

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 1 of 26

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation

Subject code:

17313

Page **2** of **26**

Q No.	Answer		Marks		
1	Attempt any SIX of the following		12		
1A-a	Rittinger's law		1		
	It states that the work required in crushing is pro	oportional to the new surface created.			
	$\frac{P}{\dot{m}} = K_r (\frac{1}{\overline{D}_{sb}} - \frac{1}{\overline{D}_{sa}})$				
	Kick's law:				
	Kick's law states that the work required for crushing a given mass of material is the				
	log of ratio of initial particle size to final particle	e size.			
	$\frac{P}{m} = K_k \ln \frac{D}{d}$				
1A-b	Classification of size reduction equipment		2		
	Size reduction equipment can be classified into				
	1. Crushers				
	2. Grinders				
	3. Ultrafine grinders				
	4.Cutters.				
1A-c	Difference between ideal screen and actual screen:				
	Ideal screen	Actual screen	each		
	1. The overflow will contain only	The overflow may also contain	for any		
	particles larger than cut diameter	particles smaller than cut diameter	two		
	2. Underflow will contain only particles	Underflow may also contain	points		
	smaller than cut diameter	particles larger than cut diameter			
	3. Yields sharp separation	Does not yield sharp separation			
	4. Efficiency is 100%	Efficiency is less than 100%			

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 3 of 26

	Subject code: 1,515	
1A-d	Screening:	
	Screening is the method of separating solid particles based on size.	1
	Application (any two):	
	1. mining and mineral processing industry	
	2. Pharmaceutical production	½ mark
	3. Agriculture	each
	4. Food processing	
1A-e	Types of impellers:	2
	Propellers, paddles and turbines.	
1A-f	Classification:	
	It is the separation of solid particles (from slurry) into several fractions based on	1
	terminal settling velocities.	
	Types of classifiers (any two):	½ mark
	1 Spiral classifiers	each
	2.Cone classifiers	
	3Drag classifiers	
	4Rake classifiers	
	5. Double cone classifiers.	
1A-g	Electrostatic Separation: It is the method of separation of solid particles based on	2
	differential attraction or repulsion of charged particles under the influence of an	
	electric field.	
1A-h	Importance of mixing in process industries: (two points)	1 mark
	1. To promote a chemical reaction, since intimate contact between reacting phases is	each
	necessary for reaction.	
	2. To produce simple physical mixtures – of two or more uniformly divided solids,	
	two or more miscible liquids etc.	
	1	<u> </u>

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation

Subject code: 17313

Page 4 of 26

3. To carry out physical change- formation of crystals from a supersaturated

	,	
	3. To carry out physical change- formation of crystals from a supersaturated	
	solution.	
	4. To accomplish dispersion in which a homogeneous material is produced from two	
	or more immiscible fluids and from one or more fluids with finely divided solids.	
1 B	Attempt any TWO of the following	8
1B-a	Critical speed of ball mill: Critical speed is the speed at which centrifuging occurs in a ball mill. When	1
	centrifuging occurs no grinding takes place.	
	Formula:	
	$N_{\rm c} = \frac{1}{2\pi} \sqrt{\frac{g}{(R-r)}}$	2
	Where N _c is the critical speed,	
	R is the radius of the ball mill	
	r is the radius of the ball.	
	Criteria for selecting the operating speed of ball mill (any one)	
	1. Size of the product	1
	2. Type of lining provided for the shell	
1B-b	Jaw crusher:	
	Construction:	
	It has a fixed jaw and a movable jaw which is pivoted at the top. The jaws are set to	
	form a V open at the top. The movable jaw which reciprocates in a horizontal plane	
	usually makes an angle of 20 to 30 ° with fixed jaw. The jaws are usually made of	
	manganese steel. The faces of the jaw are usually corrugated for concentrating the	
	pressure on relatively small areas. It also consists of pitman, toggles, flywheel,	2
	eccentric shaft. Eccentric causes the pitman to oscillate in a vertical direction & this	
	movement is communicated horizontally to movable jaw by the toggles.	
	Toggles act as fuse to the machine.	
	1	<u> </u>

