

WINTER-14 EXAMINATION Model Answer

Subject code : (17315)

Page **1** of **20**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code : (17315)

Page **2** of **20**

Q No.	Answer	marks	Total marks
1-a	Dalton's law: It states that the total pressure exerted by a gas mixture is equal	1	2
	to the sum of partial pressures		
	Mathematical Statement :P =P ₁ +P ₂ +P ₃	1	
	where P is the total pressure of gas mixture , P_1 , P_2 , P_3 are partial pressures		
1-b	Standard heat of combustion:	2	2
	It is the amount of heat liberated when one mol of a compound is combusted or		
	burned in oxygen at standard conditions.(25 [°] C and 1atm pressure)		
1-c	Vapour pressure :	2	2
	It is the pressure exerted by vapour which is in equilibrium with liquid.		
1-d	Value of universal gas constant		2
	$\mathbf{R} = 8.315 \text{ KPa m}^3 / \text{ kmol K}$	2	
1-e	Hess's law:		2
	It states that the heat involved in a chemical reaction is same whether the	2	
	reaction takes place in a single or in several steps.		
	A \longrightarrow B $\Delta T1$		
	$B \longrightarrow C \Delta T2$		
	$C \longrightarrow D \Delta T3$		
	$A \longrightarrow D \Delta T$		
	Then		
	$\Delta T = \Delta T 1 + \Delta T 2 + \Delta T 3$		

ect coo	le : (17315)		Page 3 of 20
1-f	Stoichiometric equation:		2
	It is defined as the balanced chemical reaction	2	
	Eg: $N_2+3H_2 \rightarrow 2NH_3$		
1-g	Vander Waal's equation of state:	2	2
	$(P+a/V^2)(V-b) = RT$		
	Where a & b are constants.		
1-h	Charles Law :	1	2
	It states that for a given mass of an ideal gas the ratio of volume to absolute		
	temperature is constant at a given pressure.		
	V/T = constant	1	
1-i	%Yield of desired product = (moles of limiting component reacted to form	2	2
	desired product/ total moles of limiting component reacted)* 100		
1-j	1 mol of air at STP		2
	n= 1 mol		
	p= 101.325 Kpa	1	
	R= 8.314		
	T=300K		
	PV=nRT or V=nTR/P		
	V= 1 * 8.314 * 300/ 101.325	1	
	$= 24.62 \text{ m}^3$		
1-k	Oxygen is supplied in excess to ensure complete combustion of compound.	2	2
	The source of oxygen for combustion is air which is readily available.		
	Therefore in order to get maximum conversion air is always added in excess		
	quantity.		

ect cod	le : (17315)						Page 4 of 20
1-1	101.325 Kpa g					2	2
	Absolute pr =	gauge pr + at	mospheric pr				
	=	101.325 KPa	+ 101.325 Kpa				
	= 2	202.65 KPa					
1-m	Raoult'slaw:1	It states that a	t a given temperat	ure, the equilibriu	ım partial	2	2
	pressure of a c	component of	a solution in the v	apour is equal to	the product of		
	the mole fract	ion of the con	nponent in the liqu	id phase and the	vapour pressure		
	of the pure con	mponent.					
1-n	Amagat's law	v: It states that	t the total volume	occupied by a gas	s mixture is	2	2
	equal to the sum of pure component volumes.						
	Mathematical Statement : $V = V_1 + V_2 + V_3$						
	where V is the total volume of gas mixture , V_1, V_2, V_3 are pure component						
	volume						
2-a	Basis: 100 km	oles of gas m	ixture			1	4
	compound	kmol	Mol fr(xi)	Mol.wt (Mi)	Mi*xi		
	CH ₄	70	0.7	16	11.2	2	
	C ₂ H ₆	22	0.22	30	6.6		
	N ₂	8	0.08	28	2.24		
	Average mole	cular weight =	= 11.2+6.6+2.24 =	= 20.04		1	
2-b	Basis: 50 kmc	oles /hr butane				1	4
	$C_4H_{10} + 6.5 O$	2→ 4CO	$_{2} + 5 H_{2}O$				
	100 kmol air f	ed = 21 kmol	O ₂ fed				
	2100 kmol air	fed = ?					
	1					1	1

