

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION Model Answer

Subject code:

17313

Page **1** of **25**

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.

3) The language errors such as grammatical, spelling errors should not be given more

Importance (Not applicable for subject English and Communication Skills.

4) While assessing figures, examiner may give credit for principal components indicated in the

figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.

5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.

6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.

7) For programming language papers, credit may be given to any other program based on equivalent concept.

SUMMER-17 EXAMINATION Model Answer

Subje	ct code:

17313

Page **2** of **25**

Q No.	Answer	Marks
1	Attempt any SIX of the following	12
1A-a	Rittinger's law	1
	It states that the work required in crushing is proportional to the new surface created.	
	$\frac{P}{\dot{m}} = K_r \left(\frac{1}{\bar{D}_{sb}} - \frac{1}{\bar{D}_{sa}}\right)$	1
	where P is the power required	1
	\dot{m} is mass flow rate	
	K _r is Rittinger's constant	
	\overline{D}_{sa} = Volume surface mean diameter of feed	
	\overline{D}_{sb} = Volume surface mean diameter of product	
1A-b	Crushing efficiency:	2
	It is the ratio of surface energy created by crushing to the energy absorbed by the	
	solid.	
1A-c	Graphical representation of ideal and actual screen.	
	Ideal screen	
	1.0	
	$Q = -\frac{1}{1}$ $Q = -\frac{1}{1}$ $D_{pc} = B$	1
	$O \longrightarrow D_p$	