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 5 of 26

t Title: Me	echanical Operation Subject code: 1/313	Pag
	Diagram	
1B-c	(1) Fixed jaw, (2) Movable jaw, (3) Shaft, (4) Fly wheel, (5) Eccentric, (6) Pitman, (7) Toggle, (8) Tie rod, (9) Spring Derivation for finding out the effectiveness of a screen:	2
IB-C	Let feed consists of material A & B, where A is the oversize & B is the undersize	
	material.	1
	Let <i>F</i> , <i>D</i> , and <i>B</i> be the mass flow rates of feed, overflow, and underflow,	
	respectively, and x_F , x_D , and x_B be the mass fractions of material A in the feed, overflow and underflow respectively.	
	Screen effectiveness based on the oversize material A (E _A) is the ratio of oversize	1
	material A that is actually in the overflow to the amount of A in the feed. Thus $E_A = \frac{Dx_D}{Fx_F}$	
	Screen effectiveness E_B based on the undersize material is the ratio of undersize	1
	material B that is actually in the under flow to the amount of B in the feed	
	$E_B = \frac{B(1-x_B)}{F(1-x_F)}$	

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject	Title: Mo	echanical Operation Subject code: 17313	Pag	e 6 of 26
		Overall effectiveness is		
		$E = E_A E_B = (DX_D / FX_F) / (B[1-X_B] / F[1-X_F])$	1	
		But $\frac{B}{F} = \frac{xD - xF}{xD - xB}$ and $\frac{D}{F} = \frac{xF - xB}{xD - xB}$	1	
		$E = E_A E_B = \frac{(x_F - x_B)(x_D - x_F)x_D(1 - x_B)}{(x_D - x_B)^2 (1 - x_F)x_F}$		
	2	Attempt any FOUR of the following	16	
	2-a	Sphericity:		
		Sphericity(ϕ_s) is the ratio of surface-volume ratiofor a sphere of diameter Dp to the	2	
		surface-volume ratio for the particle whose nominal size is Dp.		
		(OR)		
		It is the ratio of surface area of sphere of same volume as particle to surface area of		
		particle		
		Formula		
		For spherical particle $\phi_s = 1$		
		And for non-spherical particle $\varphi_s = \frac{6/Dp}{Sp/Vp}$	1	
		whereDp is the normal diameter of the particle,		
		Sp is the surface area of one particle		
		Vp is the volume of one particle.		
		Significance:	1	
		Shape of irregular particles is expressed in terms of sphericity, which is	1	
		independent of particle size.		

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17313 Subject Title: Mechanical Operation Page **7** of **26**

echanical Operation	Subject code:	1/313	Pag		
Comparison of grizzlies and trammels					
	Grizzlies	Trommels	each		
1.Screen	Stationary inclined screen.	Revolving screens.			
arrangement	Screen is a grid of parallel metal	Screen is perforated			
	bar	cylinder.			
2.Openings in	large	small			
screen					
3.Size of feed	Large size feed	Small size feed			
handled					
4.Capacity	large	small			
Trommel:					
Trommels are revolvi	ng screens used for separting partie	cles based on size.			
Four arrangements	of trommel				
a. One size screen to	each trommel.Trommel is arrange	d in such a way that coarsest			
trommelis kept first.	The underflow from the first tramp	mel is the feed to the second			
trommel and so on.					
Fe	coarsest trommel Overflow		1		

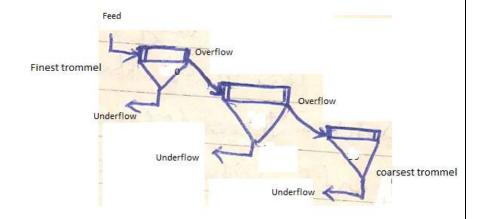
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

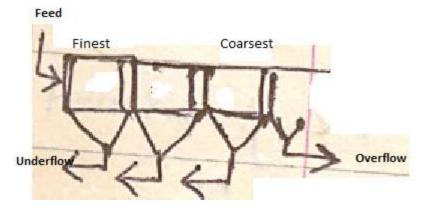
Subject Title: Mechanical Operation

Subject code:


17313

Page **8** of **26**

The overflow from the first trommel is the feed to the next trammel and so on.


1

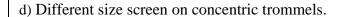
c. Single trommel with different perforations.

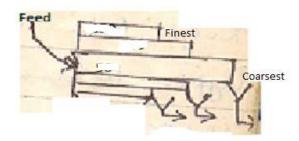
The perforations near the feed end will be the finest.

