involved in a chemical reaction is same whether the reaction takes place in a single or in several steps. Then $\Delta \mathrm{T}=\Delta \mathrm{T} 1+\Delta \mathrm{T} 2+\Delta \mathrm{T} 3$	2	2
1B-a	Basis: 100 kmoles of air Average mol.wt of air $=0.79 * 28+0.21 * 32=28.84$ Density of air $=\mathrm{P}^{*} \mathrm{Mav} / \mathrm{RT}$ At NTP, $\mathrm{P}=101.325 \mathrm{KPa}, \mathrm{R}=8.314, \mathrm{~T}=273 \mathrm{~K}$ Density $=\mathbf{1 . 2 9} \mathbf{~ k g} / \mathbf{m}^{3}$	1 1 1 2 1	6
1B-b	Basis: $10000 \mathrm{Kg} / \mathrm{hr}$ of weak liquor Overall balance is $10000=\mathrm{X}+\mathrm{Y}$	11	6

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

	Individual balance for caustic is $\begin{aligned} & 10 / 100 * 10000=55 / 100 * \mathrm{Y} \\ & \mathrm{Y}=1818.18 \& \mathrm{X}=8181.81 \\ & \mathrm{Kg} / \mathrm{hr} \text { of water evaporated }=\mathbf{8 1 8 1 . 8 1} \mathbf{~ K g} / \mathbf{h r} \\ & \mathrm{Kg} / \mathrm{hr} \text { of thick liquor obtained }=\mathbf{1 8 1 8 . 1 8} \mathbf{~ K g} / \mathbf{h r} \end{aligned}$	1 2	
1B-c	Basis: 10 kg C $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ Kmoles of $\mathrm{C}=10 / 12=0.833$ kmoles Theoretical requirement of $\mathrm{O}_{2}=0.833$ Air is used 20% excess Fed $\mathrm{O}_{2}=1.2 * 0.833=0.9996$ Fed $\mathrm{N}_{2}=(79 / 21)^{*} 0.9996=3.76$ $\begin{aligned} & \mathrm{CO}_{2} \text { formed }=0.833 \mathrm{kmoles} \\ & \mathrm{O}_{2} \text { unreacted }=0.9996-0.833=0.167 \mathrm{kmoles} \end{aligned}$ Composition of gases leaving combustion chamber:	1 1 1 1 1 2	6
2-a	General Material Balance Procedure 1) Assume Suitable Basis of calculation. 2) Adopt weight basis for without chemical reactions. 3) Draw Block diagram of the process of each operation with input and output stream. 4) In the block diagram drawn, indicate the information provided regarding input and output.	4	4

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

	5) Search out unknown and ascertain them and Calculate it by generating and solving material balance equations.						
2-b	Basis: 100 kg gas mixture					13	4
	component	weight	Mol.wt	kmoles	Mol \%		
	CO_{2}	10	44	0.227	5.90		
	N_{2}	40	28	1.43	37.21		
	O_{2}	30	32	0.938	24.41		
	CH_{4}	20	16	1.25	32.53		
2-c							4
	10 kg $20 \% \mathrm{NaCl}$, $30 \% \mathrm{NaOH}$ Basis: 10 Kg Overall balan Balance for $y=23.33 \%$ Balance for $\mathrm{z}=21.67 \%$ Composition water.	ution 1 a is $10+5$ OH is $30 /$ 1 is $20 / 10$ resulting	\% NaC g solution 15 Kg $0+10 / 10$ $+25 / 100$ is 23.33	$\mathrm{y} / 100^{*} 1$ $100 * 15$ OH, 21.6	g NaOH NaCl Cl and 55\%	1	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

