

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

Page **1** of **24**

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

Page **2** of **24**

Q No.	Answer	marks	Total marks
1a-i	Concept of size reduction:	2	2
	Many solid particles exist in sizes that are too large to be used directly. Such		
	materials must be reduced in size before use. The term size reduction is		
	applied to all the ways in which particles of solid are cut or broken into smaller		
	pieces.		
1a-ii	Kick's law:		2
	Kick's law states that the work required for crushing a given mass of material	1	
	is the log of ratio of initial particle size to final particle size.		
	Mathematical statement	1	
	$\frac{P}{\dot{m}} = K_k \ln \frac{\overline{D}_{sa}}{\overline{D}_{sb}}$		
1a-iii	Oversize material:	1	2
	Oversize materials are particles whose sizes are greater than the opening of the		
	screen.		
	Undersize material	1	
	Undersize materials are particles whose sizes are smaller than the opening of		
	the screen.		
1a-iv	Mesh: It is the number of openings per linear inch counting from the center of any wire to a point exactly one inch distant.	1	2
	Screen aperture: Minimum clear space between edges of openings in the	1	
	screening surface is termed as screen aperture.		-
1a-v	Four classifiers used for size separation.	¹ / ₂ mark	2
	1. Cone classifier	each.	
	2. Double cone classifier		
	3. Rake classifier		
	4. Spiral classifier		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

1a-vi	Hindered settling: If the settling of particle is affected by other particles and	2	2
	by the boundary of the container, then it is known as hindered settling.		
la-vii	Prevention of Swirling and Vortex Formation:	1 mark	2
	There are four methods of prevention of swirling and vortex formation	each for	
	a) Off-center mounting of the impeller.	any two	
	b) Use of Baffles	methods	
	c) Use of diffuser ring with turbines		
	d) Angular entry of agitators.		
1a-viii	Turbine impeller.	2 marks	2
	(a) Open straight blade (b) Bladed disk/ flat disk blade (c) Vertical curved blade (d) Shrouded curved blade vith diffuser ring	for any one diagram	
b-i	Labeled diagram of blake jaw crusher) marks	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

Page 4 of 24

	(1) Fixed jaw, (2) Movable jaw, (3) Sh (5) Eccentric, (6) Pitman, (7) Toggle, (8)	aft, (4) Fly wheel, Tie rod, (9) Spring	for diagram and 2 marks for labeling.	
1b-ii	Differentiate crushing and grindi	ng:		4
	Crushing	Grinding	2 marks	
	1.Size reduction by compression	Size reduction by impact and attrition	each	
	2. Breaks large pieces of solid	Reduces crushed feed to powder.		
	materials into small lumps.			
1b-iii	Factors affecting performance of a	screen.	1 mark	4
	1) Method of feeding		each for	
	Particles should approach the scree	ning surface in a direction parallel to the	any four	
	longitudinal axis (perpendicular) of	the screen. Particles should be fed at as	points	
	low velocity as possible.			
	2) Screen slope			
	As the slope increases, the rate	at which the materials travels over the		
	screening surface increases thereby			
	fines to come in contact with th			
	increased too much, the material wi			
	getting properly screened			
	3.Screening Surface			
	Material should be spread evenly	on the full screening surface so that all		

Subject co	ode : (17313)		Page 5 of 24
	particles will come in contact with the screening surface		
	4. Vibration amplitude & frequency		
	Proper amplitude of vibration is selected to prevent binding of screen.		
	5. Moisture in the feed		
	Moisture in the feed adversely affects screening operation & should be		
	removed.		
2-a	Importance of size reduction	1 mark	4
	1. To increase the surface area thereby increasing the effective contacting	each for	
	which is essential for physical and chemical process.	any four	
	2. To effect the separation of two constituents when one is dispersed in	points	
	small isolated pockets.		
	3. To increase the effective mixing between components.		
	4. To meet stringent specification regarding the size of commercial		
	products.		
	5. To improve dissolution rate, solubility, dispersion properties etc		
2-b	Diagram and working of vibrating screen		4
	Feed Uneven load Uneven load Screen Undersize Spring	2	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject of	code : (17313)					Page 6 of 24
	Working: The screens are vibrated to 3600 per minute. Me eccentrics to casing & vibrated. In electrically duty solenoids directly t	d mechanically or electr chanical vibrations are t from there to screens vibrated screens, vibrati to the screens.	ically with a frequency or ransmitted from the hig so that the whole assertions are transmitted from	of 1800 h speed mbly is n heavy		
2-c	Comparison of grizzlie	es and trammels Grizzlies	Trommel		2 1 mark each	4
	1.Screen arrangement	Stationary inclined screen. Screen is a grid of parallel metal bar	Revolving screens. Screen is perforated cylinder.			
	2.Openings in screen small/large 3.Size of feed	large	small Small size feed			
	handled 4.Capacity	large	small			
2-d	Gravity settling tank				2 marks for diagram	4

