

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Industrial Chemistry

Subject code: 17312 Page 1 of 31

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Industrial Chemistry Subject code: 17312 Page **2** of **31**

Q No.	Answer	marks
1	Any 10	20
1-a	Characteristics of Organic compounds: (any 2)	1 mark
	1. Generally found in living matter, i.e., animals and plants.	each
	2. Insoluble in water, soluble in organic solvents.	
	3. Highly inflammable and volatile.	
	4. Poorer conductors of heat and electricity in aqueous solutions.	
	5. Usually always contain carbon, especially carbon-hydrogen bonds.	
	6. Classified into many classes on the basis of functional groups, known as	
	homologous series. Each class is represented by a general formula and	
	the members show similar properties	
	7. Examples: methane, ethane, acetylene, alcohols, carbon tetrachloride	
	(CCl4), urea	
1-b	IUPAC names:	
	1. OH 2- propanol	1
	$CH_3 - CH - CH_3$	
	2. $H_3C - CH_2 - CH = CH - CH_2 - CH_2 - CH_3$ Heptene (3-Heptene)	1

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **3** of **31**

		2,022	
1-c	Physical properies of Alkane:(any 2)		1 mark
	1) First four members(C1 to C4) of a	lkane are gases,next thirteen members	each
	(C5 to C17) are colourless liquids a		
		_	
	3) Alkanes are insoluble in water but	freely soluble in organic solvent.	
	4) Boiling point and specific gravity in	creases with increase in molecular	
	weight.		
1-d	Uses of acetylene: (any 2)		1 mark
	1. Ethyne is useful for artificial ripenin	g and preservation of fruits.	each
	2. It is useful in acetylene lamps to ger	nerate light.	
	3. Ethyne is used to prepare various organic compounds.		
	4. It is also useful to manufacture important organic compounds like acetic		
	acid, acetaldehyde, ethyl alcohol and polymers like PVCetc.		
	5. It is useful to produce an oxyacetylene flame.		
	6. is widely used as a fuel and a chemical building block.		
	7. Acetylene is used to volatilize carbon in radiocarbon dating.		
	8. Acetylene is sometimes used for carburization (that is, hardening) of		
	steel when the object is too large to fit	into a furnace	
1-e	Products of the reaction:		
	1. 1-3dibromopropane		1
	2. Propane		1
1-f	Differences between alcohols & pher	iol:	1 mark
	PHENOL	ALCOHOL	each for
	phenol reacts with FeCl ₃ whereas	alcohol can not	any 2
	normal		
	Phenols are acidic	Alcohols are not acidic	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Industrial Chemistry Subject code: 17312 Page **4** of **31**

		<u> </u>	
	Phenols are acidic and dissolve in a	Alcohols are not acidic and will not	
	basic solution.	dissolve in a basic solution	
	When phenol react with FeCl ₃ it	Alcohols produce no color change.	
	changes its colour from green to		
	purple.		
	Phenols produce a brown tarry mass	Not observe in alcohol	
	when combined with chromic acid	Not observe in alcohol	
	phenols dissolve in aqueous NaOH, Aromatic		
1 ~		Aliphatic	
1-g	Homologues of benzene:		
	Toluene($C_6H_5CH_3$)		1
	$Xylene(C_6H_5CH_2CH_3)$		1
1-h	Uses of phenol : (any two)		1 mark
	1) The main use of phenol is as a feedst	ock for phenolic resins, bisphenol A	each
	andcaprolactam (an intermediate in the	production of nylon-6).	
	2) It is used in the manufacture of many products including insulation		
	materials, adhesives, lacquers, paint, rubber, ink, dyes, illuminating gases,		
	perfumes, soaps.		
	3) Also used in embalming and research	laboratories. It is a product of the	
	decomposition of organic materials, liqu	aid manure, and the atmospheric	
	degradation of benzene.		
	4) It is found in some commercial disint	Pectants, antiseptics, lotions and	
	ointments.		
	5) Phenol is active against a wide range	of microorganisms, and there are some	
	medical and pharmaceutical application	s including topical anaesthetic and	
	ear drops, sclerosing agent.		
	6) It is used in dermatology for chemica	l face peeling.	
1-i	Nitration:		2
	When benzene is treated with mixture o	f conc.H ₂ SO ₄ and conc HNO ₃ below	
			l