\begin{tabular}{|c|c|c|c|}
\hline 2-d \& \begin{tabular}{l}
Basis: \(5000 \mathrm{~kg} / \mathrm{hr}\) feed \\
Overall balance is \(5000=\mathrm{X}+\mathrm{Y}\) \\
Balance for benzene is \(0.4^{*} 5000=0.9 \mathrm{X}+0.1 \mathrm{Y}\) \\
Solving the equations \(\mathrm{X}=1875\) and \(\mathrm{Y}=3125\) \\
Flow rate of top product \(=\mathbf{1 8 7 5} \mathbf{K g} / \mathbf{h r}\) \\
Flow rate of bottom product \(\mathbf{=} \mathbf{3 1 2 5} \mathbf{~ K g} / \mathbf{h r}\)
\end{tabular} \& 1
1 \& 4 \\
\hline 2-e \& \begin{tabular}{l}
Basis: 100kg methane fed \\
Moles of methane fed \(=100 / 16=6.25\) kmoles
\[
\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\] \\
Theoretical oxygen \(=12.5\) kmoles \\
Excess \(=50\) \% \\
Fed \(\mathrm{O}_{2}=18.75\) kmoles \\
Fed \(\mathrm{N}_{2}=70.54\) kmoles \\
\% conversion is 40 \\
Methane reacted \(=2.5\) kmoles \\
\(\mathrm{O}_{2}\) Reacted= 5 \\
\(\mathrm{O}_{2}\) unreacted \(=18.75-5=\mathbf{1 3 . 7 5} \mathbf{~ k m o l e s}\) \\
\(\mathrm{CO}_{2}\) formed \(=2.5\) kmoles \\
\(\mathrm{H}_{2} \mathrm{O}\) formed \(=\mathbf{5}\) kmoles
\end{tabular} \& 1

1
1
1 \& 4

\hline
\end{tabular}

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Basis : \(40000 \mathrm{~kg} / \mathrm{hr}\) of weak solution fed to the evaporator. \\
Let \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) be the \(\mathrm{kg} / \mathrm{hr}\) of water evaporated thick liquor \& Nacl precipitated respectively. \\
Overall Material Balance : \\
\(\Sigma\) Input stream \(=\Sigma\) Output stream
\[
40000=\mathrm{X}+\mathrm{Y}+\mathrm{Z}
\] \\
Material balance of NaOH
\[
\begin{gathered}
\mathrm{NaOH} \text { in feed }=\mathrm{NaOH} \text { in thick liquor } \\
0.12 \times 40000=0.5 \times \mathrm{Y} \\
\therefore \mathrm{Y}=9600 \mathrm{~kg} / \mathrm{hr}
\end{gathered}
\] \\
Material balance of NaCl
\[
\begin{gathered}
\mathrm{NaCl} \text { in feed }=\mathrm{NaCl} \text { in thick liquor }+\mathrm{NaCl} \text { precipitated } \\
0.12 \times 40000=0.01 \mathrm{Y}+\mathrm{Z} \\
\therefore 4800=0.96+Z \\
\therefore Z=4704 \frac{\mathrm{~kg}}{\mathrm{hr}}
\end{gathered}
\] \\
We know \(\mathrm{X}+\mathrm{Y}+\mathrm{Z}=40000\)
\[
\therefore X=25696 \mathrm{~kg} / \mathrm{hr}
\]
\[
\therefore \text { Water evaporated }=\mathbf{2 5 6 9 6} \frac{\mathrm{kg}}{\mathrm{hr}}
\] \\
Thick liquor obtained \(=\mathbf{9 6 0 0} \mathbf{~ k g} / \mathbf{h r}\) \\
NaCl crystal precipitated \(=\mathbf{4 7 0 4} \mathbf{~ k g} / \mathbf{h r}\)
\end{tabular} \& 1

2
2
2
2 \&

\hline 3-b \& $2 \mathrm{~S}+2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{SO}_{2}$ \& 1 \& 8

\hline
\end{tabular}

Subject code :(17315)

