MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC - 27001-2005 Certified)

 SUMMER-14 EXAMINATION

 SUMMER-14 EXAMINATION
 Model Answer

Subject code : (17315)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-14 EXAMINATION

Model Answer

Subject code : (17315)

\begin{tabular}{|c|c|c|c|}
\hline Q No. \& Answer \& marks \& Total marks \\
\hline 1a-i \& \begin{tabular}{l}
Conditions for \\
NTP: \\
Temperature \((\mathrm{T})=273 \mathrm{~K}\left(0^{\circ} \mathrm{C}\right)\), Pressure \((\mathrm{P})=101.325 \mathrm{KPa}(1 \mathrm{~atm})\), \(\operatorname{moles}(\mathrm{n})=1 \mathrm{kmol}, \operatorname{Volume}(\mathrm{V})=22.4 \mathrm{~m}^{3}\) \\
STP: \\
Temperature \((\mathrm{T})=300 \mathrm{~K}\left(27^{\circ} \mathrm{C}\right)\), Pressure \((\mathrm{P})=101.325 \mathrm{KPa}\) (1 atm), \(\operatorname{moles}(\mathrm{n})=1 \mathrm{kmol}, \operatorname{Volume}(\mathrm{V})=22.4 \mathrm{~m}^{3}\)
\end{tabular} \& 1
1 \& 2 \\
\hline 1a-ii \& \begin{tabular}{l}
\[
\mathrm{CO}+2 \mathrm{H}_{2}-----\rightarrow \mathrm{CH}_{3} \mathrm{OH}
\] \\
Stoichiometric coefficient of CO: \(\mathrm{H}_{2}=1: 2\) \\
Weight ratio of \(\mathrm{CO}: \mathrm{H}_{2}=28: 4\) or 7
\end{tabular} \& 1
1 \& 2 \\
\hline 1a-iii \& \begin{tabular}{l}
Dalton's law: It states that the total pressure exerted by a gas mixture is equal to the sum of partial pressures \\
Mathematical Statement: \(\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}+\mathrm{P}_{3}\) \\
where P is the total pressure of gas mixture, \(\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}\) are partial pressures
\end{tabular} \& 1
1 \& 2 \\
\hline 1a-iv \& \begin{tabular}{l}
Raoult's law:It states that at a given temperature, the equilibrium partial pressure of a component of a solution in the vapour is equal to the product of the mole fraction of the component in the liquid phase and the vapour pressure of the pure component. \\
Henry's law:It states that the partial pressure of the solute gas in gas phase is directly proportional to the mole fraction of a solute gas dissolved in a liquid equilibrium above the liquid surface.
\end{tabular} \& 1

1 \& 2

\hline 1a-v \& Application of Hess's law: Using this law we can calculate the heat of \& 2 \& 2

\hline
\end{tabular}

SUMMER-14 EXAMINATION

Model Answer

Subject code : (17315)

