

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page 1 of 29

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page 2 of 29

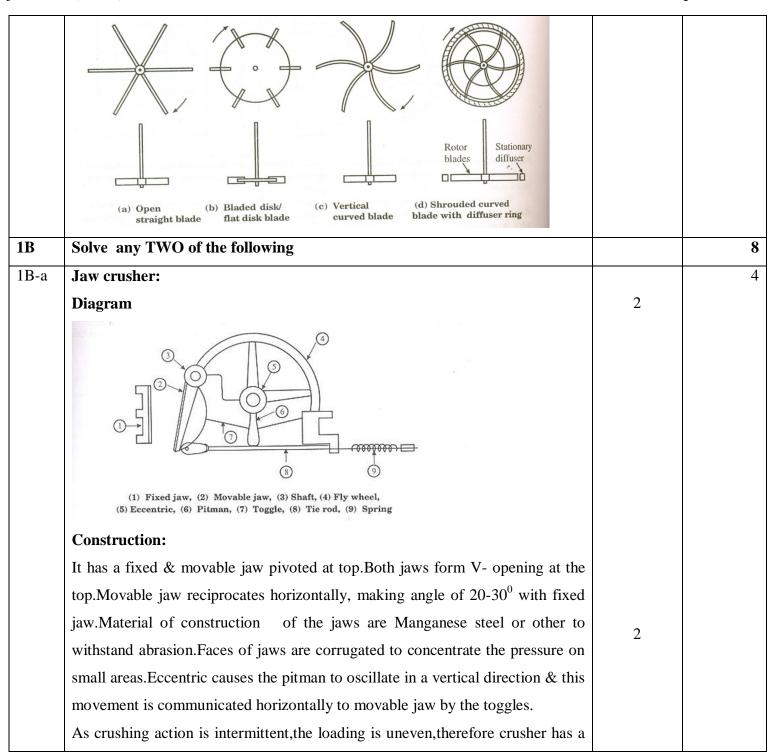
Q No.	Answer	marks	Total
			marks
1A	Solve any SIX of the following		12
1A-a	Kick's law:	2	2
	Kick's law states that the work required for crushing a given mass of material is		
	the log of ratio of initial particle size to final particle size.		
	$\frac{P}{\dot{m}} = K_k \ln \frac{\overline{D}_{Sa}}{\overline{D}_{Sb}}$		
1A-b	Work index	1	
	Work index is defined as the gross energy requirement in KWH/ ton of feed		
	needed to reducevery large feed to such a size that 80% of the product passes a		
	100μm screen		
	Mathematical expression	1	
	$\frac{P}{m} = 0.3162 \text{ W}_{i} \left(\frac{1}{\sqrt{\overline{D}_{pb}}} - \frac{1}{\sqrt{\overline{D}_{pa}}} \right)$		
	Where P is the power required in KW		
	<i>m</i> is the mass flow rate in tons/ hr		
	W _i is the work index		
	\overline{D}_{pb} and \overline{D}_{pa} are the diameter of the product and feed		
	Respectively in mm		
1A-c	Mesh: It is the number of openings per linear inch counting from the center of	1	2
	any wire to a point exactly one inch distant.		
	Screen aperture: Minimum clear space between edges of openings in the	1	
	screening surface is termed as screen aperture.		
1A-d	Classification of screens on the basis of performance:	2	2

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page 3 of 29

	On the basis of performance, screens are classified in to ideal screens and actual		
	screens.		
1A-e	Importance of mixing in process industries.	1 mark	2
	1. To promote a chemical reaction .	each for	
	2. To produce simple physical mixtures	any two	
	3. To carry out physical change		
	4. To accomplish dispersion to produce two or more immiscible fluids or		
	disperse one or more fluids with finely divided solids.		
1A-f	Classification:	2	2
	It is the separation of solid particles (from a slurry) into several fractions based		
	on terminal settling velocities.		
1A-g	Diagram of magnetic head pulley.	2	2
	Feed Magnetic pulley [head pulley] Non-magnetic particles Splitter		
1A-h	Sketches of turbine impellers: (Any two)	1 mark	2
		each	



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **4** of **29**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **5** of **29**