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& \mathrm{H}_{2} \mathrm{O}=\frac{18640 \times 36}{196} \\
\& =3423.6 \mathrm{~kg} / \mathrm{hr} \\
\& =3.4236 ~ \mathbf{~} / \mathrm{hr}
\end{aligned}
\] \& 2 \& \\
\hline 3-c \& \begin{tabular}{l}
Basis: \\
1 mole of liquid \(\mathrm{CH}_{3} \mathrm{COOH}\)
\[
\begin{aligned}
\& \mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \quad \Delta \mathrm{H}^{\circ} \mathrm{f}=-393.3 \mathrm{KJ} / \mathrm{mol} \\
\& \mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{H}_{2} \mathrm{O}=-285.8 \mathrm{KJ} / \mathrm{mol} \\
\& \mathrm{CH}_{3} \mathrm{COOH}_{(I)}+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\circ} \mathrm{C}=-875 \mathrm{KJ} / \mathrm{mol} \\
\& 2 \mathrm{Cs}^{2}+2 \mathrm{H}_{2}(\mathrm{~S})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}_{(I)} \quad \Delta \mathrm{H}^{\circ} \mathrm{f}=? \\
\& \therefore \Delta H^{\circ} \mathrm{f}=2 \Delta \mathrm{H}^{\circ} \mathrm{f}+2 \Delta \mathrm{H}^{\circ} \mathrm{f} \mathrm{H}_{2}-\Delta \mathrm{H}^{\circ} \mathrm{C} \\
\&=2(-393.3)+2(-285.8)-(-875) \\
\&= \mathbf{4 8 3 . 2} \mathbf{~ K J} / \mathrm{mol}
\end{aligned}
\]
\end{tabular} \& 1

2
3
2 \& 8

\hline 4-a \& | Basis : Gas mixture containing $0.274 \mathrm{kmol} \mathrm{HCl}, 0.337 \mathrm{kmol} \mathrm{N}_{2}, 0.089 \mathrm{kmol} \mathrm{O}_{2}$. |
| :--- |
| Total moles of the gas mixture $=0.274+0.337+0.089=0.7 \mathrm{kmol}$ |
| Mole fraction of $\mathrm{HCl}\left(\mathrm{X}_{\mathrm{HCI}}\right)=0.274 / 0.7=0.399$ |
| Mole fraction of $\mathrm{N}_{2}\left(\mathrm{X}_{\mathrm{N} 2}\right)=0.337 / 0.7=0.481$ |
| Mole fraction of $\mathrm{O}_{2}\left(\mathrm{X}_{\mathrm{O} 2}\right)=0.089 / 0.7=0.127$ |
| (i)Volume occupied by this mixture $\mathrm{V}=3 \mathrm{~atm}=303.975 \mathrm{kPa}$ | \& 1 \& 8

\hline
\end{tabular}

Subject code :(17315)

$$
\begin{aligned}
& \mathrm{PV}=\mathrm{nRT} \\
& \therefore \mathrm{~V}=\frac{\mathrm{nRT}}{\mathrm{P}} \\
& =\frac{0.7 \times 8.3145 \times 303}{303.975} \\
& =5.80 \mathrm{~m}^{3}
\end{aligned}
$$

(ii) Density of the Gaseous mixture

$$
\begin{aligned}
\operatorname{Mavg} & =\Sigma \mathrm{MiXi} \\
& =\mathrm{M}_{\mathrm{HCl}} \cdot \mathrm{X}_{\mathrm{HCl}}+\mathrm{M}_{\mathrm{N} 2} \cdot \mathrm{X}_{\mathrm{N} 2}+\mathrm{M}_{\mathrm{O} 2} \cdot \mathrm{X}_{\mathrm{O} 2} \\
& =36.5 \times 0.391+28 \times 0.481+32 \times 0.127
\end{aligned}
$$

$$
\therefore \text { Mavg }=31.80
$$

\therefore Density of the Gaseous mixture $=$ Mavg $/ \mathrm{Rx} \mathrm{T}$

$$
\begin{aligned}
& =\frac{303.975 \times 31.80}{8.3145 \times 303} \\
& =\mathbf{3 . 8 3} \mathbf{~ k g} / \mathbf{~ m}^{\mathbf{3}}
\end{aligned}
$$

(iii) Partial pressure exerted by each component Total Pressure $=303.975 \mathrm{Kpa}$

