Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q No.	Answer	marks	Total marks
1-a	Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures Mathematical Statement: $\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}$ where P is the total pressure of gas mixture , $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are partial pressures	1 1	2
1-b	Standard heat of combustion: It is the amount of heat liberated when one mol of a compound is combusted or burned in oxygen at standard conditions. $\left(25^{\circ} \mathrm{C}\right.$ and 1 atm pressure)	2	2
1-c	Vapour pressure : It is the pressure exerted by vapour which is in equilibrium with liquid.	2	2
1-d	Value of universal gas constant $\mathbf{R}=8.315 \mathrm{KPa} \mathrm{~m}^{3} / \mathrm{kmol} \mathrm{~K}$	2	2
1-e	Hess's law: It states that the heat involved in a chemical reaction is same whether the reaction takes place in a single or in several steps. Then $\Delta \mathrm{T}=\Delta \mathrm{T} 1+\Delta \mathrm{T} 2+\Delta \mathrm{T} 3$	2	2

\begin{tabular}{|c|c|c|c|}
\hline 1-f \& \begin{tabular}{l}
Stoichiometric equation: \\
It is defined as the balanced chemical reaction \\
\(\mathrm{Eg}: \mathrm{N}_{2}+3 \mathrm{H}_{2}-\cdots---\rightarrow 2 \mathrm{NH}_{3}\)
\end{tabular} \& 2 \& 2 \\
\hline 1-g \& \begin{tabular}{l}
Vander Waal's equation of state:
\[
\left(\mathrm{P}+\mathrm{a} / \mathrm{V}^{2}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}
\] \\
Where \(\mathrm{a} \& \mathrm{~b}\) are constants.
\end{tabular} \& 2 \& 2 \\
\hline 1-h \& \begin{tabular}{l}
Charles Law : \\
It states that for a given mass of an ideal gas the ratio of volume to absolute temperature is constant at a given pressure. \\
\(\mathrm{V} / \mathrm{T}=\) constant
\end{tabular} \& \begin{tabular}{l}
1 \\
1
\end{tabular} \& 2 \\
\hline 1-i \& \% Yield of desired product \(=(\) moles of limiting component reacted to form desired product/ total moles of limiting component reacted)* 100 \& 2 \& 2 \\
\hline 1-j \& \[
\begin{aligned}
\& 1 \mathrm{~mol} \text { of air at } \mathrm{STP} \\
\& \mathrm{n}=1 \mathrm{~mol} \\
\& \mathrm{p}=101.325 \mathrm{Kpa} \\
\& \mathrm{R}=8.314 \\
\& \mathrm{~T}=300 \mathrm{~K} \\
\& \mathrm{PV}=\mathrm{nRT} \text { or } \mathrm{V}=\mathrm{nTR} / \mathrm{P} \\
\& \mathrm{~V}=1 * 8.314 * 300 / 101.325 \\
\& =24.62 \mathrm{~m}^{3}
\end{aligned}
\] \& 1

1 \& 2

\hline 1-k \& Oxygen is supplied in excess to ensure complete combustion of compound. The source of oxygen for combustion is air which is readily available. Therefore in order to get maximum conversion air is always added in excess quantity. \& 2 \& 2

\hline
\end{tabular}

| 1-1 | 101.325 Kpa g
 Absolute pr $=$ gauge pr + atmospheric pr
 $=101.325 \mathrm{KPa}+101.325 \mathrm{Kpa}$
 $=202.65 \mathrm{KPa}$ | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 1-m | Raoult'slaw:It states that at a given temperature, the equilibrium partial
 pressure of a component of a solution in the vapour is equal to the product of
 the mole fraction of the component in the liquid phase and the vapour pressure
 of the pure component. | 2 |

\begin{tabular}{|c|c|c|c|}
\hline \& \& 1

1 \&

\hline 2-c \& Basis: $1 \mathrm{~m}^{3}$ fixed mass of gas at constant temperature

$$
\begin{aligned}
& \mathrm{P}_{1}=1 \quad \mathrm{~V}_{1}=1 \mathrm{~m}^{3} \quad \mathrm{~T}_{1}=\mathrm{T}=\mathrm{T}_{2} \\
& \mathrm{P}_{2}=1.85 \quad \mathrm{~V}_{2}=? \mathrm{~m}^{3} \\
& \mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2} \\
& 1 * 1 / \mathrm{T}=1.85 * \mathrm{~V}_{2} / \mathrm{T} \\
& \text { Or } \mathrm{V}_{2}=\mathbf{0 . 5 4} \mathbf{m}^{3}
\end{aligned}
$$ \& 2