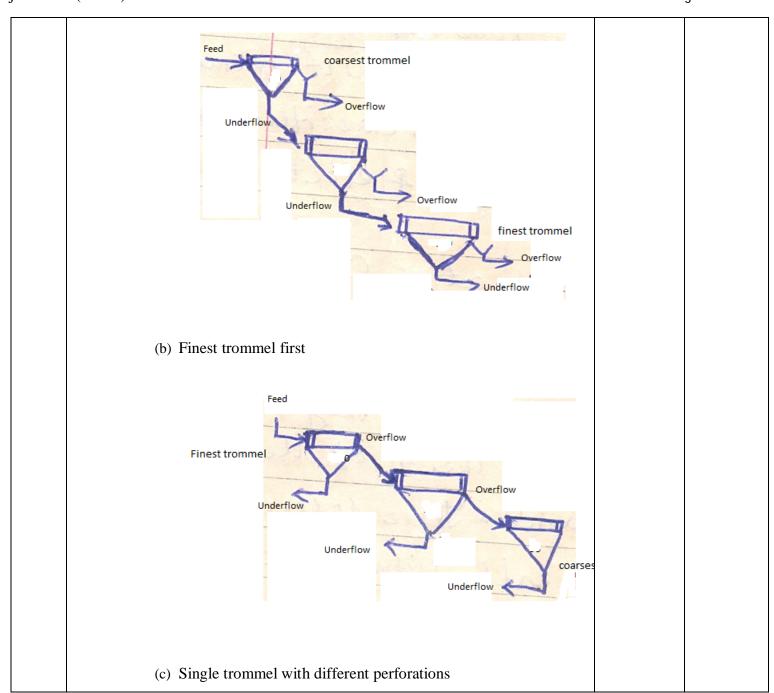
		1	
	heavy flywheel. One of the toggles is made weakest, by making it into two		
	pieces, held together by bolts. If any hard material enters, the bolts shear		
	through & allow the movable jaw to drop back far enough to discharge the		
	obstacle.		
1B-b	Diameter of ball mill = 1000 mm = 1 m		4
	Diameter of ball $= 80 \text{ mm} = 0.080 \text{ m}$		
	Crirical speed of ball mill (Nc)		
	1 g		
	Nc =	1	
	$g = 9.81 \text{ m/s}^2$		
	R = 1/2 m = 0.5 m		
	r = 0.080 / 2 = 0.040 m		
	$Nc = \sqrt{\frac{9.81}{2}}$	2	
	Nc = V		
	Nc = 0.7353 r.p.s.= 0.7353 x $60 = 44.12$ r.p.m.		
	Assume operating speed is 50% of critical speed.		
	Operating speed = $44.12 \times 0.5 = 23.33 \text{ rpm}$	1	
	(Operating speed can be 50 -75% of critical speed. So due consideration		
	should be given for proper assumption)		
1B-c	Factors affecting performance of screen.	1 mark	4
	1)Method of feeding	each for	
	Particles should approach the screening surface in a direction parallel to the	any 4	
	longitudinal axis (perpendicular) of the screen. Particles should be fed at as low	points	
	velocity as possible.	_	
	2)Screen slope		
	As the slope increases, the rate at which the materials travels over the screening		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page 6 of 29

,			5
	surface increases thereby reducing bed thickness and allowing the fines to come		
	in contact with the screening surface. But if the slope is increased too much, the		
	material will travel down the screen very fast without getting properly screened		
	3)Screening Surface		
	Material should be spread evenly on the full screening surface so that all		
	particles will come in contact with the screening surface		
	4)Vibration amplitude &frequency		
	Proper amplitude of vibration is selected to prevent binding of screen.		
	5) Moisture in the feed		
	Moisture in the feed adversely affects screening operation & shouldbe removed.		
2	Solve any FOUR of the following		16
2-a	$\frac{P}{\dot{m}} = 0.3162 \text{ W}_{i} \left(\frac{1}{\sqrt{\bar{p}_{pb}}} - \frac{1}{\sqrt{\bar{p}_{pa}}} \right)$	1	4
	P = 270 KW		
	$\dot{m} = 150 \text{ tons/ hr}$		
	$\overline{D}_{pa} = 50 \text{mm}$		
	$\overline{D}_{pb} = 3$ mm		
	$\frac{P}{\dot{m}} = 0.3162 \text{ W}_{i} \left(\frac{1}{\sqrt{\overline{D}_{pb}}} - \frac{1}{\sqrt{\overline{D}_{pa}}} \right)$	2	
	$\frac{270}{150} = 0.3162 \text{ W}_{i} \left(\frac{1}{\sqrt{3}} - \frac{1}{\sqrt{50}} \right)$		
	$W_i = 13.06$	1	
2-b	Four arrangements of trommel	1 mark	4
	(a) Coarsest trommel first	each	
		1	1