Partial pressure of $\mathrm{HCl}=\mathrm{P}_{\mathrm{HCl}}=\mathrm{X}_{\mathrm{HCl}} \cdot \mathrm{P}$

$$
=0.391 \times 303.975=\mathbf{1 1 8 . 8 5} \mathbf{k P a}
$$

Partial pressure of $\mathrm{HCl}=\mathrm{P}_{\mathrm{N} 2}=\mathrm{X}_{\mathrm{N} 21} \cdot \mathrm{P}$

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)
Page $\mathbf{1 2}$ of $\mathbf{2 1}$

	$=0.481 \times 303.975=\mathbf{1 4 6 . 2 1} \mathbf{k P a}$ Partial pressure of $\mathrm{HCl}=\mathrm{P}_{\mathrm{O} 2}=\mathrm{X}_{\mathrm{O} 2} . \mathrm{P}$ $=0.127 \times 303.975=\mathbf{3 8 . 6 0} \mathbf{k P a}$ (iv) Composition in $\mathrm{Wt} \%$ $\begin{aligned} & \mathrm{HCl}=0.274 \times 36.5=10.001 \mathrm{~kg} \\ & \mathrm{~N}_{2}=0.337 \times 28=9.436 \mathrm{~kg} \\ & \mathrm{O}_{2}=0.089 \times 32=2.848 \mathrm{~kg} \end{aligned}$	2	
	Composition Quantity in kg Wt \% HCl 10.001 $\mathbf{4 4 . 8 7}$ $\mathrm{~N}_{2}$ 9.436 $\mathbf{4 2 . 3 4}$ O_{2} 2.848 $\mathbf{1 2 . 7 7}$ 22.285 $\mathbf{1 0 0}$	2	
4-b	Basis : 1000 kg of desired mixed acid.	2	8

Subject code :(17315)

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{kg} \text { of conc. } \mathrm{H}_{2} \mathrm{SO}_{4} \\
& \mathrm{Z}=\text { kg of conc. } \mathrm{HNO}_{3}
\end{aligned}
$$

.Overall Material Balance

$$
\begin{equation*}
1000=X+Y+Z \tag{i}
\end{equation*}
$$

Material Balance of $\mathrm{H}_{2} \mathrm{SO}_{4}$

$$
\begin{aligned}
0.35 \mathrm{x}+0.95 \mathrm{z} & =0.4 \mathrm{x} 1000 \\
\therefore . \mathrm{Z} & =\frac{400-0.35 \mathrm{x}}{0.95} \\
\mathrm{Z} & =421.05-0.368 \mathrm{x}
\end{aligned}
$$

Material Balance of HNO_{3}

$$
\begin{aligned}
0.35 \mathrm{x}+0.76 \mathrm{z} & =0.42 \times 1000 \\
\therefore . \mathrm{Z} & =\frac{420-0.35 \mathrm{x}}{0.76} \\
\mathrm{Z} & =552.63-0.460 \mathrm{x}
\end{aligned}
$$

Put value of $\mathrm{Y} \& \mathrm{Z}$ in eqn (i)

$$
\therefore 1000=x+421.05-0.368 \mathrm{x}+552.63-0.460 \mathrm{x}
$$

$$
26.32=0.172 \mathrm{x}
$$

$$
\therefore \mathrm{x}=153.02 \mathrm{~kg}
$$

$$
\therefore Y=421.05-0.368(153.02)
$$

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

	$\begin{aligned} & \mathrm{Y}=364.73 \mathrm{~kg} \\ & \mathrm{Z}=552.63-0.460(153.02) \\ &=482.24 \mathrm{~kg} \\ & \therefore \text { Waste acid required }=\mathbf{1 5 3 . 0 2} \mathbf{~ k g} \\ & \text { conc. } \mathrm{H}_{2} \mathrm{SO}_{4} \text { reqd. }=\mathbf{3 6 4 . 7 3} \mathbf{~ k g} \\ & \text { conc. } \mathrm{HNO}_{3} \text { reqd. }=\mathbf{4 8 2 . 2 4} \mathbf{~ k g} \end{aligned}$	3	
4-c	Basis : 100 kmol of HCl		8
		1	