1
1 \& 4

\hline 2-d \& | Basis: $10000 \mathrm{Kg} / \mathrm{hr}$ of weak liquor |
| :--- |
| Overall balance is $10000=\mathrm{X}+\mathrm{Y}$ |
| Individual balance for caustic is $15 / 100 * 10000=40 / 100 * Y$ |
| $\mathrm{Y}=3750 \& \mathrm{X}=6250$ |
| $\mathrm{Kg} / \mathrm{hr}$ of water evaporated $=\mathbf{6 2 5 0} \mathbf{~ K g} / \mathbf{h r}$ |
| $\mathrm{Kg} / \mathrm{hr}$ of thick liquor obtained $=\mathbf{3 7 5 0} \mathbf{K g} / \mathrm{hr}$ | \& 1 \& 4

\hline
\end{tabular}

2-e	Basis: $5 \mathrm{~m}^{3} \mathrm{Cl}_{2}$ gas $\begin{aligned} \mathrm{P} & =100 \mathrm{KPa} \\ \mathrm{~T} & =400 \mathrm{~K} \\ \mathrm{~N} & =\mathrm{PV} / \mathrm{RT} \\ & =100 * 5 / 8.314 * 400 \\ & =0.15 \mathrm{kmoles} \end{aligned}$ Weight of Cl_{2} gas $=$ kmoles * mol.wt $\begin{aligned} \text { Weight } & =0.15 * 71 \\ & =\mathbf{1 0 . 6 5} \mathbf{~ K g} \end{aligned}$	1 1 1 1	4
2-f	$\mathrm{N}_{2}+3 \mathrm{H}_{2} \cdots-\cdots---\rightarrow 2 \mathrm{NH}_{3}$ N_{2} fed $=10 \mathrm{kmoles}$ Theoretical requirement of $\mathrm{H}_{2}=30$ kmoles $\mathrm{H}_{2} \mathrm{fed}=60 \mathrm{kmoles}$ $\%$ excess $\mathrm{H}_{2}=\left(\mathrm{H}_{2}\right.$ fed H_{2} theoretical $) * 100 / \mathrm{H}_{2}$ theoretical $\begin{aligned} & =(60-30) 100 / 30 \\ & =\mathbf{1 0 0} \% \end{aligned}$	1 1 1 1 1	4
3-a	SOLUTION : BASIS : 100 kg of ground nut seeds.	2	8

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Let x be the kg of the cake obtained. \\
Material Balance of Solids :
\[
\text { Solids in seeds }=\text { Solids in cake }
\]
\[
\begin{aligned}
\therefore 0.45 \times 100 \& =0.8 \mathrm{x} \\
\therefore \quad X \& =56.25 \mathrm{~kg}
\end{aligned}
\] \\
Material balance of Oil : \\
Oil in seeds \(=\) Oil in cake + Oil recovered
\[
\therefore 0.45 \times 100=0.05 \times 56.25+\text { Oil recovered }
\] \\
\(\therefore\) Oil recovered \(=45-2.81=42.19 \mathrm{~kg}\)
\[
\begin{aligned}
\% \text { recovery of oil }= \& (\mathrm{kg} \text { of oil recovered } / \mathrm{kg} \text { oil in seeds }) \times 100 \\
\& =(42.19 / 45) \times 100=\mathbf{9 3 . 7 5 \%}
\end{aligned}
\] \\
.Ans
\end{tabular} \& 2