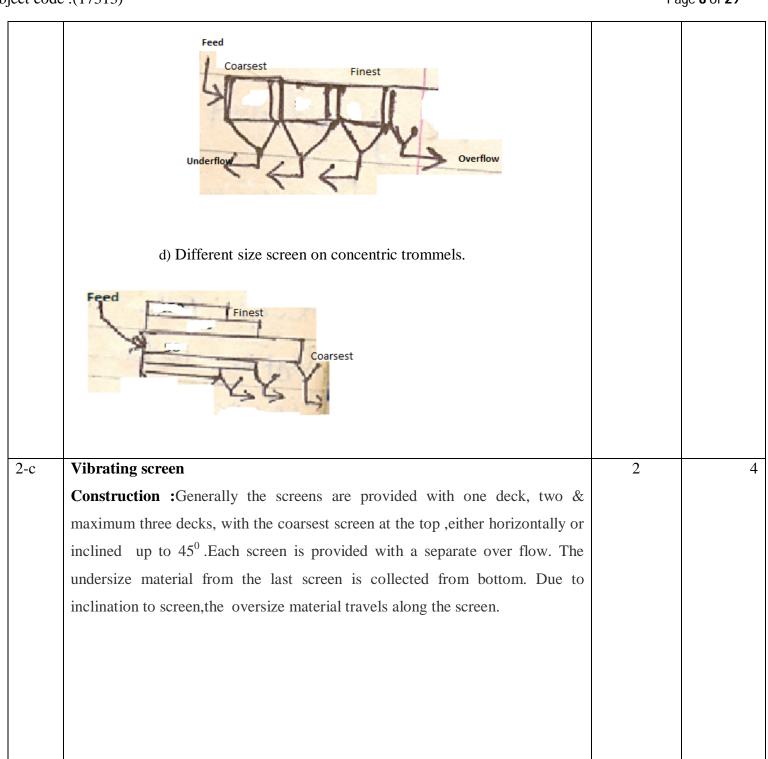


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **7** of **29**

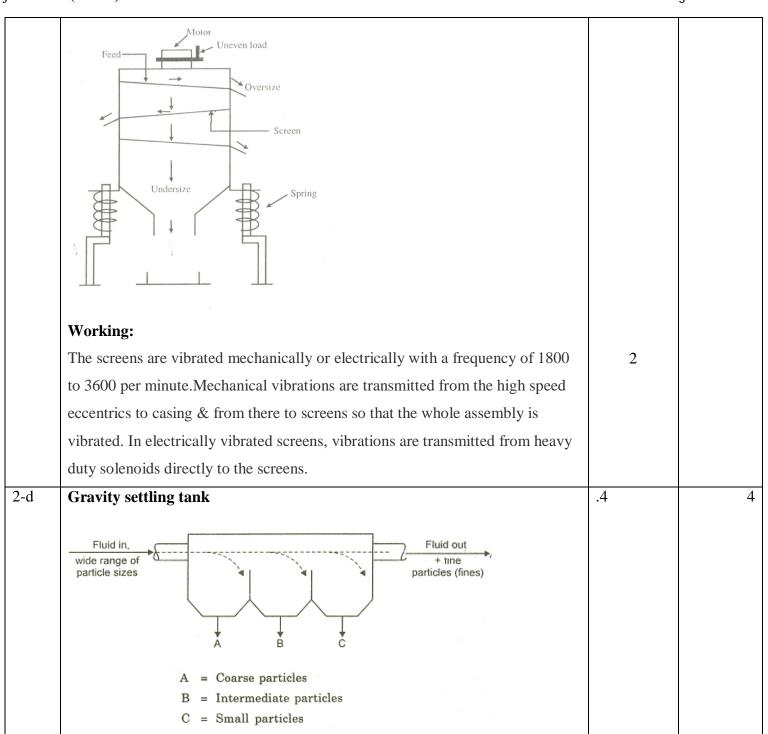


(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **8** of **29**



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **9** of **29**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Page **10** of **29** Subject code :(17313)