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **5** of **31**

ic. maas	trial Chemistry	ige 3 Oi 31
	60°C benzene gives nitrobenzene while above this temprature the main product	
	is m-Dinitro benzene. NO2 HI D2+H2504 100°C Benzene Nitrabenzene	
1-j	Action of halogen acids on alcohols:	2
	The hydroxyl group is replaced by the corresponding halogen atoms and an alkyl halide is formed. ROH + PCl₅→RCl + POCl₃ + HCl Alcohol Alkyl halide	
	$3C_2H_5OH + PCl_3$ \Rightarrow $3C_2H_5Cl + H_3PO_3$ Ethyl alcohol Ethyl chloride	
	$P_4 + I_2$ $3CH_3OH + PI_3 \longrightarrow 3CH_3I + H_3PO_3$ Methyl alcohol methyl iodide	
1-k	Solution:	
	A solution is a mixture in which substances are intermixed so intimately that	1
	they can not be observed as a separate component.	
	Types of solutions:	
	1) solid in liquid solutions	1
	Example: Mercury in zinc, Mercury in Gold, b) CuSO ₄ .5H ₂ o	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **6** of **31**

2) Liquid in liquid Example: Alcohol in water 3) Gas in liquid Example: water vapours in air, mist. 1-1 Indicator: An indicator is an organic substance used in very small amount to determine the end point in a titration by a visual change of color. Example:-methyl orange, phenolthalein,starch,methyl red. Azeotropes: are defined as the mixtures of liquids which boil at constant temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes are also called constant boiling mixtures because whole of the azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 2-a Homologous series It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4 Functional Group Name Example	ic. illuu	Subject code. 17512 Pa	ge o 01 31		
3) Gas in liquid Example: water vapours in air, mist. 1-1 Indicator: An indicator is an organic substance used in very small amount to determine the end point in a titration by a visual change of color. Example:-methyl orange, phenolthalein,starch,methyl red. Azeotropes: are defined as the mixtures of liquids which boil at constant temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		2) Liquid in liquid			
Example: water vapours in air, mist. 1-1 Indicator: An indicator is an organic substance used in very small amount to determine the end point in a titration by a visual change of color. Example:-methyl orange, phenolthalein,starch,methyl red. Azeotropes: are defined as the mixtures of liquids which boil at constant temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of — CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a -CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		Example: Alcohol in water			
Indicator: An indicator is an organic substance used in very small amount to determine the end point in a titration by a visual change of color. Example:-methyl orange, phenolthalein,starch,methyl red. Azeotropes: are defined as the mixtures of liquids which boil at constant temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		3) Gas in liquid			
determine the end point in a titration by a visual change of color. Example:-methyl orange, phenolthalein,starch,methyl red. Azeotropes: are defined as the mixtures of liquids which boil at constant temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 16 It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member) by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8) differs from ethane (C ₂ H ₆) or butane(C ₄ H ₁₀) by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		Example: water vapours in air, mist.			
Example:-methyl orange, phenolthalein,starch,methyl red. Azeotropes: are defined as the mixtures of liquids which boil at constant temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4	1-1	Indicator: An indicator is an organic substance used in very small amount to	1		
Azeotropes: are defined as the mixtures of liquids which boil at constant temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		determine the end point in a titration by a visual change of color.			
temperature like a pure liquid and possess same composition of components in liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		Example:-methyl orange, phenolthalein,starch,methyl red.			
liquid as well as in vapour phase. Azeotropes are also called constant boiling mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		Azeotropes: are defined as the mixtures of liquids which boil at constant			
mixtures because whole of the azeotropes changes into vapour state at constant temperature and their components can not be separated by fractional distillation 2 Any 4 16 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group:		temperature like a pure liquid and possess same composition of components in	1		
temperature and their components can not be separated by fractional distillation Any 4 16 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group:		liquid as well as in vapour phase. Azeotropes are also called constant boiling			
2 Any 4 2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group:		mixtures because whole of the azeotropes changes into vapour state at constant			
2-a Homologous series- It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member) by a constant difference of — CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ , C ₂ H ₆ , C ₃ H ₈ , C ₄ H ₁₀ , C ₅ H ₁₂ From above example propane(C3H8) differs from ethane (C ₂ H ₆) or butane(C ₄ H ₁₀) by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group:		temperature and their components can not be separated by fractional distillation			
It is a series of class of organic compounds in which each member differs from its neighbor (immediate higher or lower member)by a constant difference of – CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group:	2	Any 4	16		
its neighbor (immediate higher or lower member)by a constant difference of — CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series.All members of homologous series have the same general formula.Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group:	2-a	Homologous series-	4		
CH ₂ -(methylene) group. Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group:		It is a series of class of organic compounds in which each member differs from			
Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂ From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series.All members of homologous series have the same general formula.Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group:		its neighbor (immediate higher or lower member)by a constant difference of –			
From above example propane(C3H8)differs from ethane (C ₂ H ₆)or butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series.All members of homologous series have the same general formula.Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		CH ₂ -(methylene) group.			
butane(C ₄ H ₁₀)by a –CH ₂ - group. Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		Homologous series of alkanes-CH ₄ ,C ₂ H ₆ ,C ₃ H ₈ ,C ₄ H ₁₀ ,C ₅ H ₁₂			
Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		From above example propane(C3H8)differs from ethane (C ₂ H ₆)or			
of homologous series have the same general formula. Each homologous series has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		butane(C ₄ H ₁₀)by a –CH ₂ - group.			
has a particular functional group. 2-b Classification organic compounds on the basis of functional group: 4		butane(C ₄ H ₁₀)by a –CH ₂ - group.			
2-b Classification organic compounds on the basis of functional group: 4					
		Every class of organic compounds has such a homologous series. All members			
Functional Group Name Example		Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series			
Functional Group Name Example	2-b	Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group.	4		
	2-b	Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group.	4		
	2-b	Every class of organic compounds has such a homologous series. All members of homologous series have the same general formula. Each homologous series has a particular functional group. Classification organic compounds on the basis of functional group:	4		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **7** of **31**