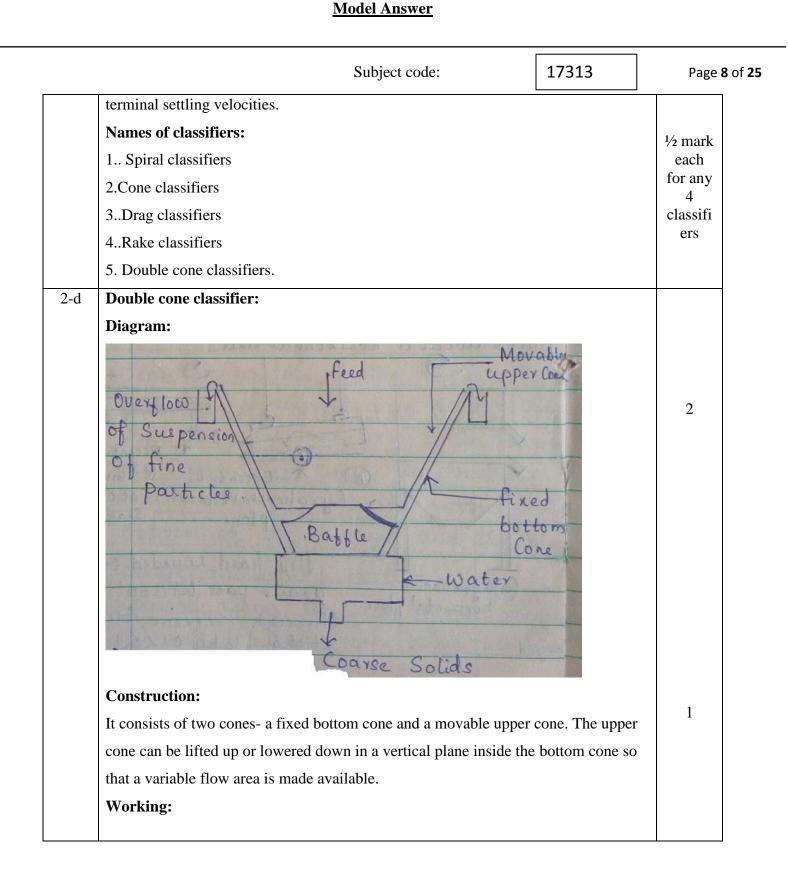
SUMMER-17 EXAMINATION Model Answer

1A-dImportant1A-dScreening ii.ii.iii.iii.iv.iv.1A-eAxial flowImpellers vas axial flowRradial fldirection of1A-fSeparation	Subject code:17313	Page 3 of 2		
1A-dImportant1A-dScreening ii.ii.iii.iii.iii.iv.1A-eAxial flowImpellers vas axial flowImpellers vas axial flowIA-fSeparation	reen	1		
Screening ii.ii.ii.iii.iv.1A-eAxial flowImpellers vas axial floRradial fldirection or1A-fSeparation	cut diameter and Φ is the cumulative weight fraction.	1 mark		
 i. ii. iii. iv. 1A-e Axial flow Impellers v as axial flo Rradial fl direction or 1A-f 		each		
 ii. iii. iv. 1A-e Axial flow Impellers v as axial flo Rradial fl direction or 1A-f 	Screening is carried out in industry toi. Remove fines from the feed material before sending it for size reduction.			
iii.iv.1A-eAxial flowImpellers vas axial floRradial fldirection or1A-fSeparation				
iv. Arial flow Impellers v as axial flo Rradial fl direction of Arian of Arian of	Produce a commercial grade material to meet particle size specification.	2 points		
1A-eAxial flow1A-eImpellers vas axial flowas axial flowRradial fldirection or1A-fSeparation	Remove fines from a finished product prior to shipping			
Impellers vas axial floRradial fldirection or1A-fSeparation				
as axial floRradial fldirection or1A-fSeparation	which generate current parallel to the axis of the impeller shaft are known	n 1		
Rradial fldirection or1A-fSeparation				
direction or1A-fSeparation	low impellers: Impellers which generate current in tangential or radia	1		
1A-f Separation	of the axis of the impeller is known as radial flow impellers	1		
-	Separation of solids based on			
1)Spec	cific gravity - Jigging	1		
2) Surf	face properties of materials – Froth floatation	1		
	nts used for magnetic separation(any two)			

	Subject code: 17313	Page 4 of 25
	Magnetic head pulley, magnetic drum separator, Ball Norton machine (usually it is	1 mark each
	used as concentrator)	caen
1A-h	Swirling and Vortexing:	2
	If low viscosity liquid is stirred in an unbaffled tank by centrally mounted agitator,	
	there is a tendency for nearly pure rotary flow pattern to be developed and lighter	
	liquid, ie air is usually drawn in to form a vortex and the degree of agitation is very	
	much reduced. This phenomenon which takes place in an unbaffled tank regardless	
	of the type of impeller is known as vortexing.	
1 B	Attempt any TWO of the following	8
1B-a	Jaw crusher:	
	Construction:	
	(1) Fixed jaw, (2) Movable jaw, (3) Shaft, (4) Fly wheel, (5) Eccentric, (6) Pitman, (7) Toggle, (8) Tie rod, (9) Spring It has a fixed jaw and a movable jaw which is pivoted at the top. The jaws are set to	2
	form a V open at the top. The movable jaw which reciprocates in a horizontal plane	
	usually makes an angle of 20 to 30 $^{\circ}$ with fixed jaw. The jaws are usually made of	
	manganese steel. The faces of the jaw are usually corrugated for concentrating the	
	pressure on relatively small areas. It also consists of pitman, toggles, flywheel eccentric shaft. Eccentric causes the pitman to oscillate in a vertical direction &	

		S	Subject code:	17313	Page 5 of 2
	this mov	rement is communicated horizon	ntally to movable jaw by the	e toggles.	
	Toggles	act as fuse to the machine.			
	Workin	g:			
	The material to be crushed is admitted between two jaws from the top. The material caught between the upper parts of the jaws is crushed to a smaller size during				ıl 2
	forward	motion by compression. The cr	ushed material then drops in	nto narrower	
	space be	low during the backward motio	n.		
1B-b	Differen	ce between crushing and grin	iding:		1 mark
	Sr.No	Crushing	Grinding		each
					for any
	1	Size reduction by	Size reduction by impact	& attrition	4 points
		compression			
	2	Equipment operated in open-	Equipment always operate	ed in	
		circuit	closed-circuit		
	3	Used for breaking of large	Used for reducing crushed	l feed to	
		pieces of solids into small	powder		
		lumps			
	4	Reduction ratio usually 6 to	Reduction ratio as high as	100 is	
		8.	possible		
	5	Crushers are heavy duty,	Grinders are light duty, hi	gh speed	
		low speed machines.	machines.		
	6	Feed size :1500 to 40 mm	Feed size :5 to 2 mm		
		Product size: 50 to 5mm.	Product size: 0.1mm.		
	7	Operation is performed on	Operation can be perform	ed on dry	
		dry feed.	as well as wet feed.		
	8	Energy consumption per	Energy consumption per	unit mass	