			•	
	It works on the principle of classification	on. It consists of a large tank with		
	provisions for inlet and outlet. As soon	as the slurry feed enters the tank		
	through the inlet, its velocity decreases.	. The particle will settle under the		
	influence of gravity. Large particles wh	nich have high terminal settling velocity		
	settles first and they will be collected no	ear the feed end. Intermediate particles		
	will then settle and finally fine particles	s will settle. Very fine particles will be		
	carried away by the flowing stream to the	he outlet.		
2-е	Cyclone separator:			4
	Diagram			
	Dust Iaden gas Cylind section Solid dust	cal	2	
	Construction:			
	It has a top cylindrical section and a lov	wer conical section. Top vertical section		
	is covered by a flat plate and has a tang	ential inlet at the top. A downward	2	
	extending pipe is provided for the remo	eval of fluids(gases). An outlet is		
	provided at the bottom of the conical se	ection for the removal of solids.		
2-f	Difference between constant rate filtr	ration and constant pressure filtration	1 mark	4
			each	
	Constant rate filtration	Constant pressure filtration		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **11** of **29**

	1.Rate of filtration is maintained	1. Rate of filtration varies		
	constant			
	2. pressure drop is varying	2. Pressure drop is constant		
	3.Starts with low inlet pressure and	3. High inlet pressure is applied		
	continuously increasing the pressure	which is maintained throughout.		
	to overcome the resistance of the			
	cake			
	4. The first particles filtered will not	4. The first particles filtered will be		
	be compacted into a tight mass.	compacted into a tight mass due to		
		the high initial pressure applied.		
3	Solve any FOUR of the following			16
3-a	Fluid energy mill:			4
	Principle of operation: attrition		4	
	It consists of a flat horizontal cylindrica	al chamber with tangentially arranged jet		
	nozzles in the inner wall. The energy fo	or grinding is supplied by a compressed		
	air or nitrogen gas. The compressed air	issuing through the nozzles forms a		
	very high velocity tangential circle with	nin the grinding chamber. The feed is fed		
	into the same tangential circle through a	a venture feeder. The material gets		
	rapidly accelerated, causing it to impact	t against itself, hence breaking of the		
	particles to the micron range. The large	r particles are held towards the outer		
	periphery of the chamber by centrifugal	force, while smaller particles travel in a		
	spiral movement towards the central ou	tlet for exit into a cyclone below for		
	bottom discharge.			
	It can handle powders having an initial	size from 150 microns & can handle up		
	to one micron. The materials that can be	e processed include food		
	products,antibiotics,pigments,dyes & products	igments.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **12** of **29**

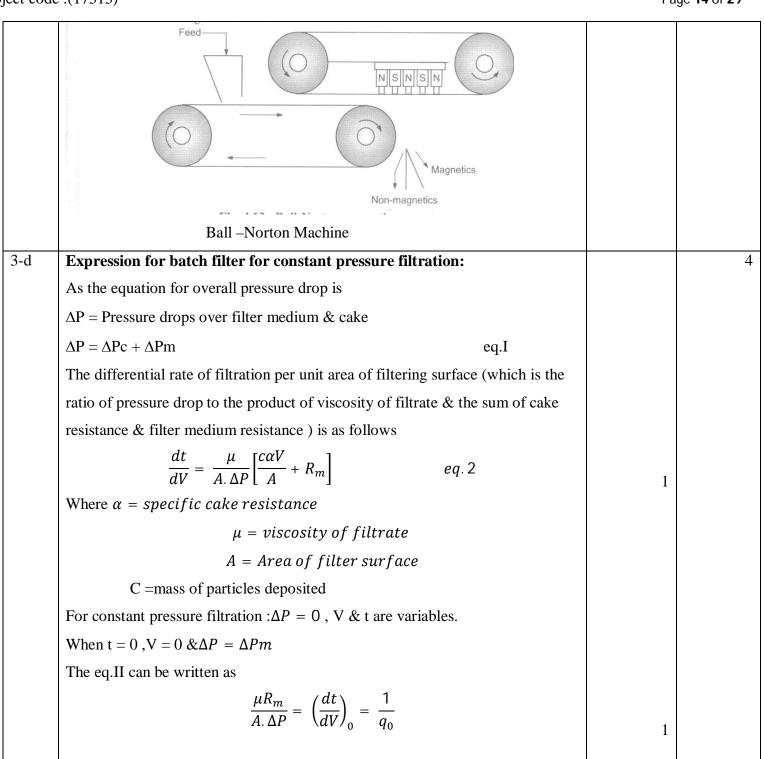
3-b	Overall effectiveness of a screen:			4
	Let feed consists of material A &Where A is the oversize & B is the unders	size		
	material.			
	Let F , D , and B be the mass flow rates of feed, overflow, and underflow,			
	respectively, and x_F , x_D , and x_B be the mass fractions of material A in the			
	streams. The mass fractions of material B in the feed, overflow, and underf	low		
	are 1- x_F , 1- x_D , and 1- x_B .			
	Overall material balance:			
	Feed = Overflow + Underflow			
	F = D + B eq. 1		1	
	Material balance of A over a screen			
	$Fx_F = Dx_D + Bx_B eq.2$			
	As F-B = D $eq.3$			
	Putting value of D from eq.3 into eq.2, we get			
	$Fx_F = (F-B)x_D + Bx_B$			
	$Fx_F = Fx_D - Bx_D + Bx_B$			
	$(x_D - x_F)F = (x_D - x_B)B$			
	$\frac{B}{F} = \frac{x_D - x_F}{x_D - x_B}$			
	$F = x_D - x_B$			
	Elimination of B from the above equations gives			
	$\frac{D}{x_F} = \frac{x_F - x_B}{x_F}$			
	$F = x_D - x_B$			
	Screen effectiveness based on the oversize, E_A			
	$E_A = \frac{Dx_D}{Fx_F}$		1	
	F_{X_F}			
	where is the screen effectiveness. Similarly, an effectiveness E_B based on the	ne		
	_ 1		ı	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page 13 of 29