	Alkane	CH ₃ CH ₂ CH ₃ (propane)	
c—c	Alkene	CH ₃ CH=CH ₂ (propene)	
С≡СН	Alkyne	CH ₃ CECH (propyne)	
F, Cl, Br, or I	Alkyl halide	CH ₃ Br (methyl bromide)	
—-ОН	Alcohol	CH ₃ CH ₂ OH (ethanol)	
<u> </u>	Ether	CH ₃ OCH ₃ (dimethyl ether)	
NH ₂	Amine	CH ₃ NH ₂ (methyl amine)	
О СН	Aldehyde	CH ₃ CHO (acetaldehyde)	
	Ketone	CH ₃ COCH ₃ (acetone)	
0 	Acyl chloride	CH ₃ COCl (acetyl chloride)	
О СОН	Carboxylic acid	CH ₃ CO2H (acetic acid)	
	Ester	CH ₃ CO ₂ CH ₃ (methyl acetate)	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Indu	strial Chemistry Subject code : 17312	age 8 of 31
	Amide CH ₃ NH ₂ (acetamide)	
2-c	Aromatisation in alkanes: The process of conversion of aliphatic compound	4
	into aromatic compound is known as aromatization . Alkanes having six to 10	
	carbon atoms are converted into benzene and its homologues at high pressure	
	and temperature in presence of catalyst.	
	Ex.	
	H C C H H C C H	
2-d	Methods of preparation of alkenes: (Any 2)	2 marks
	1) By Dehydration of alcohols:	each for
	When alcohols methods is heated in presence of sulphuric acide, water	any 2
	is eliminated and alkene is formed.	
	H_3C -CH-CH ₂ $\xrightarrow{H_2SO_4}$ $CH_3 - CH = CH_2 + H_2O$ H OH - Propanol propene	
	2) By dehydrogenation of alkyl halide :	
	When alkyl halide heated with alcoholic solution of Na or k-hydroxide,	
	hydrogen halide is eliminated and alkene is formed.	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Industrial Chemistry

Subject code: 17312 Page 9 of 31

3) By dehalogenation of vicinal dihalide. :

A compound having two halogen atoms on adjacent carbon atoms is called a vicinal dehalide. Alkanes are formed when vicinal dehalids are heated with Zn-dust in ethyl alcohol.

4) By cracking of Alkanes:

Alkanes when heated at 500 - 700 °c in absence of air, decomposes to yield lower molecular weight alkenes, alkanes and hydrogen.

a)
$$CH_3 - CH_3 \xrightarrow{600^{\circ}c} CH_2 = CH_2 + CH_4 + H_2$$

Ethane ethylene methane

b)
$$CH_3 - CH_2 - CH_3 \xrightarrow{600\,^{\circ}c} CH_3 - CH = CH_2 + CH_2 = CH_2 + CH_4 + H_2$$

Propane Ethylene methane

2-e **Isomerism in alkyl halides:** The isomerism exhibited by alkyl halides is of two types: Chain isomerism and Position isomerism

Chain isomerism: Paraffins exhibits chain isomerism. Alkyl halides being derivatives of paraffins show chain isomerism depending upon the nature of the

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION <u>Model Answer</u>

ect title: Indu	strial Chemistry Subject code : 17312 Page 17312	age 10 of 31
	chain whether it is straight or branched. For example, difference between the	
	following bromo derivatives of butane is due to difference in the nature of the	
	chain.	
	CH ₃ .CH ₂ . CH ₂ .CH ₂ Br n butyl bromide	
	CH ₃ - CH- CH ₂ Br Isobutyl bromide	
	CH ₃	
	Position isomerism: Another type of isomerism exhibited by alkyl halide is	
	due to the difference in the position of the halogen atom in the same chain and	
	is termed as position isomerism.	
	Ex. CH ₃ .CH ₂ I n- propyl iodide	
	And CH ₃ .CH I. CH ₃ Isopropyl iodide	
	Both have straight chain formula but differ in the position of the halogen atom.	
2-f	Differentiate between primary, secondary and tertiary alcohols.	
	To differentiate between primary, secondary and tertiary alcohols, four methods	2 marks
	are used	each for
	(1) Oxidation method (2) Action of hot reduced cu. (3) victor mayer's	any 2
	method (4) Lucas test.	