		S	ubject code:	17313		Page 6	6 of 25
		unit mass of product is low	of product is high due to f	ine particle			
		due to coarse particle	production				
		production					
1B-c	Derivati	on for Effectiveness of a scree	en:				
	Let feed	consists of material A & B, wh	ere A is the oversize & B is	s the undersize	e		
	material.					1	
	Let F, L	D, and <i>B</i> be the mass flow rates	of feed, overflow, and unde	erflow,			
	respectiv	vely, and x_F , x_D , and x_B be the m	ass fractions of material A	in the streams	5.		
	Screen e	effectiveness based on the over	rsize material A (E _A) is the	e ratio of over	size		
	material	A that is actually in the overflo	w to the amount of A in the	e feed. Thus		1	
	$E_A = \frac{Dx_D}{Fx_F}$						
	Screen e	effectiveness E_B based on the	undersize material is the r	atio of unders	size		
	material	B that is actually in the under f	low to the amount of B in t	the feed		1	
	$E_B = \frac{B}{F}$	$\frac{(1-x_B)}{(1-x_F)}$					
	Overall	effectiveness is					
	$E = E_A E$	$E_{B} = (DX_{D} / FX_{F}) / (B[1 - X_{B}])$	/ F[1- X _F])				
	But $\frac{B}{F} =$	$\frac{xD-xF}{xD-xB}$ and $\frac{D}{F} = \frac{xF-xB}{xD-xB}$				1	
	$E = E_A$	$E_{B} = \frac{(x_{F} - x_{B})(x_{D} - x_{F})x_{D}(1 - x_{F})}{(x_{D} - x_{B})^{2}(1 - x_{F})x_{B}}$	$\frac{-x_B}{r}$				
2	Attempt	any FOUR of the following				16	
2-a	D _{pa} =	= 50mm					
	$D_{pb} = 5n$	nm					
	P = 80K	W					
	$W_i = 6.7$	3KwH/Ton					


	Subject code: 17313	Page 7 of 25
	$\frac{P}{m} = 0.3162 \text{ W}_{i} \left(\frac{1}{\sqrt{D_{pb}}} - \frac{1}{\sqrt{D_{pa}}}\right) = 0.3162 \times 6.73 \left(\frac{1}{\sqrt{5}} - \frac{1}{\sqrt{50}}\right)$	2
	$\frac{80}{m} = 0.6507$ $\dot{m} = 122.94 \text{ tons/hr}$	2
2-b	Trommel: Diagram: Large size openings Small size openings Feed Feed OOOOOOOOOOOOOOOOOOOOOOOOOOOOO	2
	Construction: It consists of cylindrical frame surrounded by wire cloth or perforated plate. It is open at one or both ends and inclined at a slight angle to horizontal so that the material is advanced by the rotation of the cylinder	1
	Working : The material to be screened is fed at the upper end and gradually moves down the screening surface towards the lower end. The material passes over the apertures of	1
	gradually increasing size. For example, if single cylinder is provided with screen having three different size perforations, we get four fractions. The finest material is collected as underflow in compartment near to feed end and the coarsest is collected from discharge end.	1
2-c	Classification:It is the separation of solid particles (from slurry) into several fractions based on	2

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-17 EXAMINATION

Subject code: 17313	Page 9 of 25
The feed material –slurry of suspended solids is fed to the upper cone. It moves downward and flows out of a baffle placed at the bottom of the movable cone. The slurry then moves up through the annular space. The fluid and the solids from the inner cone are mixed and then move up through the annular space with decreasing cross sectional area upwards. Classification occurs in the annular space – the larger particles settles to the bottom while the fine particles flow away with the overflow.	1
2-e Cyclone separator:	<u> </u>
Construction:	
Iaden gas Tangential inlet Solid dust	
It consists of a tapering cylindrical vessel. The cylindrical vessel consists of a top vertical section and lower conical section terminating in an apex opening. It is provided with a tangential feed inlet nozzle in the cylindrical section near the top and an outlet for the gas, centrally on the top. The outlet is provided with a downword extending give to prevent the gas about simulting directly from the inlet	2
downward extending pipe to prevent the gas short circuiting directly from the inlet to the outlet and for cutting the vortex.	
Working	
The dust laden gas is introduced tangentially into a cylindrical vessel at a high velocity (30 m/s). Centrifugal force throws the solid particles out against the wall of	2