	Effectiveness E_B based on the undersize materials is given by		
	$E_B = \frac{B(1-x_B)}{F(1-x_F)}$	1	
	A combined overall effectiveness can be defined as the product of the two individual ratios.	1	
	$E = E_A E_B = \frac{(x_F - x_B)(x_D - x_F)x_D(1 - x_B)}{(x_D - x_B)^2 (1 - x_F)x_F}$	1	
3-с	Ball –Norton Machine:		4
	It is used for separating magnetic ores from the associated mineral matter.		
	Construction:		
	It consists of two horizontally staggered belt conveyors running parallel, one		
	above the other .A hopper is provided for feeding the feed to the lower belt & a	2	
	stationary magnet assembly is incorporated in the upper belt conveyor near the		
	discharge end.		
	Working:		
	The material to be separated is fed to the lower belt in the form of a thin sheet		
	& is conveyed under the second belt where it is subjected to a magnetic field.		
	The non-magnetic material is discharged in the normal manner, whereas the		
	magnetic material adheres to the lower side of the upper belt & thus carried		
	some distance away from the discharge point of nonmagnetic materials. It	2	
	ultimately drops-off the belt in to the separate compartment when the belt loses		
	the contact of magnet assembly.		
		II.	1



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **14** of **29**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **15** of **29**

ject code .(17313)	1 age 13 01 27
The eq.II can be rewritten as	
$\frac{dt}{dV} = \frac{\mu \alpha c V}{A^2 \cdot \Delta P} + \frac{\mu R_m}{A \cdot \Delta P}$	
$\frac{dt}{dV} = \frac{1}{q} = K_c \cdot V + \frac{1}{q_0} \qquad \text{eq } 3$	
Where $K_c = \frac{\mu \alpha c V}{A^2 \Delta P}$	
Integrating eq.III between limits $t=0$, $V=0$ and $t=t$, $V=V$	
$\int_0^t dt = \int_0^V \left(K_{c.} V + \frac{1}{q_0} \right) dV$	1
$t = \frac{K_c V^2}{2} + \frac{V}{q_0} $ eq. 4	
Rearranging eq.4	
$\frac{t}{V} = \frac{K_{c.}}{2}V + \frac{1}{q_0}$	1
3-e Rotary drum Filter:	4
Working:	
Filter drum is immersed in slurry, vacuum applied to filter medium causes cake	
to deposit on outer surface of drum. Cake is washed by spraying wash liquid;	
wash liquid is collected in a separate tank. Then cake enters into drying zone as	2
drum rotates where cake is partially dried by sucking air through cake of solids.	
Then vacuum is cut off & cake removed with a doctor's knife. Air blown for	
removal of cake.	
Diagram	