	formation of a compound from a series of reactions that do not involve the direct formation of the compound from its elements.		
1a-vi	Conversion:It is the ratio of amount of limiting reactant reacted to the amount of limiting reactant fed to the reactor. \%Yield of desired product = (moles of limiting component reacted to form desired product/ total moles of limiting component reacted)* 100	1 1	2
1b-i	Basis: Average molecular weight of gas mixture $=22.4$ Let $\mathrm{X}_{\mathrm{A}} \& \mathrm{X}_{\mathrm{B}}$ be the mole fractions of $\mathrm{CH}_{4} \& \mathrm{C}_{2} \mathrm{H}_{4}$ respectively $\begin{align*} & \mathrm{M}_{\mathrm{av}}=\mathrm{M}_{\mathrm{A}} \mathrm{X}_{\mathrm{A}}+\mathrm{M}_{\mathrm{B}} \mathrm{X}_{\mathrm{B}} \\ & 22.4=16 \mathrm{X}_{\mathrm{A}}+28 \mathrm{X}_{\mathrm{B}} . \tag{1}\\ & 1=\mathrm{X}_{\mathrm{A}}+\mathrm{X}_{\mathrm{B}} \ldots \ldots \ldots . \tag{2} \end{align*}$ Solving (1) \& (2) we get $X_{A}=0.467 \text { and } X_{B}=0.533$ Mole fraction of $\mathrm{CH}_{4}=\mathbf{0 . 4 6 7 \&}$ Mole fraction of $\mathrm{C}_{2} \mathrm{H}_{4}=\mathbf{0 . 5 3 3}$	1 1 1 1	6
1b-ii	Henry's law is $\mathrm{p}_{\mathrm{A}}=\mathrm{H} \mathrm{X}_{\mathrm{A}}$ $\begin{aligned} & \quad 25.33=4.46 * 10^{6} \mathrm{X}_{\mathrm{A}} \\ & \text { Or } \mathrm{X}_{\mathrm{A}}=5.68 * 10^{-6} \end{aligned}$ i.e mole fraction of $\mathrm{O}_{2}=5.68 * 10^{-6}$ mole fraction of $\mathrm{O}_{2}=$ moles of $\mathrm{O}_{2} /\left(\right.$ moles of $\mathrm{O}_{2}+$ moles of solvent $)$ If the solution is very dilute mole fraction of $\mathrm{O}_{2}=$ moles of $\mathrm{O}_{2} /$ (moles of solvent) $5.68 * 10^{-6}=5.68 * 10^{-6} / 1$ Solubility of $\mathrm{O}_{\mathbf{2}}=5.68 * \mathbf{1 0}^{-6}$	1 1 1 1 1 1 1	6

SUM M ER-14 EXAMINATION

Model Answer

Subject code : (17315)
Page 4 of 17

\begin{tabular}{|c|c|c|c|}
\hline \& \& \&

\hline 1b-iii \& Basis:Gas in a closed vessel at 299 K
$$
\begin{aligned}
& \mathrm{P}_{1} \mathrm{~V}_{1} / \mathrm{T}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} / \mathrm{T}_{2} \\
& \mathrm{P}_{1}=121.59 \mathrm{KPa} \mathrm{~g}=121.59+101.325=222.915 \mathrm{KPa} \text { absolute } \\
& \mathrm{V}_{1}=\mathrm{V}_{2} \\
& \mathrm{~T}_{1}=299 \mathrm{~K} \\
& \mathrm{P}_{2}=? \\
& \mathrm{~T}_{2}=1273 \mathrm{~K} \\
& 222.915 / 299=\mathrm{P}_{2} / 1273 \\
& \mathrm{P}_{2}=949.07 \mathrm{KPa}
\end{aligned}
$$ \& 1
1
1

1
2 \& 6

\hline 2-a \& | Basis: $10000 \mathrm{Kg} / \mathrm{hr}$ of weak liquor |
| :--- |
| Overall balance is $10000=\mathrm{X}+\mathrm{Y}$ |
| Individual balance for caustic is |
| $15 / 100 * 10000=40 / 100 * Y$ |
| $\mathrm{Y}=3750 \& \mathrm{X}=6250$ |
| $\mathrm{Kg} / \mathrm{hr}$ of water evaporated $=6250 \mathrm{Kg} / \mathrm{hr}$ |
| $\mathrm{Kg} / \mathrm{hr}$ of thick liquor obtained $=3750 \mathrm{Kg} / \mathrm{hr}$ | \& | 1 |
| :--- |
| 1 |
| 2 | \& 4

\hline 2-b \& | Recycling: It is returning back a portion of stream leaving a process unit to the entrance of the process unit for further processing. |
| :--- |
| Reasons for performing recycling: (any four) |
| 1. Maximum utilization of the valuable reactant |
| 2. Improvement of the performance of the equipment/ operation | \& | 1 |
| :--- |
| $3 / 4$ marks each for any 4 | \& 4