2

2 \&

\hline 3-b \& | SOLUTION : |
| :--- |
| BASIS : 100 kmol of product stream. |
| It contains 23.08 kmol of $\mathrm{A}, 11.54 \mathrm{kmol}$ of $\mathrm{B}, 46.12 \mathrm{kmol}$ of C and 19.23 kmol of inerts. $2 \mathrm{~A}+\mathrm{B} \longrightarrow \mathrm{C}$ |
| From reaction, $2 \mathrm{kmol}=1 \mathrm{kmol} \mathrm{C}$ $\text { A reacted }=(2 / 1) \times 46.15=92.3 \mathrm{kmol}$ | \& 1

1
1

1
1 \& 8

\hline
\end{tabular}

	Overall balance is $\begin{equation*} 10000=\mathrm{X}+\mathrm{Y} \tag{1} \end{equation*}$ \qquad Individual balance for $\mathrm{CH}_{3} \mathrm{OH}$ is $\begin{equation*} 0.2 * 10000=0.98 \mathrm{X}+0.01 * \mathrm{Y} \tag{2} \end{equation*}$ Solving the equations $\begin{aligned} & \mathrm{X}=1959 \mathrm{Kg} / \mathrm{hr} \\ & \mathrm{Y}=8041 \mathrm{~kg} / \mathrm{hr} \end{aligned}$ $\mathrm{CH}_{3} \mathrm{OH}$ in bottom product $=0.01 * 8041=80.41 \mathrm{Kg} / \mathrm{hr}$ \% loss of $\mathrm{CH}_{3} \mathrm{OH}=\left(\mathrm{CH}_{3} \mathrm{OH}\right.$ in bottom product/ $\mathrm{CH}_{3} \mathrm{OH}$ in feed $) * 100$ $\begin{aligned} & =(80.41 / 2000) * 100 \\ & =4 \% \end{aligned}$	1 1 2 1 1	
4-a	SOLUTION : BASIS : 100 mol of gas. It contains $25 \mathrm{~mol} \mathrm{CO}, 5 \mathrm{~mol} \mathrm{CO}_{2}, 2 \mathrm{~mol} \mathrm{O}_{2}$ and $68 \mathrm{~mol} \mathrm{~N}_{2}$. $\begin{aligned} & \mathrm{CO}+1 / 2 \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} \\ & \Gamma \mathrm{~mol} \mathrm{CO}=0.5 \mathrm{~mol} \mathrm{O}_{2} \end{aligned}$ Theoretical $\mathrm{O}_{2}=0.5 / 1 \times 25=12.5 \mathrm{~mol}$ $\begin{aligned} & \text { Net } \left.\mathrm{O}_{2} \text { demand (by difference }\right)=12.5-2=10.5 \mathrm{~mol} \\ & \qquad \begin{array}{r} \mathrm{O}_{2} \text { in supplied air }=1.20 \times 10.5=12.6 \mathrm{~mol} \\ \mathrm{~N}_{2} \text { in air supplied }=(79 / 21) \times 12.6=47.4 \mathrm{~mol} \\ \text { CO reacted }=0.8 \times 25=20 \mathrm{~mol} \\ \text { CO unreacted }=25-20=5 \mathrm{~mol} \end{array} \end{aligned}$	1 1 1 1 1	8

Model Answer

Subject code : (17315)

	$\mathrm{CO}_{2} \text { Produced }=20 \mathrm{~mol}$ Total CO_{2} in gas leaving $=20+5=25 \mathrm{~mol}$$\mathrm{O}_{2} \text { reacted }=(1 / 2) \times 20=10 \mathrm{~mol}$$\mathrm{O}_{2} \text { unreacted }=12.6-10=2.6 \mathrm{~mol}$$\mathrm{N}_{2} \text { in gas leaving }=47.4+68=115.4 \mathrm{~mol}$Component Moles Mole \% CO2 25 16.89 O2 2.6 1.77 N2 115.4 77.97 CO 5 3.37 Total 148 100.00	1 1 1 1 1 1	
4-b	SOLUTION : BASIS : $15000 \mathrm{~mol} / \mathrm{h}$ of $\mathrm{N}_{2}-\mathrm{H}_{2}$ mixture. Molal flowrate of gas mixture $=15 \mathrm{kmol} / \mathrm{h}$ $\begin{aligned} \mathrm{X}_{\mathrm{N} 2} & =25 / 100=0.25 \\ \mathrm{X}_{\mathrm{H} 2} & =75 / 100=0.75 \\ \mathrm{C}_{\mathrm{p}}^{\mathrm{o}} \operatorname{mix} & =\sum \mathrm{C}_{\mathrm{p} \text { mix }}^{\mathrm{o}} \cdot \mathrm{X}_{\mathrm{i}} \\ & =\mathrm{X}_{\mathrm{N} 2} \mathrm{C}_{\mathrm{p} \mathrm{~N} 2}^{\mathrm{o}}+\mathrm{X}_{\mathrm{H} 2} \mathrm{C}_{\mathrm{p} \text { H} 2}^{\mathrm{o}} \end{aligned}$	1 2	8