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **16** of **29**

,	C.(17313)		gc 10 01 22
	Slurry feed Siurry trough Cloth covered outer drum Cake Doctor blade	2	
3-f	Batch Centrifuge:		4
	A centrifuge is any rotating machine in which centrifugal force is utilized for		
	phase separation.		
	Construction :the components of a centrifuge are		
	1)a rotor or bowl in which centrifugal force is applied to the contents of bowl		
	2)a drive shaft	2	
	3) a drive mechanism(electric motor)		
	4) a frame for support		
	5) a casing		
	It consists of a basket (dia.750 to 1200 mm, depth 450 to 750mm) with		
	perforated sides. Basket rotates at speeds between 600 to 1800 rpm .basket is		
	held at lower end of a free moving vertical shaft., driven by electric motor .A		
	filter medium is placed around the inside surface of the basket sides .casing is		
	provided around basket with a filtrate discharge connection at bottom. Material		
	of construction is mild steel, monel, stainless steel, lined by lead, rubber.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page 17 of 29

	Filter cloth Solid cake Casing Removable valve plate Solid discharge	2	
4	Solve any FOUR of the following		12
4A-a	Equipment for coarse Screening of large lumps : Grizzly screen	4	4
	Construction: A grizzly is a grid of parallel metal bars set in an inclined		
	stationary frame, with a slope of 30 to 450. The slope & path of the material is		
	parallel to the length of the bars. The length of bar is up to 3 m & spacing		
	between the bars is 50 to 200mm. The material of construction of the bars is		
	Manganese steel to reduce wear. Usually the bar is shaped in such a way that its		
	top is wider than the bottom, & hence the bars can be made fairly deep for		
	strength without being choked by material passing through them.		
	The course feed is fed at the upper end of the grizzly. Large chunks roll & slide		
	to lower end ,while small lumps of small size less than the opening in the bar		
	fall through the grid into a separate collector. If angle of inclination is more,		
	more will be the output, but lower is the screen efficiency.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code:(17313) Page 18 of 29 Undersize 4A-b **Electrostatic Separator:** 4 Principle: It is the method of separation of solid particles based on differential attraction or repulsion of charged particles under the influence of an electric field. Construction: It consists of rotating drum, a hopper for feed, an active electrode 2 & collecting bin Working: The charged particles fed on drum from hopper. Conductive particles assume potential of drum, opposite to that of active electrode, hence attracted towards active electrode. Non-conductive particles get repelled by electrode, attracted by drum, falls straight in collecting bin due to gravity. Hopper Active electrode Grounded rotor

Electrostatic separator

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **19** of **29**

4A-c	Plate &frame filter press:		4
	Construction: Alternate arrangement of plates & frames, supported on a pair of		
	rail.		
	Plate: solid piece with a ribbed surface.		
	Frame: hollow from inside, provides space for cake.		
	Alternate arrangement of plates & frames results in formation of chambers.		
	Shapes of plates & frames: square or rectangular		
	Material of construction: Stainless steel,nickel,aluminium,monel ,hard rubber or	2	
	plastics(polypropylene).Coated materials (rubber or lead or epoxy resin	_	
	covered) are also used.		
	Filter cloths are placed over each plate to cover the plate surface on boyh sides		
	so hollow frame is separated from plate by filter cloth. Theplates ,frames & filter		
	cloths have circular holes on corners for feed &discharge. Filter cloths act as		
	gaskets. When the press is closed, a continuous channel is formed along the		
	whole length of the press out of the corner holes in the		
	frames,plates&cloths.Frames have openings in interior from the corner holes so		
	that slurry channels opens into interior of frame. At the bottom of the plates,		
	holes are cored which connect the faces of plates to the outlet cocks.		
	Clear threte outlief Waterial orders under pressure Fixed Solids collect Solid rails Fixed Solids collect Solid rails Fixed Solids collect Solid rails	2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **20** of **29**