\hline
\end{tabular}

SUM M ER-14 EXAMINATION

Model Answer

Subject code : (17315)

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
3. Utilisation of the heat being lost in the exit stream. \\
4. Better operating conditions of the system \\
5. Improvement in the selectivity of a product \\
6. Enrichment of a poduct
\end{tabular} \& \& \\
\hline 2-c \& \begin{tabular}{l}
Excess component: It is the reactant which is in excess of the theoretical or stoichiometric requirement. \\
Limiting component: It is the reactant which would disappear first if a rection goes to completion. Or it is the reactant which decides the extent of a reaction. Example: In the reaction \(\mathrm{C}_{2} \mathrm{H}_{4}+1 / 2 \mathrm{O}_{2} \rightarrow--\rightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}\), oxygen(air) is fed to the reactor in excess of that theoretically required. Therefore Oxygen is the excess component and ethylene is the limiting component.
\end{tabular} \& 1.5
1.5 \& 4 \\
\hline 2-d \& \begin{tabular}{l}
Basis: 33.33 kmol of formaldehyde produced.
\[
\mathrm{CH}_{3} \mathrm{OH}-----\rightarrow \mathrm{HCHO}+\mathrm{H}_{2}
\] \\
I kmol CH3 OH reacted \(=1 \mathrm{kmol} \mathrm{HCHO}\) formed \\
\(\mathrm{CH}_{3} \mathrm{OH}\) reacted to produce \(33.33 \mathrm{kmol} \mathrm{HCHO}=33.33 \mathrm{kmol}\) \\
Conversion of \(\mathrm{CH}_{3} \mathrm{OH}=\left(\right.\) kmole of \(\mathrm{CH}_{3} \mathrm{OH}\) reacted/ kmoles \\
Of \(\mathrm{CH}_{3} \mathrm{OH}\) fed) \(* 100\)
\[
65=\left(33.33 / \mathrm{kmole}^{2} \text { of } \mathrm{CH}_{3} \mathrm{OH} \text { fed }\right) * 100
\] \\
kmole of \(\mathrm{CH}_{3} \mathrm{OH}\) fed \(=51.28 \mathrm{kmoles} / \mathrm{hr}\) \\
kg of \(\mathrm{CH}_{3} \mathrm{OH}\) fed \(=51.28^{*} 32=\mathbf{1 6 4 1 K g} / \mathbf{h r}\)
\end{tabular} \& 1
1
1
1
1 \& 4 \\
\hline 2-e \& \begin{tabular}{l}
Basis: 50 kmoles /hr butane
\[
\mathrm{C}_{4} \mathrm{H}_{10}+6.5 \mathrm{O}_{2}----\rightarrow 4 \mathrm{CO}_{2}+5 \mathrm{H}_{2} \mathrm{O}
\] \\
100 kmol air fed \(=21 \mathrm{kmol} \mathrm{O}_{2}\) fed 2100 kmol air fed \(=\) ? \\
\(\mathrm{O}_{2}\) fed \(=2100 * 21 / 100=441 \mathrm{kmoles}\) \\
\(1 \mathrm{kmol} \mathrm{C}_{4} \mathrm{H}_{10}\) fed \(=6.5 \mathrm{kmol} \mathrm{O}_{2}\) theoretically required \(50 \mathrm{kmol} \mathrm{C}_{4} \mathrm{H}_{10}\) fed \(=\) ?
\end{tabular} \& 1

1 \& 4

\hline
\end{tabular}

SUMMER-14 EXAMINATION

Model Answer

Subject code : (17315)

\begin{tabular}{|c|c|c|c|}
\hline \& $$
\begin{aligned}
& \mathrm{O}_{2} \text { theoretically required }=325 \mathrm{kmol} \\
& \% \text { excess }
\end{aligned}=\left(\mathrm{O}_{2} \text { fed- } \mathrm{O}_{2} \text { theoretical }\right)^{* 100 / \mathrm{O}_{2} \text { theoretical }} \begin{aligned}
& =(441-325) * 100 / 325 \\
& =\mathbf{3 5 . 6 9 \%}
\end{aligned}
$$ \& 1