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)
But O_{2} is calculated based on reactant feed.
$\therefore \mathrm{O}_{2}$ Therotical requirement $=1 / 4 \times 100=25 \mathrm{kmol}$

As 30% excess air is provided.
O_{2} in supplied air $=25 \times\left(1+\frac{30}{100}\right)=32.5 \mathrm{kmol}$

$$
=2.5-20=12.5 \mathrm{kmol}
$$

O_{2} unreacted $=\mathrm{O}_{2}$ in air - O_{2} reacted

$$
=32.5-20=12.5 \mathrm{kmol}
$$

N_{2} in supplied air $=79 / 21 \times 32.5=122.26 \mathrm{kmol}$

$$
4 \mathrm{HCl} \text { reacted } \equiv 2 \mathrm{kmol} \text { of } \mathrm{H} 2 \mathrm{O}
$$

$$
\mathrm{H} 2 \mathrm{O} \text { produced }=2 / 4 \times 80=40 \mathrm{kmol}
$$

\therefore Composition of flue gas

Vcl Component	Kmol	Mol \%
HCl	20	$\mathbf{8 . 5 1}$
Cl_{2}	40	$\mathbf{1 7 . 0 4}$
O_{2}	12.5	$\mathbf{5 . 3 3}$
$\mathrm{~N}_{2}$	122.26	$\mathbf{5 2 . 0 8}$
H_{2}	40	$\mathbf{1 7 . 0 4}$

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)
Page $\mathbf{1 6}$ of $\mathbf{2 1}$

	234.76	100		
5-a	Basis : 100 Kg of Soyabean seeds It contains 18.6 kg oil , 69 kg solids and 12.4 kg mo Let X be the Kg of cake obtained Material balance of Solids : Solids in seeds $=$ Solids in cake $\begin{gathered} 0.69 * 100=0.877 * X \\ X=78.68 \mathrm{Kg} \end{gathered}$ Material balance of Oil : Oil in seeds $=$ Oil in cake + Oil recovered $0.186^{*} 100=0.00$ * $^{*} 78.68+$ Oil recovered $18.6=0.6294+$ Oil recovered Oil recovered $=18.6-0.6294=17.97 \mathrm{Kg}$ $\%$ recovery of Oil $=\frac{\text { Oil recovered }}{\text { Oil in Seeds }} \quad *--------100$ $\% \text { recovery of Oil }=\frac{17.97}{-------} * 100$ \% recovery of $\mathbf{O i l}=96.61$ \% ---------- ans.		1	8
5-b	Basis: 100 Kmols of Water gas produced $\text { Volume } \%=\text { Mole } \%$ It contain $\mathrm{H} 2=55.4 \mathrm{Kmol}$ $\begin{aligned} & \mathrm{CO}=44 \mathrm{Kmol} \\ & \mathrm{CO} 2=0.6 \mathrm{Kmol} \end{aligned}$		1	8