1) Oxidation method :- i) primary alcohols easily oxidized to aldehydes

original alcohol.

and then to acids, containing same number of carbon atoms, as the

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION <u>Model Answer</u>

Subject title: Industrial Chemistry

Subject code: 17312 Page 11 of 31

ii) Secondary alcohol, gives ketone, which on prolonged oxidation,by action of oxidizing agent gives acids.

Isopropyl alcohol acetone acetic acid

iii)Tertiary alcohol are oxidized by acid oxidizing agents to give mixture of keton and acid

$$\begin{array}{c|c} CH_3 \\ \hline \\ CH_3\text{-}CHOH \\ \hline \\ CH_3 \end{array} \qquad \begin{array}{c} [O] \\ \hline \\ CH_3\text{-}C=O \end{array} \qquad \begin{array}{c} [O] \\ \hline \\ CH_3\text{-}COOH \\ \hline \\ \\ CH_3 \end{array}$$

Tertiary butyl alcohol acetone

acetic acid

(2) By action of hot reduced Cu: with hot reduced cu at 300°c, primary alcohol gives aldehydes secondary gives ketone and tertiary alcohols gives olefins.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **12** of **31**

ic. mau	strial Chemistry Subject code . 17512	Page 12 01 31
	Isopropyl alcohol acetone	
	(secondary)	
	CH_3	
	Cu/300 ⁰ C	
	CH_3 - C +	
	CH ₃ CH ₃	
	Tertiary butyl alcohol isobutylene	
	Note: Other two methods are also to be considered	
3	Any 4	16
3-a	(i) 2,3 dimethyl heptane	
	H ₃ C-CH-CH ₂ -CH ₂ -CH ₂ -CH ₃	2
	I I	
	CH ₃ CH ₃	
	(ii) 2-methyl propane	2
	H ₃ C-CH-CH ₃	
	I	
	CH ₃	
3-b	Bayers strain theory-	4
	This theory based on the fact that the normal angle between any pair of bonds	
	of carbon atom is 109 ⁰ 28'. Baeyer postulated that any deviation of bond angles	
	from the normal tetrahedral value impose condition of internal strain on the	
	ring.He also assumed that all cycloalkanes were planar & calculated the angles	
	through which each of the valency bond was deflected from the normal	
	direction in the formation of various rings. It is called angle strain which	

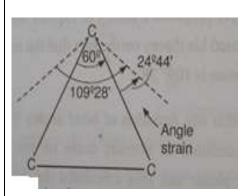
(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION <u>Model Answer</u>

Subject title: Industrial Chemistry

Subject code: 17312 Page 13 of 31


determine stability of ring.

L	Cyclopropane	\triangle	60°
2	Cyclobutane		90"
3.	Cyclopentane		108°
4.	Cyclohexane	0	120°

In cyclopropane three c atoms occupy the corners of an equilateral triangle. Therefore bond angles of 60° . Normal angle $109^{\circ}28$ ' is compressed to 60° & that each of the two bonds involved is pulled in by $\frac{1}{2}(109^{\circ}28'-60^{\circ})$

½(49⁰28')

 $=24^{0}44$

Angle strain in cyclopropane

The value represents angle strain or the deviation through which each bond

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title

e: Industrial	Chemistry	Subject code:	17312 P	age 14 of 31
be	nds from the normal value.			
	1. Cyclopropane	24*44*		
	2. Cyclobutane	9°44'		
- 1	3. Cyclopentane	0"44"		
	4. Cyclohexane	-5° 16'		
Th	ne angle strain for other cycloalkanes ne angle strain is maximum in case of clopropane should be highly straine	of cyclopropane. Accord	ing to this theory	
3-c St	ructure of benzene-			2
+	H H C C H H C C C H H C C C H	C H		
Pı	reparation method of benzene-			1 mark
	By heating an aromatic acid or its so OOH group)	odium salt with sodalime	(Removal of	each for any 2
				methods

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Industrial Chemistry Subject code: 17312 Page **15** of **31**