1 \&

\hline 2-f \& | Specific Heat: Specific heat of a substance is the ratio of the heat capacity substance to that of water. |
| :--- |
| Latent Heat:It is the heat required to change the phase of a substance at constant temperature and pressure. |
| Unit of heat in S.I.is Kilojoules(KJ) | \& | 1.5 |
| :--- |
| 1.5 |
| 1 | \& 4

\hline 3-a \& | Basis 100 mol of ethylene |
| :--- |
| Reaction I C $2_{2} \mathrm{H}_{4}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ |
| Reaction II C $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ |
| From reaction I |
| 1 Kmol of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ formed $\equiv 1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ reacted |
| $\therefore \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ reacted to from $80 \mathrm{kmol} \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ $=\frac{1}{1} \times 80$ $=\stackrel{1}{80} \mathrm{Kmol}$ |
| From reaction II |
| 2 kmol of CO_{2} formed $\equiv 1 \mathrm{Kmol} \mathrm{C}_{2} \mathrm{H}_{4}$ reacted |
| $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ reacted to form 10 kmol CO 2 |
| $=\frac{1}{2} \times 10$ |
| $=5 \mathrm{Kmol}$ |
| $\therefore \mathrm{C}_{2} \mathrm{H}_{4}$ totally reacted $=80+5=85$ |
| $\therefore \%$ conversion of $\mathrm{C}_{2} \mathrm{H}_{4}=\frac{85}{100} \times 100$ $=85 \%$ |
| $\%$ yield of $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}=\frac{80}{85} \times 100$ $=94.12 \%$ | \& 1 \& 8

\hline
\end{tabular}

Model Answer

Subject code : (17315)
Page $\mathbf{7}$ of $\mathbf{1 7}$

Model Answer

Subject code : (17315)
Page 8 of $\mathbf{1 7}$

	$\begin{aligned} & =\frac{57.1}{42.9} \\ & =1.33 \end{aligned}$	2	
3-c	Basis 5000 kg of feed. $\begin{aligned} & \mathrm{xF}=50 \% \\ & \mathrm{xD}=95 \% \\ & \mathrm{xW}=8 \% \\ & \text { Weight of Benzene in feed }=5000 \times 0.5 \\ &=2500 \mathrm{~kg} \end{aligned}$ Overall balance $x+y=5000$ Material balance of benzene $\begin{aligned} & 0.95 x+0.08 y=5000 \times .5 \\ & .95 x+0.08 y=2500 \end{aligned}$	1 1 1 1	8

SUMMER-14 EXAMINATION

Model Answer

Subject code : (17315)

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Solving for x \& y
\[
\begin{aligned}
\& \mathrm{x}=2413.79 \mathrm{~kg} \\
\& \mathrm{y}=2586.21 \mathrm{~kg}
\end{aligned}
\] \\
\% Recovery of Benzene
\[
\begin{aligned}
\& =\frac{2293.10}{2500} \times 100 \\
\& =91.72 \%
\end{aligned}
\]
\end{tabular} \& 2

2 \&

\hline 4-a \& | Basis 1 mol of n propanol liquid |
| :--- |
| 1) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})=\mathrm{CO}_{2}(\mathrm{~g}) \Delta \mathrm{H}_{1}=-393.51 \frac{\mathrm{~K} 5}{\mathrm{md}}$ |
| 2) $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})=\mathrm{H}_{2} \mathrm{O}$ |
| (e) $\Delta \mathrm{H}_{2}=-285.83 \frac{\mathrm{~K} 5}{\mathrm{md}}$ |
| 3) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}{ }^{\left({ }^{1}\right)}+4.5 \mathrm{O}_{2}=3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O} \Delta \mathrm{Hc}=-2028.19$ |
| $\Delta \mathrm{H}_{+} \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}=$ Heat of formation of n propanol $\begin{aligned} & =3 \Delta \mathrm{H}_{1}+4 \Delta \mathrm{H}_{2}-\Delta \mathrm{H}^{0} \mathrm{C} \\ & =3(-39351)+4(-285.83)-(-2028.19) \\ & =-295.66 \mathrm{~kJ} / \mathrm{mol} \end{aligned}$ | \& 2