S	Subject code:	17313	Page 10 of 2
the vessel and they drop into a conical s	section of the cyclone and re	emoved from the	e
bottom opening. The clean gas is taken			
f Difference between constant rate filtration and constant pressure filtration			
Constant rate filtration	Constant pressure filt	ration	
1.Rate of filtration is maintained	1. Rate of filtration varies		
2. pressure drop is varying	-		
3.Starts with low inlet pressure and continuously increasing the pressure to overcome the resistance of the cake			
4. The first particles filtered will not be compacted into a tight mass.	compacted into a tight m	ass due to	
Attempt any FOUR of the following			16
Hammer mill Diagram			
	the vessel and they drop into a conical sobottom opening. The clean gas is taken Difference between constant rate filtre Constant rate filtration I.Rate of filtration is maintained constant 2. pressure drop is varying 3.Starts with low inlet pressure and continuously increasing the pressure to overcome the resistance of the cake 4. The first particles filtered will not be compacted into a tight mass. Attempt any FOUR of the following Hammer mill	bottom opening. The clean gas is taken out through a central outlet Difference between constant rate filtration and constant pressu Constant rate filtration Constant pressure filt 1.Rate of filtration is maintained constant 1. Rate of filtration varies 2. pressure drop is varying 2. Pressure drop is constant 3.Starts with low inlet pressure and continuously increasing the pressure to overcome the resistance of the cake 3. High inlet pressure which is maintained through the compacted into a tight mass. 4. The first particles filtered will not be compacted into a tight mass. 4. The first particles filtered will not the high initial pressure appreciation of the high initial pressure appreciation of the high initial pressure appreciation. Attempt any FOUR of the following Hammer mill	the vessel and they drop into a conical section of the cyclone and removed from the bottom opening. The clean gas is taken out through a central outlet at the top. Difference between constant rate filtration and constant pressure filtration Constant rate filtration Constant pressure filtration 1.Rate of filtration is maintained constant 1. Rate of filtration varies 2. pressure drop is varying 2. Pressure drop is constant 3.Starts with low inlet pressure and continuously increasing the pressure is applied which is maintained throughout. 3. High inlet pressure is applied which is maintained throughout. 4. The first particles filtered will not be compacted into a tight mass. 4. The first particles filtered will be compacted into a tight mass. Attempt any FOUR of the following Hammer mill

SUMMER-17 EXAMINATION Model Answer

	Subject code: 17313	Page 11 o
	Feed 'Casing Rotor Hammer Screen Discharge	2
	Construction It contains a high speed rotor rotating inside a cylindrical casing. A set of hammers are pinned to the rotor disk. The shaft is horizontal. Screen or	
	provided at the bottom for the discharge of the product.WorkingFeed is dropped into the top of the casing. Particle of feed is being struck by	1 the set
	of swing hammers. The feed after being struck by the hammer fly against a stationary anvil plate inside the casing and break into still smaller fragments.	
	are again rubbed into powder by the hammers and pushed through the grate of screen which covers the discharge opening.	or 1
3-b	Factors affecting the performance of screen.	1 mark
	1) Method of feeding:	each
	Particles should approach the screening surface in a direction parallel to the	for any
	longitudinal axis (perpendicular) of the screen. Particles should be fed at as	4 points
	low velocity as possible.	

	Subject code: 17	313	Page 12 of 25
	2) Screen slope:		
	As the slope increases, the rate at which the materials travels over the		
	screening surface increases thereby reducing bed thickness and allowing	; the	
	fines to come in contact with the screening surface. But if the slope is		
	increased too much, the material will travel down the screen very fast w	ithout	
	getting properly screened.		
	3. Number of Screening Surfaces:		
	Use of single-deck screens in series results into most efficient operation.	. In the cas	se
	of multiple –deck screens, lower decks are not fed ,so their entire area is	not used &	&
	each separation requires a different combination of angle ,speed & ampl	itude of	
	vibration for the best performance.		
	4. Amplitude & frequency of Vibration:		
	Proper amplitude of vibration is selected to prevent binding of screen &	for long	
	bearing life.		
	5) Moisture in feed: the moisture in feed adversely affects screening operation		
	&should be removed.		
3-с	Electrostatic separator		
	Diagram		
	Grounded rotor		2
	Working:		