Model Answer

$$
\begin{aligned}
& =0.25\left(29.5909-5.41 \times 10^{-3} \mathrm{~T}+13.1829 \times 10^{-6} \mathrm{~T}^{2}-\right. \\
& \left.4.968 \times 10^{-9} \mathrm{~T}^{3}\right)+0.75\left(28.6105+1.0194 \times 10^{-3} \mathrm{~T}-\right. \\
& -0.1476 \times 10^{-6} \mathrm{~T}^{2}+0.769 \times 10^{-9} \mathrm{~T}^{3} \text {) } \\
& =28.8556-0.588 \times 10^{-3} \mathrm{~T}+3.185 \times 10^{-6} \mathrm{~T}^{2}-0.6652 \times \\
& 10^{-9} \mathrm{~T}^{3} \\
& \mathrm{Q}=\text { Heat transferred } \\
& \text { T2 } \\
& =\mathrm{n}_{\mathrm{T} 1} \int \mathrm{C}_{\mathrm{p} \text { mix }}^{\mathrm{o}} \text {. } \mathrm{dT} \\
& \text { T2 } \\
& =\mathrm{n}_{\mathrm{TI}} \int\left(28.8556-0.588 \times 10^{-3} \mathrm{~T}+3.185 \times 10^{-6} \mathrm{~T}^{2}-\right. \\
& 0.6652 \times 10^{-9} \mathrm{~T}^{3} \text {) dT } \\
& =\mathrm{n}\left[28.8556\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)-0.588 / 2 \times 10^{-3}\left(\mathrm{~T}^{2}{ }_{2}-\mathrm{T}^{2}{ }_{1}\right)\right. \\
& +3.185 \times 10^{-6} / 3\left(\mathrm{~T}^{3}{ }_{2}-\overline{\left.\mathrm{T}^{3}{ }_{1}\right)-0.6652} \times 10^{-9} / 4 \quad\left(\mathrm{~T}^{4}{ }_{2}-\mathrm{T}^{4}{ }_{1}\right)\right] \\
& \text { Where }, \mathrm{n}=15 \mathrm{kmol} / \mathrm{h}, \mathrm{~T}_{1}=298 \mathrm{~K}, \mathrm{~T}_{2}=473 \mathrm{~K} \text {. } \\
& \mathrm{Q}=15\left[28.8556(473-298)-0.5207 / 2 \times 10^{-3}\left(473^{2}-298^{2}\right)\right. \\
& +\underline{3.185 \times 10^{-6}}\left(473^{3}-298^{3}\right)=\underline{0.6652 \times 10^{-9}} \\
& 3
\end{aligned}
$$