2
2
2 \& 8

\hline 4-b \& Basis $=2000 \mathrm{Kg} / \mathrm{hr}$ of lumber \& 1 \& 8

\hline
\end{tabular}

Subject code : (17315)

	Weight of moisture in lumber $\begin{aligned} & =2000 \times 0.05 \\ & =100 \mathrm{Kg} \\ & \therefore \text { Weight of dry lumber }=2000-100 \\ & =1900 \mathrm{Kg} \end{aligned}$ Let weight of dry air supplied = xkg \therefore Material balance of moisture $\begin{aligned} & 0.02 \mathrm{x}=100 \\ & \therefore \mathrm{x}=\frac{100}{0.02} \\ & =5000 \mathrm{~kg} / \mathrm{hr} \end{aligned}$ Weight of dry air $=5000 \mathrm{Kg} / \mathrm{hr}$	2 1 2 2	
4-c	Basis - $50 \mathrm{Kmol} \mathrm{SO}_{2}$ 150 Kmol air Reaction $\begin{aligned} & \mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2}=\mathrm{SO}_{3} \\ & \text { Air used }=150 \mathrm{Kmol} \\ & \begin{aligned} \mathrm{O}_{2} \text { in air } & =150 \times(0.21) \\ & =31.5 \mathrm{Kmol} \end{aligned} \end{aligned}$ Theorctical requirement of O_{2} $1 \mathrm{Kmol} \mathrm{SO}_{2} \equiv 0.5 \mathrm{Kmol} \mathrm{O}_{2}$ $\begin{aligned} & =\frac{0.5}{1} \times 50 \\ & =25 \mathrm{Kmol} \end{aligned}$ $\therefore \%$ excess of O_{2} used	2 2 2	8

SUMMER-14 EXAMINATION

Model Answer

Subject code : (17315)

	$\begin{aligned} & =\frac{\mathrm{O}_{2} \text { in supplied }-\mathrm{O}_{2} \text { theo read }}{\mathrm{O}_{2} \text { theo read }} \\ & =\frac{31.5-25}{25} \times 100 \\ & =26 \end{aligned}$ $\therefore \%$ excess air used $=26 \%$ Or $\begin{aligned} \text { Theo. air read } & =\frac{100}{21} \times 25 \\ & =119.05 \mathrm{Kmol} \end{aligned}$ $\begin{aligned} \therefore \% \text { excess air used } & =\frac{150-119.05}{119.05} \\ & =26 \% \end{aligned}$	2	
5-a	Basis: 100 kmol of flue gas. It contains $13.4 \mathrm{kmol} \mathrm{CO}_{2}, 80.5 \mathrm{kmol}_{2}$ and $6.1 \mathrm{kmol} \mathrm{O}_{2}$ N_{2} in supplied air $=\mathrm{N}_{2}$ in flue gas $=80.5 \mathrm{kmol}$ Air contains $79 \% \mathrm{~N}_{2}$ by volume. Amount of air supplied $=80.5 / 0.79=101.9 \mathrm{kmol}$ Amount of O_{2} in supplied air $=0.21 \mathrm{X} 101.9=21.4 \mathrm{kmol}$ Amount of O_{2} in flue gas $=6.1 \mathrm{kmol}$ Amount of O_{2} consumed in combustion of fuel $\begin{aligned} & =21.4-6.1=15.3 \mathrm{kmol} \\ & \quad \% \text { excess air }=\% \text { excess } \mathrm{O}_{2} \\ & \begin{aligned} \text { Present excess air supplied } & =(21.4-15.3) / 15.3 \times 100 \\ & =\mathbf{3 9 . 9} \% \text {----- Ans. } \end{aligned} \end{aligned}$	1 1 1 1 1 1 1 1 1 1	8
5-b	Case -I: Basis: $100 \mathrm{Kg} / \mathrm{hr}$ of solid handling capacity of the evaporator.	1	8