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

2 and Fluid out Fluid in, marks for wide range of + tine particle sizes particles (fines) labeling ₿ č A = Coarse particles B = Intermediate particles C = Small particles2-е Constant pressure filtration and constant rate filtration 4 2 **Constant Pressure Filtration:** The filtration in which the pressure drop over the filter is held constant throughout the run so that the rate of filtration is maximum at the start of filtration and decreases continuously towards the end of the filtration is called constant pressure filtration 2. Constant rate Filtration: The filtration in which the pressure drop is varied usually from minimum at the start of filtration to a maximum at the end of 2 filtration so that the rate of filtration is constant throughout the run is called constant rate filtration. 2-f 2 Labeled diagram of Cyclone separator marks 4 for

Page 7 of 24

diagram

Subject code : (17313)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

	Dust Iaden gas Tangential inlet Solid dust	and 2 marks for labeling	
3-a	Open-circuit grinding:		4
	It is the grinding system in which material passes through the grinder without classification of product and without recycle of oversize lumps Advantages :Simplicity of operation,minimum equipment requirement Examples : Ball mill,Rod mill <u>Closed-circuit grinding</u> :If the partially ground material from the size reduction machine is sent to a size separation unit, from where the undersize is withdrawn as the product & the oversize material is returned to the machine for reground ,the process is called as closed-circuit grinding. Advantages : Higher capacity, lower power consumption per ton of product,eliminate overgrinding by removing fines early Examples : Ball mill & classifier,Rod mill & classifier	2	
3-b	Effectiveness of a screen:Let feed consists of material A &B,where A is the oversize & B is the undersizematerial.Let F , D , and B be the mass flow rates of feed, overflow, and underflow,respectively, and x_F , x_D , and x_B be the mass fractions of material A in the streams. Themass fractions of material B in the feed, overflow, and underflow are $1 - x_F$, $1 - x_D$, and $1 - x_B$.		4

Page **8** of **24**

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

Overall material balance: Feed = Overflow + Underflow F = D + Beq. 1 1 Material balance of A over a screen $Fx_F = Dx_D + Bx_B$ *eq.2* As F-B = Deq.3 Putting value of D from eq.3 into eq.2, we get $Fx_F = (F-B)x_D + Bx_B$ $Fx_F = Fx_D - Bx_D + Bx_B$ $(x_D - x_F)F = (x_D - x_B)B$ $B/F = (x_D - x_F) / (x_D - x_B)$ 1 Elimination of B from the above equations gives $D/F = (x_{F} - x_{B})/(x_{D} - x_{B})$ Screen effectiveness A common measure of screen effectiveness is the ratio of oversize material A that is actually in the overflow to the amount of A entering with the feed. These quantities are Dx_D and Fx_F respectively. Thus $E_A = D x_D / F x_F$ where E_A is the screen effectiveness based on the oversize. Similarly, an effectiveness E_B based on the undersize materials is given by 1

Page 9 of 24

SUMMER-14 EXAMINATION Model Answer

Subject co	ode : (17313)	Page 10 of	
	$E_{B} = \frac{B(1 - x_{B})}{F(1 - x_{F})}$ A combined overall effectiveness can be defined as the product of the two individual ratios. $E = E_{A}E_{B} = \frac{(x_{F} - x_{B})(x_{D} - x_{F})x_{D}(1 - x_{B})}{(x_{D} - x_{B})^{2}(1 - x_{F})x_{F}}$	1	
3-с	Magnetic Drum Separator:	2	4
	Working: The feed(mixture of magnetic & non-magnetic materials) is admitted at the top & is allowed to fall on the rotating drum. The non-magnetic material is discharged in a normal manner. The magnetic material adheres to the drum & falls off underside when the drum loses the contact of the magnet assembly.	2	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject	code : (17313)		Page 11 of 2
3-d	Characteristics of Filtre medium :(any4)1) It should retain solids to be filtered, giving clear filtrate.2) It should not plug.3)It should be mechanically strong to withstand process conditions.4) It should offer little resistance to flow of filtrate.5) It should be resistant to corrosive action to fluid.6) It should possess ability to discharge cake easily & cleanly.7) It should have acceptable resistance to mechanical wear.8) It should be cheap & should have long life.	1 mark each	4
3-е	Basket Centrifuge:	4	4
3-f	Advantages of Plate & frame filter press(any2)1)It provides large filtering area per unit for floor space occupied2)Low maintenance cost3)It can be operated at higher pressures4)Most joints are external ,so leakges can be easily identified.	1 mark each	4