	$C_6H_5COONa + NaOH \longrightarrow C_6H_6 + Na_2CO_3$	
	Sodium benzoate benzene	
	2)By the hydrolysis of sulphonic acid with superheated steam	
	$C_6H_5SO_3H + H_2O \longrightarrow C_6H_6 + H_2SO_4$	
	Benzene sulphonic benzene	
	acid	
	Note: Any other method should be given mark	
3-d	Action of ammonia on phenol	2
	When phenol is heated with ammonia in prersence of unhydrus zinc chloride	
	then formation of Aniline takes place	
	Action of H_2SO_4 on phenol – Phenol when treated with conc. H_2SO_4 at room temp. gives o-phenol sulphonic acid. OH OH SO ₃ H HO-SO ₃ H 15-20°C Phenol sulfuric acid o-phenol sulphonic acid	2
3-е	Chain isomerism-Alcohol show chain isomerism depending upon nature of	
	chain i.e. straight or branched.	2
	CH ₃ CH ₂ CH ₂ OH n-butyl alcohol	
	CH ₃ -CH-CH ₂ -OH	
	I	
	CH ₃	
-		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION <u>Model Answer</u>

17312 Subject title: Industrial Chemistry Subject code: Page 16 of 31 The isomerism is due to the difference in the nature of chain.i.e.straight or branched **Position isomerism**-It is due to the difference in the position of hydroxyl group in the same chain. Both have straight chain formula but differ in the position of hydroxyl group. Functional isomerism-Monohydric alcohols are isomeric with ethers, general 1 formula for both of these CnH2n+2O.So ethanol C₂H₅OH is isomeric with dimethyl ether, CH₃.O.CH₃ & propanol, C₃H₇OH is isomeric with ethylmethyl ether C₂H₅.O.CH₃. This type of isomerism is due to the presence of different functional groups. 3-f Quinonoid theory: This theory explains the color changes in titrations on the 4 basis of intramolecular changes. This theory believes that-1. An acid base indicator is either a weak acid or a weak base. 2. An indicator consists of an equilibrium mixture of at least two tautomeric forms one is benzenoid while the other is Quinonoid form. 3. The two forms posses different colors. 4. Out of these forms, one exists in an acid solution & the other form exists in an alkaline solution. 5. The Quinonoid form is generally deeper in colour than beenzenoid form. 6.As the PH of the solution containing an indicator changes one form of the indicator changes to the other & as a result of this the solution shows a change of colour There are two tautomeric forms of methyl orange .The Quinonoid form (red form)exists in an acidic solution & it passes to the Benzenoid form (yellow) as the PH changes to the alkaline side. Phenolphthalein is colorless in an acidic solution where it exists in the

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code : 17312 Subject title: Industrial Chemistry Page **17** of **31**

ic. maus	trial Chemistry Subject code: 1/312	age 17 of 31
	Benzenoid form .If an alkali is added, it changes to the Quinonoid form &	
	imparts pink color to the solution	
	CH — CH	
	-c c c c c	
	ch=ch/	
	Benzenoid form Quinonoid form	
4	Any 4	16
4-a	Organic compounds are classified into four categories on the basis of structure.	
	1. Aliphatic compounds :	4
	Which consist of open chain of carbon atoms are called aliphatic	
	compounds.	
	Example: (Any 1)	
	a) Propane CH ₃ -CH ₂ -CH ₃	
	b) Acetic acid CH ₃ ⁻ COOH	
	2. Alicyclic compounds:	
	These are cyclic compounds composed of ring of carbon atoms with	
	properties similar to aliphatic compounds.	
	Example: (Any 1)	
	CH ₂	
	a) OR	
	CH2 CH2	
	cyclopropane	

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Industrial Chemistry Subject code: 17312 Page **18** of **31** H₂C OR b) Cyclobutane OR c) Cyclobexane 3. Aromatic compounds: These are cyclic compounds having six membered ring of carbon atoms with alternate single and double bonds Example: a) Benzene b) Teluene CH3

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

17312 Subject title: Industrial Chemistry Subject code: Page 19 of 31 4. Heterocyclic compounds: These are cyclic compounds in which ring consist of atoms atoms and some other element such as oxygen, nitrogen, sulphur. Example: (Any 1) pyrrole a) pyridine furan Thiopheno 4-b **Saturated compounds** –Hydrocarbons in which all the bonds of carbon atoms are fully utilized & cannot take up more hydrogen atoms are known as saturated compounds. e.g. alkanes CH₄-methane 1 **Unsaturated hydrocarbons** – Hydrocarbons in which all the bonds of carbon atoms are not fully utilized & can take up more hydrogen atoms are known as 1 unsaturated hydrocarbons. The carbon atoms are join to each other by double or triple bond.