Model Answer

Subject code : (17315)

SUMMER-14 EXAMINATION

Model Answer

Subject code : (17315)

	$\begin{aligned} & \qquad \mathrm{B}=232.26 \mathrm{Kg} / \mathrm{hr} \\ & \mathrm{~A}=232.26+1800=2032.26 \mathrm{Kg} / \mathrm{hr} \\ & \text { Solid in weak liquor }=0.04 \times 2032.26=81.3 \mathrm{Kg} / \mathrm{hr} \\ & \text { Solid handling Capacity }=81.3 \mathrm{Kg} / \mathrm{hr} \quad------ \text { Ans. } \end{aligned}$	2	
5-c		1 2 2 3 2	8
6-a	Reaction given $\mathrm{CH}_{4}+10 \mathrm{O}_{2}-\cdots---\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ Balanced Reaction is, $\mathrm{CH}_{4}+2 \mathrm{O}_{2}-----\rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$ From balanced reaction, $1{\mathrm{kmol} \mathrm{CH}_{4}}^{\text {required }} \equiv 2 \mathrm{kmol} \mathrm{O}_{2} \text { (theoretically required) }$ Actual kmol of O_{2} charged $=10 \mathrm{kmol}$ Hence, Excess component is $\mathrm{O}_{2}-----$ Ans.	1 1 1 1	4

Model Answer

Subject code : (17315)

6-b	DISTILLATION: This operation used for the separation of components of a liquid. Overall Material Balance: Feed $=$ Distillate + Bottoms/ Bottom Product $F=D+W$ $\mathrm{F}=$ Feed in $\mathrm{Kg} / \mathrm{hr}$, $\mathrm{D}=$ Distillate in $\mathrm{Kg} / \mathrm{hr}$, $\mathrm{W}=$ Bottom Product $\mathrm{Kg} / \mathrm{hr}$	2	4
6-c	Basis : 100 Kg of ground nut seeds Let X be the Kg of cake obtained Material balance of Solids : Solids in seeds $=$ Solids in cake $\begin{aligned} 0.45 * 100 & =0.8^{*} \mathrm{X} \\ \mathrm{X} & =56.25 \mathrm{Kg} \end{aligned}$ Material balance of Oil : Oil in seeds $=$ Oil in cake + Oil recovered $0.45^{*} 100=0.05^{*} 56.25+$ Oil recovered Oil recovered $=45-2.81=42.19 \mathrm{Kg}$ $\% \text { recovery of Oil }=\frac{\text { Oil recovered }}{\text { Oil in Seeds }}$	1 1 1	4