	Subject code:	17313	Page 13 of 2	5
	The solids to be separated are fed on a rotating drum either charged			
	from a hopper. Conductive particles assume potential of drum, oppo	osite to that of	2	
	active electrode, hence get attracted towards active electrode. Non-c	conductive		
	particles get repelled by electrode, attracted by drum and then fall st	traight in the		
	collecting bin due to gravity.			
3-d	Cake filtration:			
	In the Case of cake filtration, the proportion of solids in suspension	is large and		
	most of the solid particles are collected in the cake which can subset	quently be		
	detached from a filter medium. In cake filtration, during the initial p	period of flow,		
	solid particles are trapped within the pores of a medium forming the	e true filter	2	
	medium. The liquid passes through the bed of solids and through the	e filter medium		
	In the early stage of filtration, the rate of filtration is high.			
	Deep Bed Filtration:			
	In the case of deep bed filtration, the portion of solids in suspension	is very small		
	and the particles of the solids being smaller than the pores of a filter	medium will	2	
	penetrate a considerable depth and ultimately get trapped inside the filter medium			
	and usually no layer of solids will appear on the surface of the medium.			
3-е	Working of basket centrifuge			

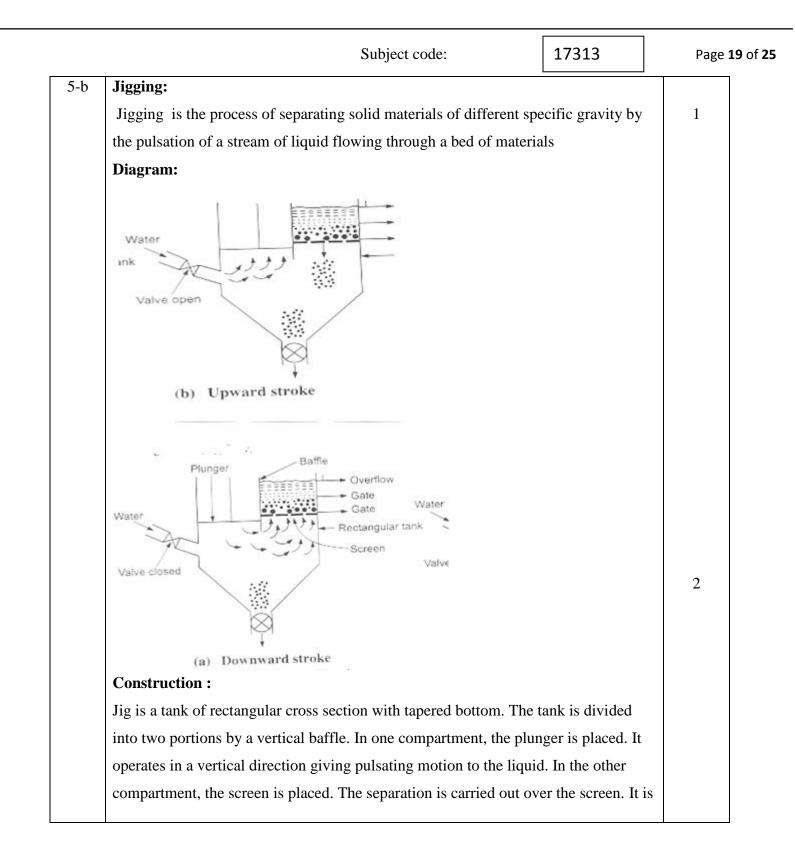
	Subject code:	17313	Page 14 of 25
	Adjustable Adjustable Motor shaft Feed slurry Perforated basket perforated basket Solid cake Removable valve plate Solid discharge Slurry fed to rotating basket is forced against basket sides by centr liquid passes through the filter medium into the casing and out thr pipe, while the solids form a filter cake on the filter medium. Ca spraying wash liquid to remove soluble material. Wash liquid leav through discharge pipe. After washing, cake is spun at higher s water. The motor is turned off and at low basket speed; the cake is r help of an unloader knife.	rough a discharg ake is washed b yes the centrifug speed to remov	ge yy ge re
3-f	Rotary drum vacuum filter: Construction: It consists of a cylindrical sheet metal drum mounted horizontally. Ordrum is made up of a perforated plate. Filter medium (canvas cloth) which turns at 0.1 to 2 rpm in an agitated slurry trough. Inside the order smaller drum with a solid surface. Annular space between two drum compartments by radial partitions. As the drum rotates, vacuum & a applied to each compartment.	covers the drur uter drum is a ns is divided into	n 2