SUMMER-14 EXAMINATION Model Answer

Subject co	ode : (17313)	Page 12 of	
	 <u>Disadvantages of Plate & frame filter press</u>(any 2) 1)Labour requirement is more 2) Intermittant in operation & periodic manual dismantling tend to cause high wear on the cloths. 3)It frequently drip & leak ,making housekeeping difficult 4) Cake washing is impractical. 	1 mark each	
4-a	Construction of Grizzlies: A grizzly is a grid of parallel metal bars set in an inclined stationary frame ,with a slope of 30 to45 ^{0.} The slope & path of the material is parallel to the length of the bars. The length of bar is upto 3 m & spacing between the bars is 50 to 200mm. The material of construction of the bars is Manganese steel to reduce wear. Usually the bar is shaped in such a way that it's top is wider than the bottom,& hence the bars can be made fairly deep for strength without being choked by material passing partway through them.	3	4
	OVERSIZE Grizzly Screen		

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

Page **13** of **24**

4
4
4

Subject	code : (17313)				Page 14 of 24
	sand suppor	ted by layers of graded under bed	consisting of pebbles and		
	gravels, a to	op distributor to distribute the incom	ming water uniformly throughout		
	the cross se	ction of the filter, and an under dra	in system to collect filtered		
	water.				
	In the opera	tion, water to be filtered is pumpe	d through the bed under		
	pressure.				
	Raw water	(water containing suspended imput	rities) flows down wards through		
	the filter be	d and as the suspended matter- wh	ich has usually been treated by		
	addition of	a coagulant like alum- is retained of	on the sand surface and between		
	the sand gra	ins immediately below the surface			
4-e	Difference	Difference Between Sedimentation & Filtration:			4
	Point	Sedimentation	Filtration	each	
	Principle	It is the removal of solid	It is the separation of solid		
		particles from a suspension by	particles from a suspension		
		settling under gravity.	by using a porous medium		
			which retains the solid		
			particles & allows the		
			liquid to pass through it.		
	Force	The gravitational force is	The pressure difference		
		responsible for separation.	across the filter medium is		
			responsible for filtration.		
	Equipme	Dorr thickener, Sedimentation	Filter press, Rotary drum		
	nt used	basins	filter		
	Product	: Clear liquid is the product	In cake filtration, wet cake		

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

Page **15** of **24**

	of	with thickened sludge at the	of solids is the product .In		
	operatio n	bottom	clarifying filters sparkling		
			clear liquid is the product.		
4-f	Free Settlin	ng(any 2 pts.):		2 marks	4
	1)It is the se	ttling wherein the fall of the partic	e in a gravitational field	eacn	
	through a st	ationary field is not affected by wal	ls of the container & other		
	particles (th	e particles are at sufficient distance	from wall & other particles)		
	2)In this set	tling the individual particle does no	t collide with other particles or		
	with the wa	ll of container.			
	3)Practically	v free settling conditions exist if the	concentration of the particles		
	in suspensio	on is less than 1% wt.by solid	1		
	1				
5-a	The speed a	t which the outermost balls break a	contact with the wall depends on		8
	the balance between centrifugal force and gravitational force.				
		mg g g		1	
	Consider the ball at point B on the periphery of the ball mill.				
	- Let 'R' be	the radius of the mill and ' \mathbf{r} ' be th	e radius of the		
	Ball.				
	- R-r repres	sents the distance between the center	er of the ball and the axis of the		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject code : (17313)		Page 16 of 24
mill.		
- α be the angle between OB and vertical through the point O. The force		
acting on the ball are :		
1. The force of gravity = mg where 'm' is the mass of the ball	2	
2. The centrifugal force = $mv^2 / (R-r)$. where 'v' is the		
peripheral speed		
-The component of gravity opposing the centrifugal force is		
'mgcosα'		
-As the angle α decreases, the centrifugal force increases.		
-Unless the speed crosses the critical value, a stage is reached where the above		
opposing forces are equal and ball is ready to fall away from the wall.		
-The angle which the said phenomenon occurs is found out by equating the		
two opposing forces, Thus,		
$mgcos\alpha = mv^2 / (R-r) (1)$		
$\cos \alpha = v^2 / (R-r) g$ (2)		
The relationship between the peripheral speed and the speedof rotation is		
given by		
$v = 2 \pi N (R - r)$ (3)		
substituting the vale of 'v' in equation (2)	2	
$\cos \alpha = 4 \pi^2 N^2 (R - r) / g(4)$	2	
At the critical speed : $\alpha = 0$ and thus $\cos \alpha = 1$ and N becomes the critical		
speed Nc $1 + \frac{2}{3} + \frac$		
$\cos \alpha = 1 = 4 \pi^2 N^2 (R - r) / g$		
$Nc^2 = g / 4 \pi^2 (R - r)$		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