1

e.g. Alkenes & Alkynes(C_2H_4 , C_2H_2)

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **20** of **31**

	Subject code . 17312	age 20 01 31
4-c	$\begin{array}{c c} OH & OH \\ \hline \\ Br_2 & \\ \hline \\ Br & \\ \hline \\ Br & \\ \end{array}$	4
	2,4,6-tribromophenol	
4-d	Addition of bromine water to phenol gives 2,4,6-tribromophenol	2
4-u	When an alkene is passed through cold & conc. H_2SO_4 it undergoes addition to form alkyl hydrogen sulphate .This on heating with water gets hydrolysed to form alcohol. $C_2H_4 + H_2SO_4 \rightarrow CH_3$	2
	I	2
	CH ₂ HSO ₄	
	CH ₃ I CH ₂ HSO ₄ + H ₂ O \rightarrow CH ₃ CH ₂ OH + H ₂ SO ₄	
4-e	Raoults law –The vapour pressure of any solution containing a non volatile	2
	solute in a volatile solvent, is proportional to the molefraction of the solvent in	
	the solution.	
	Classification of solution:	
	1. Ideal solution –the like forces must be similar to the unlike forces.	
	There should be no change in volume on mixing the two liquids. No change in	2
	enthalpy on mixing. In an ideal solution each component & also the solution should obey Raoults law.	
	1	1

(Autonomous)

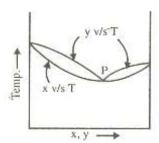
(ISO/IEC - 27001 - 2005 Certified)

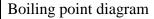
SUMMER-18 EXAMINATION <u>Model Answer</u>

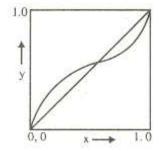
Subject title: Industrial Chemistry

Subject code: 17312 Page 21 of 31

Examples of ideal solutions-Hexane + Heptane,Benzene + Toluene


2. Non ideal solution –The solutions which do not obey Raoults law. Like forces are not similar to unlike forces. Change in volume & enthalpy on mixing the two liquid. There are two types of non ideal solutions-solutions which show positive deviation from Raoults law & negative deviation from Raoults law.


Examples-positive deviation-Acetone + carbon disulphide Negative deviation - Chloroform + acetone


4-f **Minimum boiling azeotropes**-is solution of definite compositions which boils at a definite temp.which is lower than the B.P.of both the components of solution.

Minimum boiling azeotropes show positive deviation from Raoults law.

Examples of minimum boiling azeotrope /azeotropic mixture-ethanolwater, chloroform-methanol etc.

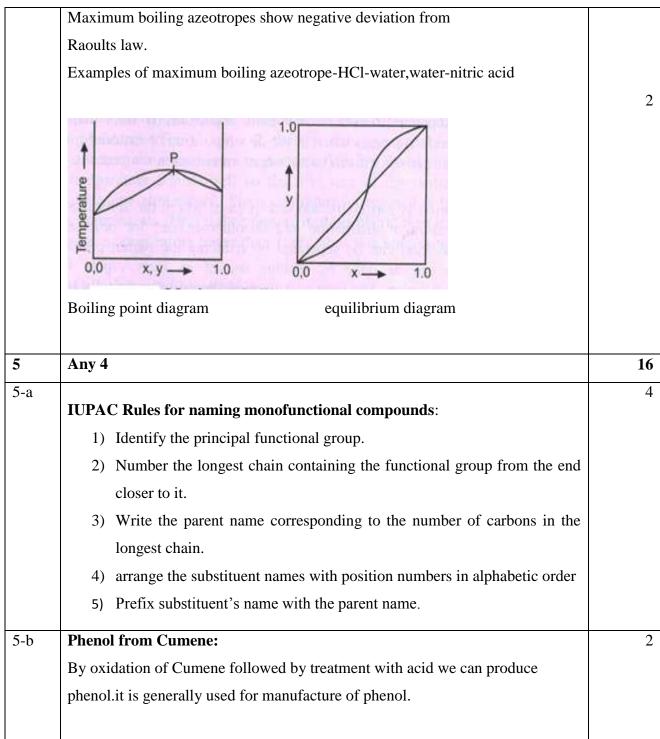
2

equilibrium diagram

Maximum boiling azeotrope is a solution of definite composition which boils at a temp. higher than the B.P. of both the components of the solution

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)


SUMMER-18 EXAMINATION <u>Model Answer</u>

Subject title: Industrial Chemistry

Subject code: 17312

Page 22 of 31

Maximum boiling azeotropes show negative deviation from

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **23** of **31**

ic. maa	striar Chemistry	540	geet code . 17312	age 23 01 31		
	Cumene Cumene l	:Ö—Ö—H -C—CH3 :ÖH H3C+ hydroperoxide pher	0 + CH ₃ - C - CH ₃	2		
5-c	Physical properties of alco			1 mark		
	1) Higher members are color			each		
	2) Lower members are solub	•	solvents.			
	3) These are lighter than wat		501.			
	4) Lower members have pleasant smell while higher member are					
	odorless & tasteless.					
	0.00110.00 00 0.0010.00					
5-d	Distinguish between ideal a	and non ideal solution	<u> </u>	1 mark		
				each for		
	Ideal solutions	Non-i	deal solutions	any 4		
		Positive deviation	Negative deviation			
		from Raoult's law	from Raoult's law			
	1.Obey Raoult's law at	1. Do not obey	1. Do not obey Raoult's			
	every range of	Raoult's law.	law.			
	concentration.					
	2. $\Delta H_{\text{mix}} = 0$; neither heat	2. AH _{mix} > 0.	2. AH _{mix} < 0. Exothermi			
	is evolved	Endothermic c dissolution; heat is				
	nor absorbed during	dissolution; heat is	evolved.			
1	1.1	1	II	11		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **24** of **31**