SUMMER-17 EXAMINATION Model Answer

-

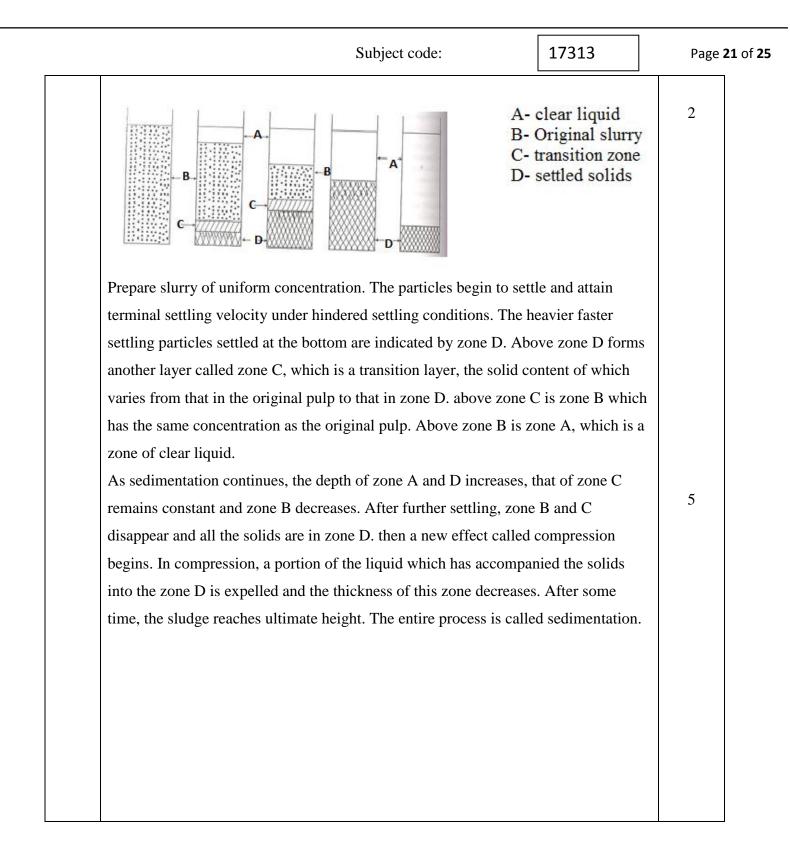
	Subj	ect code:	17313	Page 15 of 2
	Wash spray Inner drum Sturry feed Sturry trough Sturry trough Working: Filter drum is immersed in slurry, vacuum a deposit on outer surface of drum. Cake is w liquid is collected in a separate tank. Then c rotates where cake is partially dried by suck vacuum is cut off & cake removed with a de cake.	ashed by spraying wash cake enters into drying z cing air through cake of	n liquid; wash zone as drum solids. Then	2
4	Attempt any FOUR of the following			16
4-a	Grizzly screen			
	Diagram Feed Versize Oversize			2
	A grizzly is a grid of parallel metal bars se	et in an inclined station	nary frame, with	a

	Subject code: 17313	Page 1	.6 of 25
	slope of 30 to 45° . The slope & path of the material is parallel to the length of the		
	bars. The length of bar is up to 3 m & spacing between the bars is 50 to 200mm. The	2	
	material of construction of the bars is manganese steel to reduce wear. Usually the		
	bar is shaped in such a way that its top is wider than the bottom, & hence the bars		
	can be made fairly deep for strength without being choked by material passing		
	through them.		
4-b	Working of Ball –Norton Machine:		
	It is used for separating magnetic ores from the associated mineral matter.		
	The material to be separated is fed to the lower belt in the form of a thin sheet & is		
	conveyed under the second belt where it is subjected to a magnetic field. The non-		
	magnetic material is discharged in the normal manner, whereas the magnetic		
	material adheres to the lower side of the upper belt & thus carried some distance		
	away from the discharge point of nonmagnetic materials. It ultimately drops-off the		
	belt in to the separate compartment when the belt loses the contact with magnet		
	assembly.		
	Feed		
	Non-magnetics		
4-c	Effect of the following factors on the rate of filtration:	1 mark	
	1) Viscosity of filtrate : Rate of filtration is inversely proportional to viscosity of	each	
	filtrate.		
l	2) Area of filter: Rate of filtration is directly proportional to area of filter surface.		