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Chemical Reactions
\[
\begin{aligned}
\& \mathrm{C}+\mathrm{H}_{2} \mathrm{O}-\cdots---\rightarrow \mathrm{CO}+\mathrm{H}_{2} \\
\& \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}-------\mathrm{CO}_{2}+\mathrm{H}_{2}
\end{aligned}
\] \\
From Reactions
\[
\begin{aligned}
1 \text { Katom } \mathrm{C} \& \equiv 1 \mathrm{kmol} \mathrm{CO} \\
\& \equiv 1 \mathrm{Kmol} \mathrm{CO}_{2}
\end{aligned}
\]
\[
\begin{aligned}
\text { Amount of C reacted }=1 / 1 * 44 \& +1 / 1 * 0.6=44.6 \text { Katom } \\
\& =44.6 * 12=535.2 \mathrm{~kg}
\end{aligned}
\] \\
Yield is \(90 \%\) and coke contain \(90 \%\) ' C ' \\
Consumption of Coke \(=535.2 /(0.9 * 0.9)=660 \mathbf{~ k g}\) \\
From the Reactions, \\
1 Kmol of \(\mathrm{H}_{2} \mathrm{O} \equiv 1 \mathrm{kmol} \mathrm{H}_{2}\) \\
Steam required \(=1 / 1 * 55.4=55.4 \mathrm{kmol}\) \\
Consumption of Steam \(=55.4 * 18=\mathbf{9 9 7 . 2} \mathbf{~ k g}\)
\end{tabular} \& 2 \& \\
\hline 5-c \& \begin{tabular}{l}
Basis: \(100 \mathrm{Kg} / \mathrm{hr}\) of Water at \(25^{\circ} \mathrm{C}\) \(\mathrm{Q}=\) Amount of heat required.
\[
\mathrm{Q}=\mathrm{m} \lambda \mathrm{v}+\mathrm{mCp}\left(\mathrm{~T}_{\mathrm{B}}-\mathrm{T}\right)
\] \\
Where,
\[
\begin{aligned}
\& \mathrm{m}=100 \mathrm{~kg} / \mathrm{hr} \\
\& \mathrm{Cp}=4.187 \mathrm{KJ} / \mathrm{Kg} \cdot \mathrm{~K} \\
\& \lambda \mathrm{~V}=2240 \mathrm{KJ} / \mathrm{Kg} \\
\& \mathrm{~T}=25^{\circ} \mathrm{C}=298{ }^{\circ} \mathrm{K} \\
\& \mathrm{~T}_{\mathrm{B}}=100{ }^{\circ} \mathrm{C}=373{ }^{\circ} \mathrm{K} \\
\& \mathrm{Q}=(100 * 2240)+(100 * 4.187 *(373-298))
\end{aligned}
\]
\end{tabular} \& 1
2

2
2
2 \& 8

\hline
\end{tabular}

SUMMER-15 EXAMINATION

Model Answer

Subject code :(17315)

	$\begin{aligned} & \mathrm{Q}=255402 \mathrm{KJ} / \mathrm{hr} \\ & \mathbf{Q}=\mathbf{7 0 . 9 5} \mathrm{KJ} / \mathbf{S}-\cdots-- \text { ans. }^{\text {and }} \end{aligned}$			1	
6-a	Basis : $1 \mathrm{~m} 3 / \mathrm{hr}$ gas entering to absorption tower			1	8
	Amount of Gas Entering at $298{ }^{\circ} \mathrm{K}$ and 101.325 Kpa				
	$\mathrm{n}=\mathrm{PV} / \mathrm{RT}=\left(101.325^{*} 1\right) /\left(8.3145^{*} 298\right)=0.040 \mathrm{kmol} / \mathrm{hr}$ It contain			1	
	Solute gas $=(5 / 100)^{*} 0.040=0.002 \mathrm{kmol}$				
	Inert gas $=(95 / 100) * 0.040=0.038 \mathrm{kmol}$				
	90\% solute is absorb				
	Amount of solute absorb $=(90 / 100)^{*} 0.002=0.0018 \mathrm{kmol}$			1	
	Material balance of Solute				
	Solute in Feed gas $=$ Solute absorb + Solute in outlet gas				
	$0.002=0.0018+$ Solute in outlet gas				
	Solute in outlet gas $=0.0002 \mathrm{kmol}$			1	
	Inert Balance				
	Inert in Inlet gas = Inert in Outlet gas				
	Composition Outlet Gas :				
	Component	Kmol	Mol \%		
	Solute gas	0.0002	0.52		
	Inert gas	0.038	99.47	2	
	Total	0.0382	100\%		
	Flow rate of Outlet gas			2	
	$\mathrm{V}=\mathrm{nRT} / \mathrm{P}=(0.0382 * 8.3145 * 298) / 101.325$				

SUM M ER-15 EXAMINATION

Model Answer

Subject code :(17315)