	$\mathbf{Nc} = \frac{1}{\sqrt{2}} \frac{\mathbf{g}}{\sqrt{2}}$	1	
	2π R – r		
	Diameter of hall mill $= 450 \text{ mm} = 0.45 \text{ m}$		
	Diameter of ball $= 25 \text{ mm} = 0.025 \text{ m}$		
	Diameter of ball = 25 mm = 0.025 m		
	Crirical speed of ball mill (Nc)		
	$Nc = \frac{1}{2\pi} \sqrt{\frac{g}{R-r}}$		
	$g = 9.81 \text{ m/s}^2$ R = 450/2 = 225 mm = 0.225 m		
	r = 25/2 = 12.5 mm = 0.0125 m		
	1 9.81		
	2π 0.225 - 0.0125	2	
	Nc = $1.08 \text{ r.p.s.} = 1.08 \text{ x } 60 = 64.88 \approx 65 \text{ r.p.m.}$		
	Critical speed = 65 r.p.m.		
5-b	Froth Floatation: Floatation refers to an operation in which one solid is separated	2	8
	from another by floating one of them at or on the liquid surfaces. Separation of		
	a mixture of solids using Froth flotation methods depends on the difference in		
	surface properties of the materials involved.		
	Froth Floatation Cell: • Diagram:		
		_	
		2	

Page **17** of **24**

Page **18** of **24**

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

Ail Cell Cell Fectore	2	
• Construction:		
1. The mechanically agitated cell consists of a tank having square or circular		
cross-section.		
2.It is provided with an agitator which violently agitates the pulp.		
3. The air from a compressor is introduced into the system through a downpipe		
surrounding the impeller shaft.		
4. The bottom of the tank is conical and is provided with a discharge for		
tailing.	2	
An overflow is provided at the top for mineralized froth removal.		
• Working:		
1. Water is taken into the cell; material is feed to the cell.		
2. The promoters and frothers are added.		
3. Agitations are given and air is bubbled in the form of fine bubbles.		
4. Air-avid particles due to reduction in their effective density, will rise to the		
surface and be held in the froth before they are discharged from the		
overflow		
5. Hydrophilic particles will sink to the bottom and removed from the		
discharge for tailing		