Subjec	code : (17315)		Page 5 of 20
	$O_2 \text{ fed} = 2100 \times 21/100 = 441 \text{ kmoles}$	1	
	1 kmol C_4H_{10} fed = 6.5 kmol O_2 theoretically required		
	50 kmol C_4H_{10} fed = ?		
	O_2 theoretically required = 325 kmol	1	
	% excess= $(O_2 \text{ fed-}O_2 \text{ theoretical})*100/ O_2 \text{ theoretical}$		
	= (441-325)*100/325		
	= 35.69%	1	
2-	c Basis: 1m ³ fixed mass of gas at constant temperature		4
	$P_1 = 1$ $V_1 = 1$ m^3 $T_1 = T = T_2$		
	$P_2 = 1.85 V_2 = ? m^3$	2	
	$P_1V_1/T_1 = P_2V_2/T_2$	1	
	$1*1/T = 1.85*V_2/T$		
	Or $V_2 = 0.54 \text{ m}^3$	1	
2-	d Basis: 10000 Kg/hr of weak liquor	1	4
	→ Water evaporated X kg/hr		
	Feed10000 Kg/hr Evaporator		
	Thick liquor Y kg/hr		
	Overall balance is 10000= X+Y	1	
	Individual balance for caustic is		
	15/100 * 10000 = 40/100 * Y		
	Y= 3750 & X= 6250		
	Kg/hr of water evaporated = 6250 Kg/hr		
	Kg/hr of thick liquor obtained = 3750 Kg/hr	2	

Subject code : (17315)

Page **6** of **20**

Basis: 5 m ³ Cl ₂ gas		4
P=100 KPa		
Т=400 К		
N = PV/RT	1	
= 100 *5/ 8.314*400		
= 0.15 kmoles	1	
Weight of Cl_2 gas = kmoles * mol.wt	1	
Weight = $0.15*71$		
= 10.65 Kg	1	
$N_2 + 3H_2 - \rightarrow 2NH_3$	1	4
N_2 fed = 10 kmoles		
Theoretical requirement of $H_2 = 30$ kmoles		
H_2 fed = 60 kmoles	1	
% excess $H_2 = (H_2 \text{ fed} H_2 \text{ theoretical}) *100 / H_2 \text{ theoretical}$	1	
= (60-30)100/30		
= 100 %	1	
SOLUTION :		8
BASIS : 100 kg of ground nut seeds.		
Oil	2	
100 kg seeds		
Expeller		
45 % Oil		
45 % solids Cake, 80% solids		
5% Oil, Cake, 80% solids		
5% Oil		
	Basis: 5 m ³ Cl ₂ gas P=100 KPa T=400 K N= PV/RT = 100 *5/ 8.314*400 = 0.15 kmoles Weight of Cl ₂ gas = kmoles * mol.wt Weight = 0.15*71 = 10.65 Kg N ₂ + 3H ₂ → 2NH ₃ N ₂ fed = 10 kmoles Theoretical requirement of H ₂ = 30 kmoles H ₂ fed = 60 kmoles % excess H ₂ = (H ₂ fed . H ₂ theoretical) *100 / H ₂ theoretical = (60-30)100/30 = 100 % SOLUTION : BASIS : 100 kg of ground nut seeds.	Basis: 5 m ³ Cl ₂ gas P=100 KPa T=400 K N= PV/RT 1 = 100 *5/ 8.314*400 = 0.15 kmoles 1 Weight of Cl ₂ gas = kmoles * mol.wt 1 Weight = 0.15*71 = 10.65 Kg 1 N ₂ + 3H ₂ → 2NH ₃ 1 N ₂ fed = 10 kmoles 1 Theoretical requirement of H ₂ = 30 kmoles 1 H ₂ fed = 60 kmoles 1 % excess H ₂ = (H ₂ fed. H ₂ theoretical) *100 / H ₂ theoretical 1 = (60-30)100/30 = 100 % 1 SOLUTION : BASIS : 100 kg of ground nut seeds.