	$\begin{gathered} 0.3 \mathrm{x}+0.98 \mathrm{y}=390 \\ \mathrm{Y}=(390-0.3 \mathrm{x}) / 0.98 \\ \therefore \quad Y=397.96-0.306 \mathrm{x} \ldots .(\mathrm{iii}) \end{gathered}$ Material Balance of HNO_{3} : $\begin{aligned} 0.35 \mathrm{x}+0.72 \mathrm{z} & =0.42 \mathrm{x} 1000 \\ 0.35 \mathrm{x}+0.72 \mathrm{z} & =420 \ldots .(\mathrm{iv}) \\ \mathrm{z} & =(420-0.35 \mathrm{x}) / 0.72 \\ \therefore \quad & \mathrm{z}=583.3-0.486 \mathrm{x} \ldots . . \text { (v) } \end{aligned}$ Put values of y and z from equations (iii) and (v) in eqn (i) and solve for x. $\begin{aligned} & \therefore \mathrm{x}+(397.96-0.306 \mathrm{x})+(583.3-0.486 \mathrm{x})=1000 \\ & \text { We have, } \quad \begin{aligned} \therefore \mathrm{x} & =90.1 \mathrm{~kg} \\ \mathrm{y} & =397.96-0.306 \mathrm{x} \\ & =397.96-0.30 \mathrm{x} 90.1 \end{aligned} \\ & \quad \begin{aligned} \therefore \mathrm{y} & =370.4 \mathrm{~kg} \\ \mathrm{z} & =583.3-0.486 \mathrm{x} \\ & =583.3-0.486 \mathrm{x} 90.1 \end{aligned} \\ & \therefore \mathrm{z}=539.5 \mathrm{~kg} \end{aligned}$ Amount of waste acid required $=90.1 \mathrm{~kg}$ Amount of concentrated sulphuric acid required $=370.4 \mathrm{~kg}$ Amount of concentrated nitric acid require $=539.5 \mathrm{~kg}$..Ans	1 1	
5-a	Bypass Operation : In these operations, a fraction of the feed stream to a process unit is diverted around and combined with the output stream. Feed	2	8

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
- Bypassing is practiced industrially whenever accurate control of the composition or concentration of the process exit stream is expected. \\
- The composition and properties of the product may be varied by varying the fraction of the feed that is bypassed. \\
Example: A juice concentration process in which the dehydration process runs most efficiently by removing more water than is desired. A portion of the feed may be directed around the dehydrator in a bypass loop, to be mixed with unprocessed feed. Or any other example
\end{tabular} \& 2

2
2 \&

\hline \multirow[t]{6}{*}{5-b} \& Basis : 1 mol of $\mathrm{C}_{4} \mathrm{H}_{6}$ (liq) \& 1 \& 8

\hline \& 1. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})----->\mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta \mathrm{H}_{1}=-393.51 \mathrm{KJ} / \mathrm{mol}$ \& \&

\hline \& 2. $\mathrm{H}_{2}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g})----->\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta \mathrm{H}_{1}=-285.83 \mathrm{KJ} / \mathrm{mol}$ \& 2 \&

\hline \& 3. $\mathrm{C}_{4} \mathrm{H}_{6}$ (liq.) $+5.5 \mathrm{O}_{2}(\mathrm{~g})----->4 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ \& \&

\hline \& $$
\Delta \mathrm{H}^{0} \mathrm{c}=-2520.11 \mathrm{KJ} / \mathrm{mol}
$$ \& \&

\hline \& $$
\text { 4. } 4 \mathrm{C}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g})-\cdots--->\mathrm{C}_{4} \mathrm{H}_{6} \text { (liq.) } \quad \Delta \mathrm{H}^{0} \mathrm{f}=\text { ? }
$$ \& \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\(\Delta \mathrm{H}^{0} \mathrm{f}=\) Standard heat of formation of gaseous ethyl alcohol \\
At 2198.15 K \\
Reaction(4) \(=\) 4* Reaction (1) \(_{\text {(}}\) 3* Reaction (2) - Reaction (3)
\[
\begin{aligned}
\Delta \mathrm{H}^{0} \mathrm{f} \& =4^{*} \Delta \mathrm{H}_{1}+3^{*} \Delta \mathrm{H}_{2}-\Delta \mathrm{H}^{0} \mathrm{c} \\
\& =4(-393.51)+3^{*}(-285.83)-(-2520.11) \\
\& =(-1547.04)+(-857.49)+1410.09 \\
\& =88.58 \mathrm{KJ} / \mathrm{mol} \\
\Delta \mathrm{H}^{0} \mathrm{f} \& =\mathbf{8 8 . 5 8} \mathbf{~ K J} / \mathbf{m o l}----- \text { ans. }
\end{aligned}
\]
\end{tabular} \& 2