1

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-18 EXAMINATION Model Answer

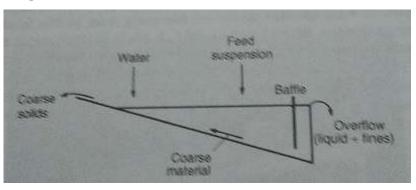

Subject Title: Mechanical Operation

Subject code:

17313

Page **9** of **26**

The innermost one is the longest and has coarsest perforations. The outer ones are successively shorter and have finer perforations.


2-d **Rake classifier:**

4

2

1

Diagram:

2-e Cyclone separator:

Explanation:

It consists of a tapering cylindrical vessel. The cylindrical vessel consists of a top vertical section and lower conical section terminating in an apex opening. It is provided with a tangential feed inlet nozzle in the cylindrical section near the top and an outlet for the gas, centrally on the top. The outlet is provided with a downward extending pipe to prevent the gas short circuiting directly from the inlet to the outlet and for cutting the vortex.

The dust laden gas is introduced tangentially into a cylindrical vessel at a high

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

17313 Subject Title: Mechanical Operation Subject code: Page 10 of 26 velocity (30 m/s). Centrifugal force throws the solid particles out against the wall of the vessel and they drop into a conical section of the cyclone and removed from the bottom opening. The clean gas is taken out through a central outlet at the top. Diagram ▶Gas Dust Cylindrical laden gas section 2 Tangential Conical inlet section Solid dust 2-f **Cake filtration:** In the Case of cake filtration, the proportion of solids in suspension is large and most of the solid particles are collected in the cake which can subsequently be 2 detached from a filter medium. In cake filtration, during the initial period of flow, solid particles are trapped within the pores of a medium forming the true filter medium. The liquid passes through the bed of solids and through the filter medium. In the early stage of filtration, the rate of filtration is high. **Deep bed filtration:** 2 In the case of deep bed filtration, the proportion of solids in suspension is very small and the particles of the solids being smaller than the pores of a filter medium will penetrate to a considerable depth and ultimately get trapped inside the filter medium and usually no layer of solids will appear on the surface of the medium.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 11 of 26

	Subject cour.	
3	Attempt any FOUR of the following	16
3-a	Open circuit grinding:	
	If the feed material is passed only once through the size reduction machine and no	
	attempt is made to return the oversize material to it for further reduction , the	2
	process is known as open circuit grinding	
	Closed Circuit grinding:	
	If the partially ground material from the size reduction equipment is sent to the size	
	separation unit, from where undersize material is withdrawn as product and oversize	2
	material is returned to the machine for regrinding, the process is known as closed	
	circuit grinding.	
3 h	Factors offacting the parformance of screen (any four)	1 mar
3-b	Factors affecting the performance of screen (any four).	1 mark
	1) Method of feeding:	for any
	Particles should approach the screening surface in a direction parallel to the	4 point
	longitudinal axis (perpendicular) of the screen. Particles should be fed at a slow	
	velocity as possible.	
	2) Screen slope:	
	As the slope increases, the rate at which the materials travels over the screening	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation

Subject code:

17313

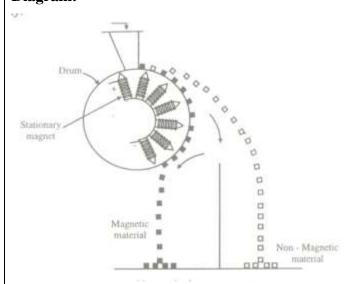
Page 12 of 26

surface increases thereby reducing bed thickness and allowing the fines to come in contact with the screening surface. But if the slope is increased too much, the material will travel down the screen very fast without getting properly screened.

3. Number of Screening Surfaces:

Use of single-deck screens in series results into most efficient operation. In the case of multiple –deck screens, lower decks are not fed, so their entire area is not used & each separation requires a different combination of angle, speed & amplitude of vibration for the best performance.

4. Amplitude &frequency of Vibration:


Proper amplitude of vibration is selected to prevent blinding of screen &for long bearing life.

5) Moisture in feed:

The moisture in feed adversely affects screening operation &should be removed.

3-c **Magnetic Drum Separator**:

Diagram:

2

Construction:

It consists of a rotating drum incorporating a stationary magnet assembly, The

cake.