Subject code : (17315)

ect coo	de : (17315)		Page 7 of 20
	Let whe the be of the color obtained		
	Let x be the kg of the cake obtained.		
	Material Balance of Solids :		
	Solids in seeds $=$ Solids in cake	2	
	$\therefore 0.45 \ge 100 = 0.8 \ge$		
	\therefore X = 56.25 kg		
	Material balance of Oil :		
	Oil in seeds = Oil in cake + Oil recovered	2	
	$\therefore 0.45 \ge 100 = 0.05 \ge 56.25 + \text{Oil recovered}$		
	: Oil recovered = $45 - 2.81 = 42.19$ kg		
	% recovery of oil = (kg of oil recovered / kg oil in seeds) x 100	2	
	$= (42.19 / 45) \times 100 = 93.75\%$ Ans		
3-b	SOLUTION :		8
	BASIS : 100 kmol of product stream.		
	It contains 23.08 kmol of A, 11.54 kmol of B, 46.12 kmol of C and 19.23 kmol	1	
	of inerts.		
	Feed Product stream,	1	
	A,B,Inerts		
	$2A + B \rightarrow C$		
	From reaction, $2 \text{ kmol} = 1 \text{ kmol} \text{ C}$	1	

A reacted = $(2/1) \times 46.15 = 92.3$ kmol

ubject coo	de : (17315)					Page 8 of 20
	Material Balance	of A :				
	A in feed = A reacted + A unreacted			1		
		= 92.3 + 23.08	8 = 115.38 kmol			
	From reaction ,2 k	n reaction ,2 kmol A = 1 kmol B B reacted = $(1/2) \times 92.3 = 46.15$ kmol erial Balance of B :				
	В	From reaction ,2 kmol A = 1 kmol B B reacted = $(1/2) \ge 92.3 = 46.15$ kmol Material Balance of B : B in feed = B reacted + B unreacted = $46.45 + 11.54 = 57.69$ kmol Material Balance of Inerts :			1	
	Matarial Dalarsa	of D .				
	Material Balance	OIB:	ad Dynamo at a	1	1	
		B in feed = B react	Ed + B unreacted	1	1	
		= 46.45 + 11.3	54 = 57.69 kmol			
	Material Balance	of Inerts :				
	Inerts	s in feed = Inerts in pro-	oduct stream = 1°	9.23 kmol		
	ments in recu – ments in product stream – 17.25 knor					
		Analysis o	of Feed :			
	Component	Quantity kmal	Molo %			
				_		
	A	57.60	20			
	D	10.22	50 10			
	Tatal	19.23	10	_		
	Total	192.50	100			
2	D : 100001 /	<u> </u>				
3-C	Basis: 10000 kg/m	Basis: 10000 kg/hr of feed				
	10000 kg/hr	solution	 Distillate X 98% metha 	kg/hr mol		
	20 % metha	nol \longrightarrow distillation	n XV 1			
				tion Y kg/hr ol	2	
			/	-		

Subjec	t code : (17315)		Page 9 of 2
Γ	Overall balance is	1	
	$10000 = X + Y \dots (1)$		
	Individual balance for CH ₃ OH is	1	
	0.2*10000 = 0.98X + 0.01*Y(2)		
	Solving the equations	2	
	X= 1959 Kg/hr		
	Y= 8041 kg/hr	1	
	$CH_{3}OH$ in bottom product = $0.01*8041 = 80.41Kg/hr$		
	% loss of CH ₃ OH=(CH ₃ OH in bottom product/ CH ₃ OH in feed)*100	1	
	=(80.41/2000)*100		
	=4%		
4	-a SOLUTION :		
	BASIS : 100 mol of gas.		
	It contains 25 mol CO, 5 mol CO ₂ , 2 mol O ₂ and 68 mol N ₂ .		
	$CO + \frac{1}{2}O_2 \longrightarrow CO_2$		
	$\Gamma \text{mol CO} = 0.5 \text{ mol O}_2$		
	Theoretical $O_2 = 0.5 / 1 \ge 25 = 12.5 \text{ mol}$	1	
	Net O_2 demand (by difference) = $12.5 - 2 = 10.5$ mol		
	O_2 in supplied air = 1.20 x 10.5 = 12.6 mol	1	
	N_2 in air supplied = (79/21) x 12.6 = 47.4 mol	1	
	CO reacted = $0.8 \times 25 = 20 \mod 1$		
	CO unreacted = $25 - 20 = 5$ mol	1	