2
1 \&

\hline 5-c \& | Basis 100 mol of ethylene |
| :--- |
| Reaction I $\mathrm{C}_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ |
| Reaction II $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ |
| From reaction I |
| 1 Kmol of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ formed $\equiv 1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ reacted |
| $\therefore \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ reacted to from $80 \mathrm{kmol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ $=\frac{1}{1} \times 80=80 \mathrm{Kmol}$ |
| From reaction II |
| 2 kmol of CO_{2} formed $\equiv 1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ reacted |
| $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ reacted to form $10 \mathrm{kmol} \mathrm{CO}_{2}$ $=\frac{1}{2} \times 10=5 \mathrm{Kmol}$ |
| $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ totally reacted $=80+5=85$ |
| $\therefore \%$ conversion of $\mathrm{C}_{2} \mathrm{H}_{4}=\frac{85}{100} \times 100$ | \& 2

1
1

1
1
2 \& 8

\hline
\end{tabular}

	$=\mathbf{8 5 \%}$ $\%$ yield of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}=\frac{80}{85} \times 100$ $=94.12 \%$	2	
6-a	General Material Balance Procedure 1) Assume Suitable Basis of calculation. 2) Adopt weight basis for without chemical reactions and molar basis for with chemical reactions. 3) Draw Block diagram of the process of each operation with input and output stream. 4) In the block diagram drawn, indicate the information provided regarding input and output. 5) Search out unknown and ascertain them and Calculate it by generating and solving material balance equations. 6) In case of material balance with chemical, write balance chemical reaction and search out limiting component. 7) In with chemical reaction, the quantity of a reacting component appearing in the product stream is the quantity of that material remains unreacted. 8) Supplied quantity of an excess reactant calculated from the theoretical requirement is based on the quantity of a limiting reactant fed.	$1 / 2$ marks each	4
6-b	Basis : 1 Kmol of ammonia gas $\begin{aligned} \text { Heat need } & =\mathrm{Q} \\ & =\mathrm{n}\left[\mathrm{C}^{\mathrm{o}} \mathrm{pm}_{2}\left(\mathrm{~T}_{2}-\mathrm{T}_{0}\right)-\mathrm{C}^{\mathrm{o}} \mathrm{pm}_{1}\left(\mathrm{~T}_{1}-\mathrm{T}_{0}\right)\right] \end{aligned}$	1	4

\begin{tabular}{|c|c|c|c|}
\hline \& Where , $\mathrm{n}=1 \mathrm{kmol}, \mathrm{T}_{0}=298 \mathrm{~K}, \mathrm{~T}_{2}=422 \mathrm{~K}, \mathrm{~T}_{1}=311 \mathrm{~K}$
$$
\mathrm{C}^{\mathrm{O}} \mathrm{pm}_{1}=35.8641 \mathrm{KJ} /(\mathrm{kmol} . \mathrm{K})
$$
$$
\begin{aligned}
\mathrm{C}^{\mathrm{o}} \mathrm{pm}_{2} & =37.7063 \mathrm{KJ} /(\mathrm{kmol} . \mathrm{K}) \\
\mathrm{Q} & =1[37.7063(422-298)-35.8641(311-298)] \\
\mathrm{Q} & =\mathbf{4 2 0 9 . 3 5} \mathbf{~ K J} \ldots \text { Ans. }
\end{aligned}
$$ \& 1

1
1 \&

\hline 6-c \& | Basis : 100 Kmol of feed |
| :--- |
| Feed contains $60 \mathrm{kmol} \mathrm{A}, 30 \mathrm{kmol} \mathrm{B}$ and 10 kmol inerts |
| Let X be the kmol of A reacted by reaction : $2 \mathrm{~A}+\mathrm{B}----\mathrm{C}$ |
| From reaction $2 \mathrm{kmol} \mathrm{A}=1 \mathrm{kmol} \mathrm{B}=1 \mathrm{kmol} \mathrm{C}$ $\begin{array}{ll} \text { B reacted }=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} & \mathrm{kmol} \\ \text { C formed }=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} & \mathrm{kmol} \end{array}$ |
| Material Balance of A give $\text { A unreacted }=(60-X) \mathrm{kmol}$ |
| Material Balance of Inerts : |
| Inerts in feed $=$ Inert in product $=10 \mathrm{kmol}$ $\text { C formed }=(1 / 2)^{*} \mathrm{X}=0.5 \mathrm{X} \quad \mathrm{kmol}$ |
| B unreacted $=(30-0.5 \mathrm{X}) \mathrm{kmol}$ $\begin{aligned} \text { Total moles of product stream } & =(60-\mathrm{X})+(30-0.5 \mathrm{X})+10=0.5 \mathrm{X} \\ & =100-\mathrm{X} \text { Kmol } \end{aligned}$ | \& 1