	Subject code:	17313	Page 17 of 25
	3) Porosity of cake : Porosity of cake increases the rate of filtration.		
	4) Pressure drop across the filter medium: If pressure drop across	&	
	far side of the filter medium is more, filtration rate is more.		
4-d	Meaning of 1-2-3-2-1-2-3 in filtration equipment	4	
	For quick identification & proper assembling, it is common practice	to cast buttons	
	on sides of plates & frames.		
	No. of buttons on non-washing plate : 1		
	No. of buttons on frame : 2		
	No. of buttons on washing plate : 3		
	The press is assembled in the following order- non-washing plate, fr	ame & then	
	washing plate .ie 1-2-3-2-1-2-2-3-2-1.		
4-е	Concept of Terminal Settling Velocity: For settling particles that are considered individually there are two main forces		
	acting upon any particle. The primary force is an applied force, such	as gravity, and	1
	a drag force (resisting force) that is due to the motion of the particle through the		
	fluid. The applied force is usually not affected by the particle's velocity, whereas the		e
	drag force is a function of the particle velocity. For a particle at rest	no drag force	4
	will be exhibited, which causes the particle to accelerate due to the a	applied force.	
	When the particle accelerates, the drag force acts in the direction opp	posite to the	
	particle's motion, retarding further acceleration. In the absence of oth	her forces drag	
	directly opposes the applied force. As the particle increases in veloci	ity eventually	
	the drag force and the applied force will equal approximately, causir	ng no further	
	change in the particle's velocity.		
	In sedimentation, as the particle falls, its velocity increases and will	continue to	
	increase until the resisting force and the accelerating force (force of	gravity) are	
	equal. When this point is reached, the particle will settle t a definite	constant	
	velocity during remainder of the fall. This velocity is termed as term	inal settling	

	Subject code: 17313	Page 18 of
	velocity.	
1-f	Free Settling:	
	It is the settling wherein the fall of the particle in a gravitational field through a	2
	stationary fluid is not affected by walls of the container & other particles. (the	
	particles are at sufficient distance from wall & other particles).	
	Hindered Settling :	
	If the fall of individual particle through stationary fluid is affected by other particles	2
	& wall of container, the process is called as hindered settling.	
5	Attempt any TWO of the following	16
5-a	Data:	
	Diameter of ball mill = $800 \text{ mm} = 0.8 \text{ m}$	
	Diameter of ball $= 60 \text{ mm} = 0.06 \text{ m}$	
	Crirical speed of ball mill (Nc)	
	$\mathbf{Nc} = \frac{1}{\sqrt{\frac{g}{1-\frac{1}{2}}}}$	2
	Nc =	
	$g = 9.81 \text{ m/s}^2$	
	$ \begin{array}{rcl} R &=& 0.8/2 &=& 0.40 \text{ m} \\ r &=& 0.06/2 &=& 0.03 \text{ m} \end{array} $	
	$1 \qquad 9.81$ $Nc = $	2
	2π 0.40 - 0.03	
	Nc = 0.82 r.p.s.	
	(a) Operating speed is 55 % less than the critical speed.	
	55% of the critical speed = $0.55 \times 0.82 = 0.45$ r.p.s.	2
	Operating speed = $0.82 - 0.45 = 0.37$ r.p.s.	
	(b) Critical speed is 40 % more than the operating speed.	
	Critical speed = 1.40 X (Operating Speed)	2
	Operating speed $= 0.82 / 1.40 = 0.586$ r.p.s.	