20

8

bject coc	le : (17315)					Page 10 of 20
	CO_2 Produced= 20 mol			1		
	Total CO_2 in gas leaving = $20 + 5 = 25$ mol					
	O_2 reacted =(1 / 2) x 20 = 10 mol					
		O_2 unreacted = 12	2.6 - 10 = 2.6 mol		1	
	N	$_2$ in gas leaving = $\frac{1}{2}$	47.4 +68 = 115.4 r	nol		
	Component	Moles	Mole %			
	CO2	25	16.89		1	
	O2	2.6	1.77		1	
	N2	115.4	77.97			
	СО	5	3.37			
	Total	148	100.00			
4-b	SOLUTION :					8
	BASIS : 15000 mol	$/h \text{ of } N_2 - H_2 \text{ mixt}$	ure.			
	Molal flowrate of ga	as mixture = 15 km	ol /h			
	$X_{N2} = 25 / 100 =$	= 0.25				
	$X_{H2} = 75 / 100 =$	= 0.75				
					1	
	$C_p^o mix = \sum C_p^o mix$. X _i				
	$= X_{N2} C_{I}^{o}$	$_{0 N2} + X_{H2} C^{o}_{p H2}$			2	

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code : (17315)

Page **11** of **20**

$= 0.25 (29.5909 - 5.41 \times 10^{-3} \text{ T} + 13.1829 \times 10^{-6} \text{ T}^2 - 4.968 \times 10^{-9} \text{ T}^3) + 0.75 (28.6105 + 1.0194 \times 10^{-3} \text{ T} - 0.1476 \times 10^{-6} \text{ T}^2 + 0.769 \times 10^{-9} \text{ T}^3)$ $= 28.8556 - 0.588 \times 10^{-3} \text{ T} + 3.185 \times 10^{-6} \text{ T}^2 - 0.6652 \times 10^{-9} \text{ T}^3$	1	
Q =Heat transferred		
T2		
$= n T_1 \int C^o_{p \text{ mix.}} dT$	1	
T2		
$= n_{T1} \int (28.8556 - 0.588 \times 10^{-3} \text{ T} + 3.185 \times 10^{-6} \text{ T}^2 - 0.588 \times 10^{-6} \text{ T}^$		
$0.6652 \times 10^{-9} T^{-3}) dT$		
$= n \left[28.8556 (T_2 - T_1) - 0.588/2 \times 10^{-3} (T_2^2 - T_1^2) \right]$		
+3.185 x10 ⁻⁶ /3 ($T_2^3 - T_1^3$) -0.6652 x 10 ⁻⁹ /4 ($T_2^4 - T_1^4$)]		
Where $n = \frac{15 \text{ kmol}}{15 \text{ kmol}} + 10^{-1} \text{ kmol} + 10^{-1} \text$		
	2	
$Q = 15 [28.8556 (473 - 298) - 0.5207/2 \times 10^{-3} (473^2 - 298^2)]$		
$+ 3.185 \times 10^{-6} (473^3 - 298^3) - 0.6652 \times 10^{-9}$		
3 4		
$(473^4 - 298^4)]$	1	

WINTER-14 EXAMINATION Model Answer

Subject code : (17315)Page 12 of 20 = 15 (5049.73 - 35.13 + 84.25 - 7.01)= 76377.6 kJ/h = 21.21 kJ/s = 21.21 kWAns **SOLUTION :** 4-c 8 **BASIS**: 1000 kg of desired mixed acid. 2 Waste acid, 30 % H₂SO₄,35% HNO₃ Desired mixed acid Con.nitric acid 1000 kg Blending 72% HNO₃ 39% H₂SO₄, 42% HNO₃ Con.sulphuric acid 1 98% H₂SO₄ Block diagram for fortifying waste acid with concentrated acids 1 Let x, y and z be the kg of waste acid, concentrated sulphuric acid and concentrated nitric acid required to make 1000 kg desired acid. **Overall material Balance:** x + y + z = 1000....(i)1 Material Balance of H₂SO₄ : 1 0.3 x + 0.98 y = 0.39 x 1000....(ii)

WINTER-14 EXAMINATION Model Answer

Subject code : (17315)

ect cod	e : (17315)			Page 13 of 20
	0	0.3 x + 0.98 y = 390	1	
		Y = (390 - 0.3 x) / 0.98	1	
		\therefore Y = 397.96 - 0.306 x(iii)		
	Material Balance	of HNO ₃ :		
	0	0.35 x + 0.72 z = 0.42 x 1000		
	0	0.35 x + 0.72 z = 420(iv)		
		z = (420 - 0.35 x) / 0.72		
		\therefore z = 583.3 – 0.486 x(v)		
	Put values of y and	z from equations (iii) and (v) in eqn (i) and solve for x.		
	\therefore x + (397.96 – 0	0.306 x) + (583.3 - 0.486 x) = 1000		
		\therefore x = 90.1 kg		
	We have ,	y = 397.96 - 0.306 x		
		$= 397.96 - 0.30 \ge 90.1$		
		\therefore y = 370.4 kg		
	We have ,	z = 583.3 - 0.486 x		
		$= 583.3 - 0.486 \ge 90.1$		
		$\therefore z = 539.5 \text{ kg}$		
	Amount of waste a	cid required = 90.1 kg		
	Amount of concen	trated sulphuric acid required = 370.4 kg		
	Amount of concen	trated nitric acid require = 539.5 kgAns		
5-a	Bypass Operation	1:		8
	In these operation	s, a fraction of the feed stream to a process unit is diverted	2	
	around and combin	ned with the output stream.		
	Feed			