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)

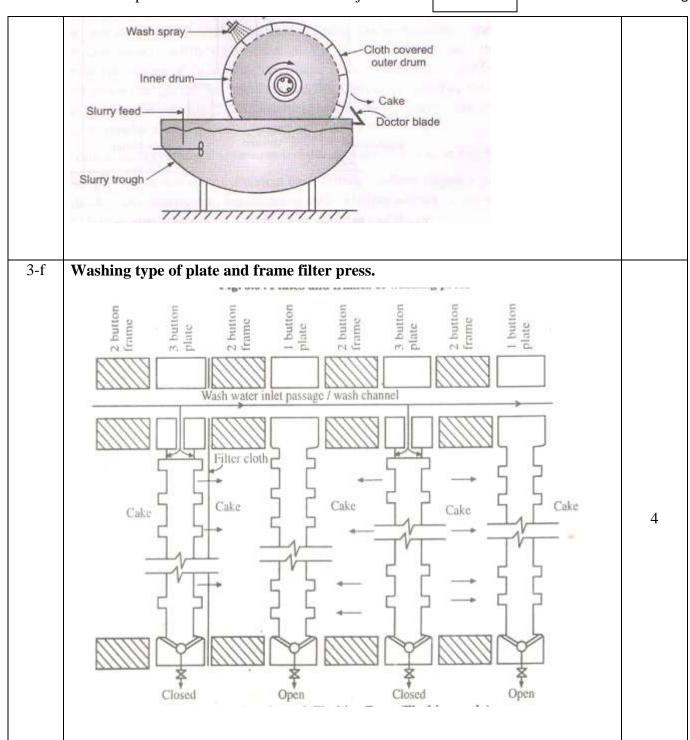
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

17313 Subject Title: Mechanical Operation Subject code: Page 13 of 26 magnet arc covers approximately 165° towards the discharge side of the drum. 2 The feed (mixture of magnetic & non-magnetic materials) is admitted at the top & is allowed to fall on the rotating drum. The non-magnetic material is discharged in a normal manner. The magnetic material adheres to the drum & falls off underside when the drum loses the contact of the magnet assembly. 3-d Classification of filter i)based on Driving force: 1) Gravity filters 2) Vacuum filters 3) Pressure filters 2 4) Centrifugal filters ii) Based on mode of filtration: 1) Batch filters 2 2) Continuous filters 3-е Rotary drum vacuum filter: 4 Working: Filter drum is immersed in slurry, vacuum applied to filter medium causes cake to deposit on outer surface of drum. Cake is washed by spraying wash liquid; wash liquid is collected in a separate tank. Then cake enters into drying zone as drum rotates where cake is partially dried by sucking air through cake of solids. Then vacuum is cut off & cake removed with a doctor's knife. Air is blown for removal of

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation

Subject code:

17313

Page **14** of **26**

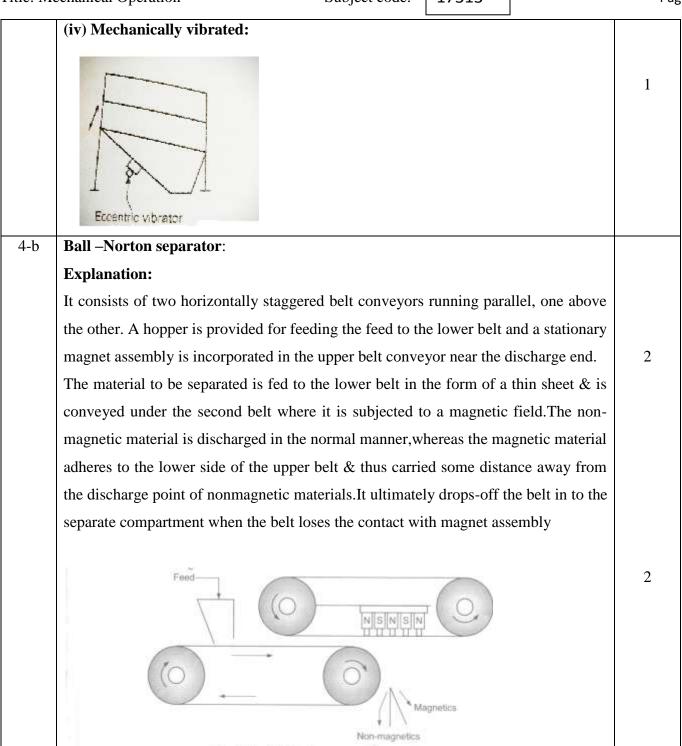
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 15 of 26

itic. iv.	icenamear Operation	Budjeet code.	1/313	ra
4	Attempt any FOUR of the following			16
4-a	Diagram of motion of screen (i)Gyration in horizontal Plane.			1
	(ii) Gyration in vertical Plane.			1
	(iii) Shaking:			1