1 \& 4

\hline
\end{tabular}

	Mole $\%$ of A in product stream $=2 \%$ Total kmol of product stream	1	
6-d	Basis : 4000 Kg of wet solids fed to dryer. Let X be the kg of product obtained and Y be the kg of water removed. Moisture in product $=1 \%$ Solids in product $=100-1=99 \%$	1	4

\begin{tabular}{|c|c|c|c|}
\hline \& ```
Material Balance of Solids:
Solids in wet solids $=$ Solid in Product
$0.7 * 4000=0.99 \mathrm{X}$
$\mathrm{X}=2828.28 \mathrm{Kg}$ of Product Obtained
Overall Material Balance :
$4000=X+Y$
$\mathrm{Y}=4000-2828.28=1171.71 \mathrm{Kg}$ of Water Removed
Product Obtained $=\mathbf{2 8 2 8 . 2 8} \mathbf{K g}$
Water Removed $=\mathbf{1 1 7 1 . 7 1 ~ K g}$

``` & 1

1
1 & \\
\hline 6-e & \begin{tabular}{l}
Basis: 1 Kmol of Methane gas
\[
\begin{aligned}
& \mathrm{Q}= \text { Heat added } \\
& \mathrm{T}_{2} \\
&= \mathrm{n} \int \mathrm{Cp} \mathrm{dT} \\
& \mathrm{~T}_{1} \\
& \mathrm{~T}_{2} \\
&= \mathrm{n} \int\left[19.2492+52.1135 \times 10^{-3} \mathrm{~T}+11.973 \times 10^{-6}\right. \\
&\left.\mathrm{T}_{1} \quad \mathrm{~T}^{2}\right] \mathrm{dT} \\
&= \mathrm{n}\left[19.2492\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)+52.1135 \times 10^{-3}\left(\mathrm{~T}_{2}^{2}-\mathrm{T}^{2}{ }_{1}\right)+\right. \\
&\left.\quad 11.973 \times 10^{-6}\left(\mathrm{~T}_{2}^{3}-\mathrm{T}_{1}^{3}\right)\right]
\end{aligned}
\] \\
Where \(\mathrm{n}=1 \mathrm{kmol}, \mathrm{T}_{2}=523 \mathrm{~K}, \mathrm{~T}_{1}=298 \mathrm{~K}\)
\[
\begin{aligned}
=1 & {\left[19.2492(523-298)+52.1135 \times 10^{-3} / 2\right.} \\
& \left.\quad\left(523^{2}-298^{2}\right)+11.973 \times 10^{-6} / 3 \quad\left(523^{3}-298^{3}\right)\right] \\
= & 1[4331.1+4813.33+465.31] \\
\mathbf{Q}= & \mathbf{9 6 0 9 . 7 4} \mathbf{K J} \text {------------- Ans. }
\end{aligned}
\]
\end{tabular} & 1 & 4 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline 6-f & \begin{tabular}{l}
Basis : 75 kmol of \(\mathrm{SO}_{2}\) and 200 Kmol air entering the reactor \\
Reaction:
\[
\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}---\rightarrow \mathrm{SO}_{3}
\] \\
Air used \(=200 \mathrm{kmol}\) \\
\(\mathrm{O}_{2}\) in supplied air \(=200 * 0.21=42 \mathrm{kmol}\) \\
From reaction,
\[
1 \mathrm{kmol} \mathrm{SO}_{2} \equiv 0.5 \mathrm{kmol} \mathrm{O}_{2}
\] \\
Theoretical requirement of \(\mathrm{O}_{2}\) for \(75 \mathrm{kmol} \mathrm{SO}_{2}\)
\end{tabular} & 1 & 4 \\
\hline
\end{tabular}```