4A-d	Classification of Industrial cake filters:	4	4
	1)Batch pressure filters : Eg.Plate& frame filter press,Pressure leaf filters		
	2) Continuous pressure filters: Eg.Pressure filter-thickener,Rotary pressure		
	filters		
	3)Batch vacuum filters: Eg.Vacuumnutsches,Vacuum leaf filters		
	4) Continuous vacuum filters :Eg. Rotary drum filters, Vacuumprecoat		
	filters		
	5) Centrifugal filters(Batch & Continuous) :Eg.Suspended basket		
	centrifuge, Continuous filtering centrifugals		
4A-e	Rapid sand Filter.: Water to be filtered is introduced from the top, it passes down ward through the		4
	filter bed.During the flow the suspended impurities get trapped in the bed &		
	almost clean water leaves from the bottom. The filter bed is cleaned		
	periodically by backwashing. During backwashing with water ,the upward flow		
	carries deposited floc with it.Rapid sand filters use relatively coarse sand and		
	other granular media to remove particles and impurities that have been trapped		
	in a floc through the use of flocculation chemicals—typically salts of		
	aluminium or iron.		
	Advantages:	4	
	Much higher flow rate than a slow sand filter; about 150 to 200 million		
	gallons of water per acre per day.		
	Requires relatively small land area.		
	• Less sensitive to changes in raw water quality, e.g. turbidity.		
	Requires less quantity of sand.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **21** of **29**

	, ,				gc 21 01 27
		Filter Tank Cast-Iron Manifold	Wash Troughs Filter Sand Graded Gravel Perforated Laterals Filter Floor		
4A-f	Differentiat	ion of Sedimentation & C	Centrifugation	1 mark	4
	Basis	Sedimentation	Centrifugation	each	
	Principle	Separation of solids from suspension in liquids by gravity settling	Separation of immiscible liquids or solids from liquids by application of centrifugal force		
	Applicati on	Water treatment	Sugar refining		
	Magnitu de of driving force	Very less force of gravity & slow separation	very high centrifugal force & faster separation		
	Equipme nts used	Dorr thickener	Basket centrifuge		
5	Solve any T	TWO of the following			16

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **22** of **29**

Derivation for angle of nip:		
Consider a feed particle B caught between the rolls as shown in figure		
$ \begin{array}{c} $	2	
Let A and $A \square$ be the centre of the 2 rolls. C and $C \square$ are the points where the		
particle is in contact with left hand roll and right hand roll respectively. Let the		
angle between line AB and AA \square be α . Line OD and OE are tangents to the		
rolls. Neglecting the force of gravity, the two forces acting at the point C are		
vertical component of tangential force and vertical component of radial force.		
Vertical component of tangential force = $T \cos \alpha$		
Vertical component of radial force = $N\sin \alpha$.	4	
The vertical components of forces T and N are opposed. Force Nsinα tends to	4	
expel the particle from the rolls and force Tcosα tends to draw the particle		
between the rolls. If the particle is to be drawn between the rolls and crushed,		
$T\cos\alpha \geq N\sin\alpha$		
T and N are related through $T = \mu N$		
$\mu N \cos \alpha \geq N \sin \alpha$		
$\mu \geq tan\alpha$		
Let R be the radius of the feed particle, r the radius of the roll and 2d the		
distance between the rolls. Then in triangle ABO, the angle BAO is α,AO is		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page 23 of 29

	r+dand AB is r+R.Then ,from the simple geometry of figure		
	r+d		
	cos α =	2	
	r+R		
	Where, α=angle of nip		
5-b	Froth floatation		8
	Principle: Floatation refers to an operation in which one solid is separated from		
	another by floating one of them at or on the liquid surfaces. Separation of a	2	
	mixture of solids using Froth flotation methods depends on the difference in		
	surface properties of the materials involved.		
	Diagram:		
	Overflow Bottom	2	
	Construction:1.The mechanically agitated cell consists of a tank having square or circular cross-section.2.It is provided with an agitator which violently agitates the pulp.	2	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page 24 of 29 3. The air from a compressor is introduced into the system through a downpipe surrounding the impeller shaft. 4. The bottom of the tank is conical and is provided with a discharge for tailing. An overflow is provided at the top for mineralized froth removal. Working: 1. Water is taken into the cell; material is feed to the cell. 2. The promoters and frothers are added. 3. Agitations are given and air is bubbled in the form of fine bubbles. 4. Air-avid particles due to reduction in their effective density, will rise to the 2 surface and be held in the froth before they are discharged from the overflow **5.** Hydrophilic particles will sink to the bottom and removed from the discharge for tailing. 5-c **Laboratory test for Batch Sedimentation:** 8 2 1. The mechanism of settling may be described by batch settling test in glass cylinder in laboratory. 2. As shown in figure, cylinder containing newly prepared slurry of a uniform concentration of uniform solid particles through. 3. As soon as the process starts, all the particles begin to settle and are believed