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 16 of 26

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 17 of 26

4		
4-c	Vacuum filter:	1 mark
	Advantages:	each
	1) Low labour requirement	for any
	2) Filtering surface is accessible for inspection and repair as it is open to	two
	atmosphere.	points
	3) Low maintenance cost	
	Disadvantages:	1 mark
	1) Vacuum system is difficult to maintain	each
	2) Not suitable for filtering hot liquids.	for any
	3) Cannot be employed for materials forming relatively impermeable cakes or	two
	cakes that cannot be easily removed from cloth	points
4-d	Significance of cake resistance:	1
	If the resistance offered by the cake is more, the rate of filtration decreases.	
	It is denoted by $\alpha = \frac{\Delta P_{CA}}{\mu U M_C}$	
	Where ΔP_{CA} is the pressure drop over the cake.	
	A is the area of filter medium.	2
	μ is the viscosity of the filtrate.	2
	M_C is the total mass of solids deposited in the cake.	
	Method of reducing cake resistance: (any one)	1
	Back-flushing of cake deposited on filter medium	1
	2) Use of filter aids (like diatomaceous earth, ,skeletons asbestos fibers)	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 18 of 26

1 Principle Separation of solids from suspension using a porous medium which retains solids & allows liquid to pass. 2 Driving force Pressure difference across filter medium 3) Use of filter medium 4) Concentration of solids in cake filtration of solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation	Sr.No	Basis	Filtration	Sedimentation	eac
from suspension using a porous medium which retains solids & allows liquid to pass. 2 Driving force Pressure difference across filter medium 3) Use of filter medium 4) Concentration of solids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation	51.110	Dasis	Thration	Sedimentation	Cac
a porous medium which retains solids & allows liquid to pass. 2 Driving force Pressure difference across filter medium 3) Use of filter Required Not required medium 4) Concentration Very large quantities of solids solids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation	1	Principle	Separation of solids	Removal of solids by	
which retains solids & allows liquid to pass. 2 Driving force Pressure difference across filter medium 3) Use of filter medium 4) Concentration of solids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation			from suspension using	settling under gravity	
allows liquid to pass. Driving force Pressure difference Gravitational force across filter medium 3) Use of filter Required Not required How Concentration Very large quantities of solids solids in cake filtration solids Droduct Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium Equipment Filter press, rotary Sedimentation			a porous medium		
2 Driving force Pressure difference across filter medium 3) Use of filter medium 4) Concentration Very large quantities of solids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation			which retains solids &		
across filter medium 3) Use of filter medium 4) Concentration Very large quantities of of solids solids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation			allows liquid to pass.		
3) Use of filter medium 4) Concentration Very large quantities of solids volids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation	2	Driving force	Pressure difference	Gravitational force	
medium 4) Concentration Very large quantities of of solids volids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation			across filter medium		
4) Concentration Very large quantities of of solids solids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation	3)	Use of filter	Required	Not required	
of solids solids in cake filtration solids 5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation		medium			
5) Product Wet cake of solids on the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation	4)	Concentration	Very large quantities of	Low concentration of	
the filter medium and clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation		of solids	solids in cake filtration	solids	
clear liquid on the downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation	5)	Product	Wet cake of solids on	Clear liquid at the top and	
downstream side of the filter medium 6) Equipment Filter press, rotary Sedimentation			the filter medium and	thickened sludge at the	
filter medium 6) Equipment Filter press, rotary Sedimentation			clear liquid on the	bottom	
6) Equipment Filter press, rotary Sedimentation			downstream side of the		
			filter medium		
drum filter basins.thickeners	6)	Equipment		Sedimentation	
			drum filter	basins,thickeners	
		_			
Free settling:		•		•	
Free settling is the settling of the particle unaffected by other particle and the	boundar	ry of the conta	niner. Practically free so	ettling conditions exist if	the 2
	concent	ration of the parti	cles in suspension is less th	han 1% wt.by solid.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