Subject code:	17313	Page 20 of 25
provided with bottom discharge connection, gates at the sides and a	n overflow.	<u>.</u>
Working		
The material to be separated is fed over the screen in dry form or in	is	
then subjected to pulsating action by liquid which is set in oscillatio	2	
plunger that reciprocates in a vertical direction. During the downward stroke of the		
plunger, the particles of the screen are brought into suspension. During this stroke,		
the water passes upward and the bed opens up. During the upward s	troke, the input	t
of water to the jig is adjusted in such a way that there is no flow three	ough the bed of	
solids. During this stroke, the differential settling takes place. The d	enser material	
collects near the screen surface, above which is a layer of large parti	icle of light	
material together with small particle of heavy material and the top la	ayer is small	
particles of light material. The material constituting each of first two	o layers retained	d 2
on the screen is removed through gates provided at the sides of the j	ig. The layer	
consisting of small particles of light material is carried away by the	liquid and	
withdrawn from the overflow gate at the top. The small particles of	heavy material	
which passes through the screen are removed from the bottom of the	e tank.	
Industrial Application(any one)		
1) It is used to treat iron ores.		1
2)It is used treat lead -zinc ores & some non-metalic ores like barite	e and diamonds	
3) It is used for coal concentration.		
Batch sedimentation:		
_	provided with bottom discharge connection, gates at the sides and at Working The material to be separated is fed over the screen in dry form or in then subjected to pulsating action by liquid which is set in oscillation plunger that reciprocates in a vertical direction. During the downwa plunger, the particles of the screen are brought into suspension. Dur the water passes upward and the bed opens up. During the upward s of water to the jig is adjusted in such a way that there is no flow three solids. During this stroke, the differential settling takes place. The d collects near the screen surface, above which is a layer of large part: material together with small particle of heavy material and the top la particles of light material. The material constituting each of first two on the screen is removed through gates provided at the sides of the j consisting of small particles of light material is carried away by the withdrawn from the overflow gate at the top. The small particles of which passes through the screen are removed from the bottom of the Industrial Application(any one) 1) It is used to treat iron ores. 2) It is used for coal concentration.	provided with bottom discharge connection, gates at the sides and an overflow. Working The material to be separated is fed over the screen in dry form or in suspension. It is then subjected to pulsating action by liquid which is set in oscillation by means of plunger that reciprocates in a vertical direction. During the downward stroke of the plunger, the particles of the screen are brought into suspension. During this stroke, the water passes upward and the bed opens up. During the upward stroke, the input of water to the jig is adjusted in such a way that there is no flow through the bed of solids. During this stroke, the differential settling takes place. The denser material collects near the screen surface, above which is a layer of large particle of light material together with small particle of heavy material and the top layer is small particles of light material. The material constituting each of first two layers retained on the screen is removed through gates provided at the sides of the jig. The layer consisting of small particles of light material is carried away by the liquid and withdrawn from the overflow gate at the top. The small particles of heavy material which passes through the screen are removed from the bottom of the tank. Industrial Application(any one) 1) It is used to treat iron ores. 2)It is used to treat iron ores. 2)It is used for coal concentration.

	Subject code:	17313	Page 22 of 2	25
	Clear liquid interface height		1	
6	Attempt any FOUR of the following		16	
6-a	 Filter aid: A filter aid is a granular or fibrous material which packs very high voidage. They are capable of increasing the porosity of th overcoming the problem of slow rate of filtration. Methods of using Filter Aid: Adding a filter aid to the slurry before filtration 			
	2) Precoating i.e. by depositing a layer of filter aid on the fil before filtration	ter medium	2	
6-b	Sketch of flow patterns generated in Agitated vessel:			
	1) Axial Flow impellers:		2	
	3) Radial Flow pattern:			

SUMMER-17 EXAMINATION

Model Answer

	Subject code:	17313	Page 23 of 2
	Baffles		2
6-c	Prevention of Vortex Formation:		1 mark
	There are four methods of prevention of swirling and vortex for	mation	each
	a) Off-center mounting of the impeller.		
	b) Use of Baffles		
	c) Use of diffuser ring with turbines		
	d) Angular entry of agitators.		
6-d	Sigma Mixer:		
	Construction:		
	Gear wheels Trough Sigma blade		
	It consists of a short rectangular trough with saddle shaped bottom.	Two counter	

	Subject code: 17313	Page 2	24 of 25
	rotating heavy blades are incorporated in the trough. Blades are so placed and so	2	
	shaped that the material turned up by one blade is immediately turned under adjacent one. The edges of the blades may be serrated to give a shredding action The		
	blades are driven by through a gear mechanism provided at either ends. The trough		
	may be open or closed and may be jacketed for heating or cooling. The machine can		
	be emptied through a bottom valve.		
	Working:		
	The material to be kneaded is dropped into the trough. The blades turn towards each		
	other at the top, drawing the mass downward, then shearing it between the wall and	2	
	blades of the trough. It is mixed for about 5 to 20 minutes or longer. The trough is		
	then unloaded by tilting it.		
б-е	Mixer used for dispersion of rubber in liquid		
	Banbury mixer	1	
	Construction:		
	Feed Feed Discharge through sliding door		
	It has two blades, each rotating in a cylinder. These cylinders partly intersect with each other. The blades are peer shaped, but the projection is spiral along the axis and	3	

	Subject code:	17313	Page 25	of 25
	the two spirals interlock. The clearance between the blades and the walls is			
	extremely small. Cooling water is circulated through the hollow agitator shafts			
	during operation to remove the heat generated.			
6-f	Industrial application of Banbury Mixer		1 mark	
	Used for		each	
	1) Compounding rubber		for any	
	2) Mixing plastic solids		4	
	3) Devulcanize rubber scrap			
	4) Dispersion of rubber in liquid solutions			
	5) It is also used for reinforcing fillers in a resin system.			
	6) Mixing of asphalt			