SUMMER-14 EXAMINATION

Model Answer

Subject code : (17315)
Page $\mathbf{1 5}$ of $\mathbf{1 7}$

\begin{tabular}{|c|c|c|c|}
\hline \& \% recovery of Oil \(=\)\begin{tabular}{c}
42.19 \\
-------100
\end{tabular}
\% recovery of Oil \(=\mathbf{9 3 . 7 5 \%}\) \& 1 \& \\
\hline 6-d \& \begin{tabular}{l}
\[
\begin{aligned}
\& \text { Basis: } 1 \mathrm{Kg} \text { of petrol } \\
\& \text { Amount of } \mathrm{H} 2 \text { in petrol }=0.15 \mathrm{~kg}, \\
\& \text { Amount of } \mathrm{C} \text { in petrol }=0.85 \mathrm{Kg} \\
\& \mathrm{H}_{2}+0.5 \mathrm{O}_{2}-\cdots--\rightarrow \mathrm{H}_{2} \mathrm{O} \\
\& \mathrm{C}+\mathrm{O}_{2}----\rightarrow \mathrm{CO}_{2}
\end{aligned}
\] \\
From reaction,
\[
1 \mathrm{kmol} \mathrm{H}_{2} \equiv 0.5 \mathrm{kmol} \mathrm{O}_{2}
\] \\
\(2 \mathrm{~kg} \mathrm{H}_{2} \equiv 16 \mathrm{~kg} \mathrm{O}_{2}\) \\
1 katom \(\mathrm{C} \equiv 1 \mathrm{kmol} \mathrm{O}_{2}\)
\[
12 \mathrm{~kg} \mathrm{C} \equiv 32 \mathrm{~kg} \mathrm{O}_{2}
\] \\
Theoretical requirement of \(\mathrm{O}_{2}\) for \(\mathrm{H}_{2}=0.15 \times(16 / 2)=1.20 \mathrm{~kg}\) \\
Theoretical requirement of \(\mathrm{O}_{2}\) for \(\mathrm{C}=0.85 \times(32 / 12)=2.27 \mathrm{~kg}\) \\
Total Theoretical requirement of \(\mathrm{O}_{2} \quad=1.20+2.27=3.47 \mathrm{~kg}\) \\
Amount of air required for combustion \(=3.47 / 0.23\)
\[
=15.09 \mathrm{~kg} \text {------Ans. }
\] \\
(Air contain \(23 \% \mathrm{O}_{2}\) and \(77 \% \mathrm{~N}_{2}\) on weight basis) \\
Amount of air required supplied \(=15 \times 1.15=17.35 \mathrm{Kg}\) \\
\(\mathrm{N}_{2}\) in supplied air \(=(0.77 \times 17.35) / 28=0.477 \mathrm{kmol}\) \\
\(\mathrm{O}_{2}\) in supplied air \(=(0.23 \times 17.35) / 32=0.125 \mathrm{kmol}\)
\end{tabular} \& 1

1 \& 4

\hline
\end{tabular}

Model Answer

Subject code : (17315)
Page 16 of 17

	O_{2} in dry product $=0.23(17.35-15) / 32=0.016 \mathrm{kmol}$				
	We have				
	1 katom $\mathrm{C} \equiv 1 \mathrm{~km}$				
	(0.85/12) katom C				
	CO_{2} produced $=1$	$(0.85 / 12)=0.071$			
	The product flue	contain $\mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}$			
	For ideal gases,	e \% = Mole $\%$			
	Composition Of	Product Gases on	\%:		
	Component	Quantity , Kmol	Mole \%(vol\%)		
	CO_{2}	0.071	12.6		
	O_{2}	0.016	2.8		
	N_{2}	0.477	84.6		
	Total	0.564	100.00		
6-e	Basis : 100 kmo	O_{2} entering the rea			4
	Reaction:				
	$\mathrm{SO}_{2}+1 / 2 \mathrm{O}_{2}--->$			1	
	From reaction,				
	$1 \mathrm{kmol} \mathrm{SO}_{2} \equiv 1$	SO_{3}			
	i.e $1 \mathrm{kmol}^{\text {SO}} 33$ re	1 kmol SO 2 to be	cted		
	$1 \mathrm{kmol} \mathrm{SO}_{3} \equiv 1$	SO_{2}			
	$80 \mathrm{kmol} \mathrm{SO}_{3} \equiv$?				

SUMMER-14 EXAMINATION

Model Answer

Subject code : (17315)

		1 1 1	
6-f	Sensible Heat : Sensible heat is the heat that must be transferred to raise or lower the temperature of a substance or mixture of substance. Adiabatic Reaction: It is the reaction which proceeds without loss or gain of heat, When the adiabatic reaction is exothermic, the temperature of the product stream rise and when the adiabatic reaction is endothermic, the temperatures of the product stream decreases	2	4