17313 Subject Title: Mechanical Operation Subject code: Page 19 of 26 **Hindered settling:** Hindered settling is the settling of particles affected by other particles and by the 2 the container. When the concentration of the solid particles is large(> 1% by wt.), the particles are so close to each other that the surrounding particles will interfere with the motion of other particles. 5 Attempt any TWO of the following **16** 5-a Expression relating size of crushing roll, size of feed ,size of product (Derivation) Consider a feed particle B caught between the rolls as shown in figure Let A and A'be the centre of the 2 rolls. C and C' are the points where the particle is in contact with left hand roll and right hand roll respectively. Let the angle between line AB and AA' be α. Line OD and OE are tangents to the rolls. Neglecting the force of gravity, the two forces acting at the point C are vertical component of tangential force and vertical component of radial force. Vertical component of tangential force = $T \cos \alpha$ Vertical component of radial force = $N \sin \alpha$. The vertical components of forces T and N are opposed. Force Nsina tends to 3 expel the particle from the rolls and force Tcosα tends to draw the particle between the rolls. If the particle is to be drawn between the rolls and crushed,

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

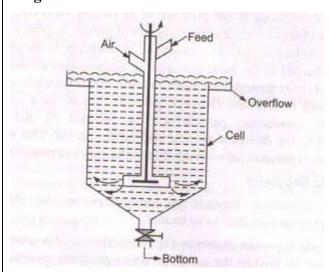
SUMMER-18 EXAMINATION Model Answer

Subject T	itle: Με	echanical Operation Subject code: 17313	Page 20 of 2
		$T\cos\alpha \geq N\sin\alpha$	
		T and N are related through $T = \mu N$	
		$\mu N \cos \alpha \geq N \sin \alpha$	
		$\mu \geq \tan \alpha$	
		Let R be the radius of the feed particle, r the radius of the roll and 2d the distance	
		between the rolls. Then in triangle ABO, the angle BAO is α,AO is r+d and AB is	
		r+R. Then, from the simple geometry of figure	
		$\cos \alpha = \frac{r+d}{r+R}$	2
		Where, α = half of angle of nip	
		Problem:	
		r = 100 / 2 = 50cm	
		2d = 1.4cm $d=0.7 cm$	
		$2\alpha = 32^{\circ} \alpha = 16^{\circ}$	
		R= ?	
		$\cos \alpha = \frac{r+d}{r+R}\cos 16 = \frac{50+0.7}{50+R}$ R = 2.7411cm	2
		Maximum permissible size of feed = 5.482cm	1
	5-b	Froth flotation:	
		Floatation refers to an operation in which one solid is separated from another by	2
		floating one of them at or on the liquid surfaces. Separation of a mixture of solids	
		using froth flotation methods depends on the difference in surface properties of the	
		materials involved.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer


Subject Title: Mechanical Operation

Subject code:

17313

Page 21 of 26

Diagram:

2

Construction:

The mechanically agitated cell consists of a tank having square or circular cross-section. It is provided with an agitator which violently agitates the pulp. The air from a compressor is introduced into the system through a downpipe surrounding the impeller shaft. The bottom of the tank is conical and is provided with a discharge for tailing. An overflow is provided at the top for mineralized froth removal.

2

Working:

Water is taken into the cell; material is fed to the cell. Then promoters and frothers are added. Agitation is given and air is bubbled in the form of fine bubbles. Air-avid particles(hydrophobic) due to reduction in their effective density, will rise to the surface and be held in the froth before they are discharged from the overflow. Hydrophilic particles will sink to the bottom and removed from the discharge for tailing.

2

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation Subject code: 17313 Page 22 of 26

10101 111	2.020	
5-c	Dorr thickener:	
	Diagram:	
	Arm Shaft Shaft Blades Discharge with scrapper	3
	Dorr Thickener consist of a flat bottomed, large diameter shallow depth tank. It is a continuous type thickener. It is provided with slow moving radial rakes driven from	
	a central shaft for removing the sludge. The slurry is fed at the center of tank at a	
	depth of 0.3m to 1m below the surface of the liquid, with a very little disturbance.	5
	The clarified liquid is continuously removed from an overflow which runs around	
	the top edge of the tank and the thickened liquor is continuously withdrawn from the	
	outlet at the bottom. The slowly revolving rakes scrape the sludge toward the centre	
	of the bottom for discharge and remove water from the sludge as it stir only the	
	sludge layer. Thus the solids are continuously moving downwards and then inwards	
	to the sludge outlet whereas the liquid is moving upwards, and then rapidly	
	outwards.	
6	Attempt any FOUR of the following	16
6-a	Factors affecting the rate of filtration:	1 mark
	1) Viscosity of filtrate: Rate of filtration is inversely proportional to viscosity of	each
	filtrate.	for any
	2) Area of filter medium: Rate of filtration is directly proportional to area of filter surface.	4 points