Page 19 of 24

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

SUMMER-14 EXAMINATION Model Answer

code : (17313)		Page 20 of 2
6.The boundary between C and D is usually obscure and is		
marked by vertical channels through which fluid is rising from		
the lower zone D as it compresses.		
7. Above zone C is zone B, which is a zone of uniform		
concentration of approximately the same concentration as that		
of original pulp.		
8. Above the zone B is zone A, which is a zone of clear liquid. if		
original slurry is closed sized with respect to smallest particles,		
the boundary between A and B is Sharp.		
Factors of filtration affecting rate of filtration:	1 mark	4
The rate at which the filtrate is obtained in a filtration Operation i.e.	each for	
the rate of filtration depends upon the following factors	any 4	
1. Pressure drop across the feed inlet and far side of the filter	points	
medium.		
2. Area of the filtrating surface.		
3. Viscosity of the filtrate.		
4. Resistance of the filter medium and intial layers of cake.		
5. Resistance of the filter cake.		
i) Propeller	2 marks	4
hand had been a	for any	
	two	
	 code : (17313) 6.The boundary between C and D is usually obscure and is marked by vertical channels through which fluid is rising from the lower zone D as it compresses. 7. Above zone C is zone B, which is a zone of uniform concentration of approximately the same concentration as that of original pulp. 8. Above the zone B is zone A, which is a zone of clear liquid. if original slurry is closed sized with respect to smallest particles, the boundary between A and B is Sharp. Factors of filtration affecting rate of filtration: The rate at which the filtrate is obtained in a filtration Operation i.e. the rate of filtration depends upon the following factors 1. Pressure drop across the feed inlet and far side of the filter medium. 2. Area of the filtrate. 3. Viscosity of the filtrate. 4. Resistance of the filter medium and intial layers of cake. 5. Resistance of the filter cake. i) Propeller ii) Propeller iii) iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	code : (17313) 6.The boundary between C and D is usually obscure and is marked by vertical channels through which fluid is rising from the lower zone D as it compresses. 7. Above zone C is zone B, which is a zone of uniform concentration of approximately the same concentration as that of original pulp. 8. Above the zone B is zone A, which is a zone of clear liquid. if original slurry is closed sized with respect to smallest particles, the boundary between A and B is Sharp. Factors of filtration affecting rate of filtration: The rate at which the filtrate is obtained in a filtration Operation i.e. the rate of filtration depends upon the following factors 1 mark each for any 4 1. Pressure drop across the feed inlet and far side of the filter medium. 2. Area of the filtrate. 2 marks for any two 3. Viscosity of the filtrate. 4. Resistance of the filter medium and intial layers of cake. 2 marks for any two

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

Baffles Side vie ii) **Turbine impeller** Baffles 2 6-c **Pratical aims of Mixing:** 2 marks 4 each for 1.To promote a chemical reaction .It is the most important use of mixing in the chemical industry, since intimate contact between reacting phases is necessary any two for reaction. 2.To produce simple physical mixtures – of two or more uniformly divided solids, two or more miscible liquids etc. 3. To carry out physical change- formation of crystals from a supersaturated solution.

4. To accomplish dispersion in which a quasi-homogeneous material is

Page 21 of 24

Subject	code : (17313)	Page 22 of 24
	produced from two or more immiscible fluids and from one or more fluid with finely divided solids.	
6-d	Sigma Mixer:	4
	Gear wheels Trough Sigma blade	
	 1)It consist of a short rectangular trough with saddle shaped bottom. 2) Two counter rotating blades are incorporated in the trough . 3) Blades are so placed and so shaped that the material turned up by one blade is immediately turned under adjacent one. 4)The blades are driven by through agear mechanism provided 	
	at either ends.	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Subject	code : (17313)		Page 23 of 24
	 5)The trough may be open or closed and may be jacted for heating or cooling. 6) The machine is operated batchwise fashion. 7) The machine can be emptied through a bottom valve. Working: The material to be kneaded is dropped into the trough. It is mixed of about 5 to 20 minutes or longer . The trough is then unloaded by tilting it. It is used for mixin very stiff masses. The mixer employing sigma blades is capable of staring and operating with either liquids or solids or combination of both. 	2	
б-е	Sketch of Ribbon Blender:	2 marks for diagram and 2 marks for labelling	4
6-f	Data : $Da = Impeller diameter = 60 cm$ $\mu = Viscosity = 10 Cp = 0.10 poise$ $\rho = 1.45 g/cm^3$ $N = Revolution per second$ Speed in rpm90	1	4

SUMMER-14 EXAMINATION Model Answer

Subject code : (17313)

= ----- = 1.5 r.p.s. 60 60 $N Da^2 \rho$ 1 Reynolds number = NRe = ----μ 100 X 60² X 1.45 = ----- = 87000 60 X 0.10 So, flow is turbulent i.e. Np = Power number = C' = ConstantAnd the power is given by 1 $P = C' \rho Da^5 N^3 ,$ Np = C' = 1.05 $P = 1.05 \times 1.45 \times 60^5 \times 1.5^3$ $P = 400 (Kg .m^2) / s^3$ P = 400 / gcP = 400 / 11 $P = 400 \ J/sec$ P = 400 Watt ----- ans

Page 24 of 24