Subject coo	de : (17315)		Page 14 of 20
	Process Unit	2	
	 Bypassing is practiced industrially whenever accurate control of the composition or concentration of the process exit stream is expected. The composition and properties of the product may be varied by varying the fraction of the feed that is bypassed. 	2	
	Example: A juice concentration process in which the dehydration process runs most efficiently by removing more water than is desired. A portion of the feed may be directed around the dehydrator in a bypass loop, to be mixed with unprocessed feed. Or any other example	2	
5-b	Basis : 1 mol of C_4H_6 (liq) 1. $C(s) + O_2(g) - CO_2(g)$ $\Delta H_1 = -393.51$ KJ/mol 2. $H_2(g) + 1/2$ $O_2(g) - H_2O(l)$ $\Delta H_1 = -285.83$ KJ/mol	1	8
	3. C ₄ H ₆ (liq.) +5.5 O ₂ (g)> 4CO ₂ (g)+3 H ₂ O(l) $\Delta H^0 c = -2520.11 \text{ KJ/mol}$		
	4. $4C(s) + 3 H_2(g)> C_4H_6(liq.) \Delta H^0 f = ?$		

Subject	ubject code : (17315)		Page 15 of 20
	$\Delta H^0 f$ = Standard heat of formation of gaseous ethyl alcohol		
	At 2198.15 K		
		2	
	Reaction(4) = 4^* Reaction (1) + 3^* Reaction (2) – Reaction (3)		
	$\Delta H^0 f = 4^* \Delta H_1 + 3^* \Delta H_2 - \Delta H^0 c$		
	= 4(-393.51) +3*(-285.83) -(-2520.11)	2	
	= (-1547.04) + (-857.49) + 1410.09		
	= 88.58 KJ/mol		
	$\Delta H^0 f = 88.58 \text{ KJ/mol} \text{ ans.}$	1	
5-0	Basis 100 mol of ethylene		8
	Reaction I C ₂ H ₄ + $\frac{1}{2}$ O ₂ \longrightarrow C ₂ H ₄ O		
	Reaction II $C_2H_4 + 3O_2 \longrightarrow 2CO_2 + 2H_2O$	2	
	From reaction I		
	1Kmol of C_2H_4O formed= 1Kmol C_2H_4 reacted		
	\therefore C ₂ H ₄ O reacted to from 80 kmol C ₂ H ₄ O	1	
	$=\frac{1}{1}\times 80 = 80$ Kmol	1	
	From reaction II		
	2kmol of CO ₂ formed= 1Kmol C ₂ H ₄ reacted		
	\therefore C ₂ H ₄ reacted to form 10 kmol CO ₂		
	$=\frac{1}{2} \times 10 = 5$ Kmol	1	
	\therefore C ₂ H ₄ totally reacted = 80 + 5= 85		
	$\therefore\% \text{ conversion of } C_2H_4 = \frac{85}{100} \times 100$	2	

Subject code : (17315)

Page **16** of **20**

	= 85%		
	% yield of C ₂ H ₄ O = $\frac{80}{2} \times 100$		
	85 YICK OF C2114O = 85	2	
	= 94.12%		
		1/ 1	
6-a	General Material Balance Procedure	1⁄2 marks	4
	1) Assume Suitable Basis of calculation.	each	
	2) Adopt weight basis for without chemical reactions and molar basis for with		
	chemical reactions.		
	3) Draw Block diagram of the process of each operation with input and output		
	stream.		
	4) In the block diagram drawn, indicate the information provided regarding		
	input and output.		
	5) Search out unknown and ascertain them and Calculate it by generating and		
	solving material balance equations.		
	6) In case of material balance with chemical, write balance chemical reaction		
	and search out limiting component.		
	7) In with chemical reaction, the quantity of a reacting component appearing in		
	the product stream is the quantity of that material remains unreacted.		
	8) Supplied quantity of an excess reactant calculated from the theoretical		
	requirement is based on the quantity of a limiting reactant fed.		
6-b	Basis : 1 Kmol of ammonia gas	1	4
	Heat need = Q		
	= n [$C^{o}pm_2(T_2-T_0) - C^{o}pm_1(T_1-T_0)$]		