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

17313 Subject Title: Mechanical Operation Subject code: Page 23 of 26 3) Porosity of cake: Porosity of cake increases the rate of filtration. 4) Pressure drop across the filter medium: If pressure drop across the feed inlet & far side of the filter medium is more, filtration rate is more. 5) Resistance of cake: As resistance of cake increases, rate of filtration decreases. 6) Resistance of filter medium: As resistance of cake increases, rate of filtration decreases. 6-b **Swirling and Vortexing:** 2 If low viscosity liquid is stirred in an unbaffled tank by a centrally mounted agitator, there is a tendency for nearly pure rotary flow pattern to be developed and lighter liquid, ie air is usually drawn in to form a vortex and the degree of agitation is very much reduced. This phenomenon which takes place in an unbaffled tank regardless of the type of impeller is known as vortexing. **Prevention of swirling and Vortex Formation:** There are four methods of prevention of swirling and vortex formation 1 mark a) Off-center mounting of the impeller. each b) Use of Baffles for any c) Use of diffuser ring with turbines two d) Angular entry of agitators. points 6-c Mixing: 2 It is the process of taking at least two different materials and causing them to distribute randomly through one another. Mixing is a process in which at least two separate materials which may be present in the same or different phases are taken and forced them to be randomly distributed through one another by some mechanical means. Homogeneous mixture A mixture which is uniform throughout in physical state and chemical composition

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

17313 Subject Title: Mechanical Operation Subject code: Page 24 of 26 is called homogeneous mixture. Example: A liquid mixture of methanol and water. **Heterogeneous mixture:** A mixture which is not uniform throughout in physical state and chemical 1 composition is called heterogeneous mixture. Example: A liquid mixture of benzene and water forms a heterogeneous mixture made up of two immiscible liquid phase. 6-d Sigma Mixer: **Construction:** To gear box and electric motor Sigma blade Gear wheels Trough It consists of a short rectangular trough with saddle shaped bottom. Two counter 2 rotating heavy blades are incorporated in the trough. Blades are so placed and so shaped that the material turned up by one blade is immediately turned under adjacent one. The edges of the blades may be serrated to give a shredding action The blades are driven by a gear mechanism provided at either ends. The trough may be open or closed and may be jacketed for heating or cooling. The machine can be emptied through a bottom valve. **Working:** The material to be kneaded is dropped into the trough. The blades turn towards each other at the top, drawing the mass downward, then shearing it between 2 the wall and blades of the trough. It is mixed for about 5 to 20 minutes or longer. The trough is then unloaded by tilting it.

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

17313 Subject Title: Mechanical Operation Subject code: Page 25 of 26 6-е Muller mixer: **Construction and Working:** Outer plow 2 Cylindrical casing. inner plow It consists of a pan incorporating muller wheels. In some designs, pan is stationary & wheels rotate, while in other designs, pan is rotated & axis of wheels is held stationary. In stationary pan muller mixer, central vertical shaft is driven, causing the muller wheels to roll in a circular path over a layer of solids on pan floor. Plows 2 guide the solids under muller wheels during mixing or to an opening in pan floor for discharge of mixer at the end of cycle. The rubbing action results from the slip of the wheels on the solids. 6-f Data: Da = Impeller diameter = 60 cm = 0.6m $\mu = Viscosity = 10 Cp = 0.10 poise = 0.01 Pa.s$ $\rho = 1.45 \text{ g/cm}^3 = 1.45 \text{X} \ 10^3 \text{ kg/m}^3$ N = Revolution per secondSpeed in rpm ---- = 1.5 r.p.s.60 60

P = 399.6 watts

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject Title: Mechanical Operation	Subject code:	17313	Pa	age 26 of 26
=	N Da ² ρ μ 0.6 ² X 1.45X 10 ³ = 7830	00	2	
	Np = Power number = 1.05 for N _{Re} > 300 P = NpDa ⁵ N ³ ρ P = 1.05 x 0.6^5 x 1.5^3 x 1.45 X 10^3		2	