dissolution.	absorbed.	
3. $\Delta V_{\text{mix}} = 0$; total volume	3. $\Delta V_{\text{mix}} > 0$. Volume	3. $\Delta V_{\text{min}} < 0$. Volume is
of solution is equal to sum	is increased after	decreased during
of volumes of the	dissolution.	dissolution.
components.		
4.	4. $p_A > p_A^0 X_A;$	4. $p_A < p_A^0 X_A$; $p_B < p_B^0 X_B$
$P = p_A + p_B = p_A^0 X_A + p_B^0 X_B$	$p_B > p_B^0 X_B$	
i.e.,	$p_A + p_B > p_A^0 X_A + p_B^0 X_B$	
$p_A = p_A^0 X_A : p_B = p_B^0 X_B$		$p_A + p_B < p_A^0 X_A + p_B^0 X_B$
5. A-A, A-B, B-B Intera	5. A-B Attractive	5. A-B Attractive force
ctions should be same,	force should be	should be greater
i.e., 'A' and 'B' are	weaker	than $A-A$ and $B-B$ attr
identical in shape, size	than $A - A$ and $B - B$	active forces. 'A' and 'B'
and character.	attractive forces. 'A'	have different shape, size
	and 'B' have different	and character.
	shape, size and	
	character.	
6. Escaping tendency of	6. 'A' and 'B' escape	6. Escaping tendency of
'A' and 'B' should be same	easily showing higher	both components 'A' and
in pure liquids and in the	vapour pressure than	'B' is lowered showing
solution.	the expected value.	lower vapour pressure
		than expected ideally.
7.Examples:	7. Examples:	7. Examples:
benzene + toluene:	Acetone +ethanol	Acetone + aniline;
n-hexane + n-heptane;		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **25** of **31**

e	Meth	ods of choosing indicators for aci	id- alkali titration	n;		
	an appropriate indicator will change colour at the equivalence point of the titration.					
		Litmus is not used in titrations be changes colour is too great.	ecause the pH rang	ge over which it		
	 Universal indicator which is actually a mixture of several indicators displays a variety of colours over a wide pH range so it can be used to determine an approximate pH of a solution but is not used for titrations. an appropriate indicator will change colour at the equivalence point of the titration. 					
		Litmus is not used in titrations be changes colour is too great.	ecause the pH rang	ge over which it		
	•	nce point & deduce				
		pH of salts formed from reactions of acids & bases (25°C)	Strong Base	Weak Base		
		Strong Acid	pH = 7	pH < 7		
		Weak Acid	pH > 7	pH = 7		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Industrial Chemistry

Subject code: 17312 Page 26 of 31

• Use the table of indicators to choose an indicator which changes colour over a pH range that includes the equivalence point

Examples:

Strong Acid - Strong Base titration

$$HCl(aq) + NaOH(aq) ----> NaCl(aq) + H2O(l)$$

At equivalence the only species present will be NaCl(aq) & H₂O(l)

The solution of a salt of a strong acid and a strong base will have a pH=7

NaCl(aq) will have a pH=7

A suitable indicator would be bromothymol blue (pH range 6.2 - 7.6) or phenol red (pH range 6.8 - 8.4)

Strong Acid - Weak Base titration

$$HCl(aq) + NH_3(aq) ----> NH_4Cl(aq)$$

 NH_4Cl is the salt of a strong acid & a weak base, so a solution of NH_4Cl will have a pH < 7 (NH_4^+ is a weak acid)

A suitable indicator would be methyl orange (pH range 3.1 - 4.4) or methyl red

(pH range 4.4 - 6.0)

Weak Acid - Strong Base titration

$$CH_3COOH(aq) + NaOH(aq) ----> CH_3COONa(aq) + H_2O(l)$$

CH₃COONa is the salt of a weak acid & a strong base, so a solution of

 CH_3COONa will have a pH > 7 (CH_3COO^- is a weak base)