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17313) Page **25** of **29**

to approach rapidly terminal settling velocities under hindered settling condition 4. Various zones of concentration then are established. The heavier faster settling particles settled at the bottom of glass cylinder are indicated by Zone D. 5. Above zone D forms another layer, called zone C, a region of variable size distribution and non-uniform concentration. 6. The boundary between C and D is usually obscure and is marked by vertical channels through which fluid is rising from the lower zone D as it 4 compresses. 7. Above zone C is zone B, which is a zone of uniform concentration of approximately the same concentration as that of original pulp. 8. Above the zone B is zone A, which is a zone of clear liquid. if original slurry is closed sized with respect to smallest particles, the boundary between A and B is Sharp. Ultimate height Graph showing the settling zones in a continuous thickener:

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **26** of **29**

	Feed well Clarification zone Seting zone Upper compression zone Compression zone Underflow Revolving rack	2	
6	Solve any FOUR of the following		16
6-a	Vacuum Filters:	1 mark	4
	Advantages:	each for	
	1)These filters can be designed as effective continuous filters.	any two	
	2) Low labourrequriment.	points	
	3) The filterating surface is easily accessible for inspection and repair as it can		
	open to the atmosphere.		
	4) Low maintenance costs.		
	Disadvantages:		
	1) We have to maintain a vacuum system.	1 mark	
	2) Not maintain with filtrates that are volatile.	each for	
	3) These units cannot handle difficulty filterable compressible solids.	any two	
	4) Continuousevaccum filters are inflexible.	points	
6-b	Methods of avoiding vortex in agitated Vessel:	1 mark	4
	There are four methods of prevention of swirling and vortex formation	each	
	a. Off-center mounting of the impeller.		
	b. Use of Baffles		
	c. Use of diffuser ring with turbines		
	d. Angular entry of agitators.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **27** of **29**

6-c	Importance of Propellers:	1 mark	4
	A propeller is an axial flow, high speed impeller commonly used for	each for	
	low viscosity liquids.	any two	
	A propeller is shaped with a tapering blade to minimize the effect of	points	
	centrifugal force and produce maximum axial flow.		
	Propeller drives the liquid straight down to the bottom of the vessel,at		
	the bottom the stream spreads radially in all directions towards the		
	wall, then the liquid flows upward along the wall. These agitators are		
	used in situation where strong vertical currents are desired.		
	Standard 3-blade Propeller:		
		2	
6-d	Mixing index:		4
	It is a measure of the homogeneity of the mixture. ie the degree of uniformity of	2	
	the mixture.		
	Formula to calculate mixing index:		
	For granular solids		
	$I_{S} = \sqrt{\frac{(N-1)\mu(1-\mu)}{n\sum_{1}^{N}(x_{i-\overline{x}})^{2}}}$	2	
	Where I _s is the mixing index.		
	N is the number of sample.		
	μ is the weight fraction of desired solid in the feed.		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code :(17313) Page **28** of **29** x_i is the weight fraction of desired solid in the sample/ \bar{x} is the $\frac{\varepsilon X_i}{N}$ N is the number of particles in the sample. Formula to calculate mixing index for other types of mixtures should also be given consideration. Mixer used for mixing stiff masses. 6-е 4 Banbury mixer: It is an internal mixer. Here the agitators are in the form of interrupted spirals. Solids are charged in from above and held in the trough during mixing by an air operated piston under a pressure of 1 to 10 atm. Mixed material is discharged through a sliding door in the bottom of the trough. These mixers are used for compounding rubber, plastic solids, devulcanize rubber scrap etc. (Due consideration should be given for any other type of kneading machines) 6-f Two -arm Kneader: Sigma Mixer: Diagram 2 To gear box and electric motor Sigma blade Gear wheels Trough **Construction:** 2 It consists of a short rectangular trough with saddle shaped bottom. Two counter rotating blades are incorporated in the trough. Blades are so placed and

(Autonomous)
(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code:(17313)	Page 29 of 29	
so shaped that the material turned up by one blade is immediately turned under		
adjacent one. The blades are driven by through a gear mechanism provided at		
either ends. The trough may be open or closed and may be jacketed for		
heating or cooling. The machine can be emptied through a bottom valve.		