Page **17** of **20**

WINTER-14 EXAMINATION <u>Model Answer</u>

Subject code : (17315)

	Where , n=1 kmol, T ₀ =298K, T ₂ =422 K, T ₁ =311 K	1	
	$C^{o}pm_{1} = 35.8641 \text{ KJ/(kmol.K)}$		
	C ^o pm ₂ =37.7063 KJ/(kmol.K)	1	
	Q = 1 [37.7063(422-298) - 35.8641(311-298)]	1	
	Q = 4209.35 KJ Ans.	1	
6-c	Basis : 100 Kmol of feed		4
	Feed contains 60 kmol A, 30 kmol B and 10 kmol inerts		
	Let X be the kmol of A reacted by reaction :		
	2A + B C	1	
	From reaction $2 \text{ kmol } A = 1 \text{ kmol } B = 1 \text{ kmol } C$	-	
	B reacted = $(1/2)^* X = 0.5 X$ kmol		
	C formed = $(1/2)^* X = 0.5 X$ kmol		
	Material Balance of A give		
	A unreacted = $(60 - X)$ kmol		
	Material Balance of Inerts :		
	Inerts in feed = Inert in product = 10 kmol		
	C formed = $(1/2)^* X = 0.5 X$ kmol	1	
	B unreacted = $(30 - 0.5 \text{ X})$ kmol		
	Total moles of product stream = $(60-X) + (30-0.5X) + 10=0.5X$ = $100 - X$ Kmol		

WINTER-14 EXAMINATION Model Answer

Subject code : (17315)

Page **18** of **20**

Subject cod	e : (17315)		Page 19 of 20
	Material Balance of Solids:	1	
	Solids in wet solids = Solid in Product		
	0.7 * 4000 = 0.99 X		
	X =2828.28 Kg of Product Obtained		
	Overall Material Balance :	1	
	4000 = X + Y		
	Y = 4000 - 2828.28 = 1171.71 Kg of Water Removed		
	Product Obtained = 2828.28 Kg	1	
6	Water Removed = 1171.71 Kg		4
6-e	Basis: I Kmol of Methane gas		4
	Q= Heat added	1	
	Γ_2	1	
	$= n \int Cp dT$		
	T_1		
	T_2		
	$= n \int [19.2492 + 52.1135 \times 10^{-3} T + 11.973 \times 10^{-6}]$	1	
	$T_1 T^2 dT$		
	= n [19.2492 (T ₂ -T ₁) + 52.1135 x 10 ⁻³ (T ² ₂ -T ² ₁) +		
	11.973 x 10^{-6} ($T_2^3 - T_1^3$)]		
	Where n= 1 kmol, $T_2 = 523$ K, $T_1 = 298$ K	1	
	= 1 [$19.2492 (523 - 298) + 52.1135 \times 10^{-3} / 2$ ($523^2 - 298^2$) + $11.973 \times 10^{-6} / 3$ ($523^3 - 298^3$)]		
	= 1 [4331.1 +4813.33 +465.31]		
	Q = 9609.74 KJ Ans.	1	

ect co	de : (17315)	Page	20 of 20
6-f	Basis : 75 kmol of SO ₂ and 200 Kmol air entering the reactor		
	Reaction:		
	$SO_2 + \frac{1}{2}O_2 \rightarrow SO_3$	1	
	Air used = 200 kmol		
	O_2 in supplied air = 200 * 0.21=42 kmol		
	From reaction,		
	$1 \text{ kmol SO}_2 \equiv 0.5 \text{ kmol O}_2$		
	Theoretical requirement of O ₂ for 75 kmol SO ₂	1	
	$= \frac{0.5}{1} * 75 = 37.5 \text{ kmol}$		
	O_2 in supplied air - O_2 Theoretical required	1	
	O_2 Theoretical required		
	$= \frac{42 - 37.5}{37.5} X \ 100 = 12\%$	1	
	$\%$ excess O_2 used = 12 $\%$ Ans.		