A suitable indicator would be phenolphthalein (pH range 8.3 - 10.0) or

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **27** of **31**

	thymol blue (pH 8.0 - 9.6)	
5-f	Methods for preparation of cycloalkanes (any one)	2
	i) From Di-halides :	
	Terminal di-halide are treated with sodium or zinc to form cycloalkanes.	
	H_2C CH_2Cl $+2NQ \xrightarrow{\Delta} H_2C$ CH_2 CH	
	1,3 dichloropane egolopropane	
	ii) From aromatic hydrocarbons :	
	$H - C$ $C - H$ $+ 3H_2$ $heat$ $H C$ $C + H$ H H H H H H H H H	
	Benzene cyclohexane	
	physical properties of cycloalkanes:	
	1. Cyclopropane and cyclobutane are gases at room tempareture.the	
	remaining cycloalkanes are liquids.	2
	2. melting and boiling points of cycloalakane increases with increase of	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code: 17312 Subject title: Industrial Chemistry Page **28** of **31**

	Subject code : 17312	
	molecular weight.	
	3. Cycloalkanes are insoluble in water but dissolves in ethanol and water.	
6	Any four	16
6-a	Polymerisation: It is the process of combination of two or more monomeric	2
	units to form a high molecular weight compound with or without the	
	elimination of H ₂ O , HCl etc. under specific conditions of temperature pressure	
	and catalyst.	
	Example : $\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
6-b	Friedel-crafts reaction:	
	Benzene reacts at room temperature with a chloro alkane (for example,	2
	chloromethane or chloro ethane) in the presence of aluminium chloride as a	2
	catalyst.	
	It is known as Friedel-Crafts retion of benzene	
	+ CH3 AICI3 + HCI	
	Benzene Toluene	
	Grignard's reaction:	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject code : 17312 Subject title: Industrial Chemistry Page **29** of **31**

ie: inaus	Strial Chemistry Subject code: 1/312	age 29 of 31
	Br MgBr 1. OH Ph ether 2. H ₃ O ⁺	2
6-c	Methods of preparation of alkenes:	2
	By Dehydration of alcohols :	
	When alcohols methods is heated in presence of sulphuric acide, water	
	is eliminated and alkene is formed.	
	$H_{3}C\text{-}CH\text{-}CH_{2} \xrightarrow{\hspace{1cm}} CH_{3} - CH = CH_{2} + H_{2}O$ $H OH$ - Propanol propene By dehydrogenation of alkyl halide : When alkyl halide heated with alcoholic solution of Na or k-hydroxide, hydrogen halide is eliminated and alkene is formed. $H_{3}C - CH - CH_{2} + koH \xrightarrow{\hspace{1cm}} \Delta$ $H_{3}C - CH - CH_{2} + koH \xrightarrow{\hspace{1cm}} Alcohol$ $H Br$ - Bromopropane propene	2
6-d	Ostwald theory :Ostwald's theory considers indicator to be a weak acid or base	4
	whose unionised forms differently coloured. In presence of acid or base, ie pH	
	change, there is ionization of indicator and hence the colour change appears.	
	For example	
	phenolphthalein	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title	title: Industrial Chemistry		Subject code:	17312	Pa	ge 30 of 31
		phenolphthalein is a weak acid (PhH)				
		PhH<>Ph- + H+(1)				
		(colourless (Pink in base)				
		in acid)				
		H++OH-<>H2O				
		In presence of an acid (H+) equilibrium (1) is	displaced toward	ds the left ha	and	
		side (a case of LeChatelier's principle); when	strong base like	NaOH is add	ded,	
		this equilibrium is displaced towards right han	nd side and there	is colour ch	ange	
		from colourless to pink when pH changes. Th	is indicator is no	t suitable for	r	
		titrating weak base since weak base can't furn	ish enough OH-	that can read	et	
		with H+ of the phenolphthalein and can impa	rt pink colour on	ly after exce	ss of	
		weak base is added.				
	6-е					4
		Azeotropic Mixture				
		Azeotropes are defined as the mixtures of liqu	uids which boil at	constant		
		temperature like a pure liquid and possess san	ne composition o	f componen	its in	
		liquid as well as in vapour phase. Their dew p	oint and bubble	point are		
		identical. Azeotropes are also called constant	boiling mixtures	because wh	ole of	
		the azeotropes changes into vapour state at co	nstant temperatu	re and their		
		components can not be separated by fractional	l distillation.			
		Azeotrope can not be separated by distillation	because the dew	point and		
		bubble point are identical.				

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

SUMMER-18 EXAMINATION Model Answer

Subject title: Industrial Chemistry Subject code: 17312 Page **31** of **31**

6-f	Ethylamine from ethyl iodide:	4
	When alkyl halides are heated with ethanoic solution of ammonia under pressure in a sealed tube a mixture of amines are obtained.	
	$C_2H_5I + H NH_2 \longrightarrow C_2H_5NH_2 + HI$	