	$\mathrm{V}=\mathbf{0 . 9 3 4} \mathrm{m}^{\mathbf{3}} / \mathbf{h r}$		
6-b	Basis : $5000 \mathrm{Kg} /$ day MCA produced in small scale unit Amount Of MCA $=5000 \mathrm{Kg}$, Mol.Wt.Of MCA $=94.5$ Amount Of $\mathrm{Cl}_{2}=4536 \mathrm{Kg}$, Mol.Wt.Of $\mathrm{Cl}_{2}=71$ Amount Of DCA $=263 \mathrm{Kg}$, Mol.Wt. Of DCA $=129$ Moles Of MCA $=5000 / 94.5=52.91 \mathrm{Kmol}$ Moles Of $\mathrm{Cl}_{2}=4536 / 71=63.89 \mathrm{Kmol}$ Moles Of DCA $=263 / 129=2.03 \mathrm{Kmol}$ Reactions $\begin{aligned} & \mathrm{CH} 3 \mathrm{COOH}+\mathrm{Cl}_{2}--\rightarrow \mathrm{CH} 2 \mathrm{ClCOOH}+\mathrm{HCL}(\mathrm{MCA}) \\ & \mathrm{CH} 2 \mathrm{Cl} \mathrm{COOH}+\mathrm{Cl}_{2}--\mathrm{CH} \mathrm{Cl}_{2} \mathrm{COOH}+\mathrm{HCL}(\mathrm{DCA}) \end{aligned}$ $\text { Moles of MCA produced }=\text { Moles of MCA Charged }=52.91$ From reaction 2, 1 Kmol of $\mathrm{DCA} \equiv 1 \mathrm{kmol}$ of MCA 2.03 Kmol of $\mathrm{DCA} \equiv 1 / 1 * 2.03 \mathrm{kmol} \mathrm{MCA}$ Moles of MCA reacted $=2.03 \mathrm{kmol}$ \% Conversion of MCA $=$ Moles of MCA reacted $/$ Moles of $=(2.03 / 52.91) * 100$ \% Conversion of $\mathrm{MCA}=\mathbf{3 . 8 3}$ \% ans. From reaction 1 1 Kmol of $\mathrm{MCA} \equiv 1 \mathrm{kmol}$ of Cl_{2} 52.91 Kmol of $\mathrm{MCA} \equiv 52.91 \mathrm{kmol}$ of Cl_{2} reacted From reaction 2, 1 Kmol of $\mathrm{DCA} \equiv 1 \mathrm{kmol}$ of Cl_{2} 2.03 Kmol of $\mathrm{DCA} \equiv 2.03 \mathrm{kmol}$ of Cl_{2} reacted	1	8

SUM M ER-15 EXAMINATION

Model Answer

Subject code :(17315)

	```Total }\mp@subsup{\textrm{Cl}}{2}{}\mathrm{ reacted = 52.91+2.06 = 54.94 Kmol % yield of MCA = (Cl}2\mathrm{ reacted for MCA / Cl }\mp@subsup{\textrm{Cl}}{2}{}\mathrm{ totally reacted )*100 = (52.91 / 54.94) * 100 % yield of MCA = 96.20% --------------- ans```	2 1	
6-c	a) Sensible Heat: - Sensible heat is the heat that must be transferred to raise or lower the temperature of a substance or mixture of substance.   b) Latent Heat:- When matter undergoes a phase change, the enthalpy change associated with unit amount of matter at constant temperature and pressure is known as Latent Heat of phase change.   c) Heat of Reaction:-It is the enthalpy change resulting due to reaction wherein, reactants are fed in stoichiometric amounts and the reaction proceeds to completion.   d) \% Conversion: It is the ratio of amount of limiting reactant reacted to the amount of limiting reactant totally charged. Express in percentage.   e) Adiabatic Process: A process in which no heat can leave or enter the system is known as Adiabatic process.   f) Absorption of Gases: This the unit operation in which solute gas components from gas mixture is recovered or removal of gases with help of suitable liquid solvent in which solute gas is absorbed.	2	8

