Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	A) a) Ans.	Solve any six State the meaning and unit of moment of inertia. Moment of inertia of a body about any axis is equal to the product of the area of the body and square of the distance of its centroid from that axis.	1	(12)
		OR Moment of inertia of a body about any axis is defined as the sum of second moment of all elementary areas about that axis. $\text { Unit- } \mathrm{mm}^{4}, \mathrm{~cm}^{4}, \mathrm{~m}^{4}$	1	2
	b) Ans.	Determine the radius of gyration of a square of side ' a '. For a square section of side a $K_{x x}=K_{y y}=\sqrt{\frac{I_{x x} \text { or } I_{y y}}{A}}=\sqrt{\frac{a^{4}}{\frac{12}{a^{2}}}}=\sqrt{\frac{a^{2}}{12}}=\frac{a}{2 \sqrt{3}}$	2	2
	c) Ans.	State Hook's law. It states, when a material is loaded within its elastic limit, the stress produced is directly proportional to the strain.	2	2
	d) Ans.	State the meaning of composite section. If two or more members of different materials are connected together and are subjected to the loads such a section is called as composite section.	2	2

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	b)	Define average shear stress. Sketch the shear distribution diagram for a rectangular section stating the relation between maximum shear stress and average shear stress. Average shear stress: It is the ratio of shear force to the cross sectional area of the beam. $q_{\max }=1.5 q_{\text {avg }}$	1	4
		Fig. Shear Stress Distribution Diagram	2	
	c) Ans.	Enlist and sketch different end conditions for long column. Show the buckled shape and effective length of each. i. When both end of column are hinged, $\mathrm{Le}=\mathrm{L}$ ii. When both end of column are fixed, $\mathrm{Le}=\frac{L}{2}$ iii. When one end is fixed and other end is hinged, $\mathrm{Le}=\frac{L}{\sqrt{2}}$ iv. When one end is fixed and other end is free, $\mathrm{Le}=2 \mathrm{~L}$	2	4
		Fig. Buckled Shape and Effective Length of Columns	2	

			Marks	Total Marks

$\begin{gathered} \text { Que. } \\ \text { No. } \\ \hline \end{gathered}$	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	a)	Solve any two:		(16)
		A MS flat 25 mm wide and 6 mm thick is 2 m long. It has to transmit a pull \mathbf{P}. Evaluate P if the stress is limited to 120 MPa and the elongation is limited to 0.8 mm . Take $E=210$ GPa.		
		Data: $\mathrm{b}=25 \mathrm{~mm}, \mathrm{t}=6 \mathrm{~mm}, \mathrm{~L}=2 \mathrm{~m}, \sigma=120 \mathrm{MPa}, \delta \mathrm{L}=0.8 \mathrm{~mm}, \mathrm{E}=210 \mathrm{Gpa}$.		
		$\delta L=\frac{P L}{A E}$	1	
		$P=\frac{\delta L \times A \times E}{L}$	1	
		$P=\frac{0.8 \times 25 \times 6 \times 210 \times 10^{3}}{2000}$	1	
		$P=12600 \mathrm{~N}$	1	8
		Check for, $\sigma_{\text {max }}$ $\sigma_{\max }=\frac{P}{A}=\frac{12600}{25 \times 6}=84 \mathrm{~N} / \mathrm{mm}^{2}\left\langle 120 \mathrm{~N} / \mathrm{mm}^{2}\right.$	3	
		$\mathrm{P}=12.6 \mathrm{kN}$	1	

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	c) Ans.	A metal bar of diameter 20 mm and length 2 m is axially pulled by a force of 30 kN . Determine linear strain, change in length, change in diameter and change in volume of the bar if $E=80$ GPa and $\mu=0.24$ Data: $\mathrm{D}=20 \mathrm{~mm} \mathrm{~L}=2 \mathrm{mP}=30 \mathrm{kN} \mathrm{E}=80 \mathrm{GPa} \mu=0.24$ To find: $\mathrm{e}=? \quad \delta \mathrm{~L}=? \quad \delta \mathrm{~d}=? \quad \delta \mathrm{v}=?$ 1. Calculate $\delta \mathrm{L}$ $\begin{aligned} & \delta L=\frac{P L}{A E} \\ & \delta L=\frac{30 \times 10^{3} \times 2000}{\frac{\pi}{4} \times 20^{2} \times 80 \times 10^{3}} \\ & \delta L=2.387 \mathrm{~mm} \end{aligned}$ 2. Calculate $\delta \mathrm{d}$ $\begin{aligned} & \mu=\frac{\text { Lateral strain }}{\text { Linear strain }} \\ & 0.24=\frac{\left(\frac{\delta d}{d}\right)}{\left(\frac{\delta L}{L}\right)}=\frac{\left(\frac{\delta d}{20}\right)}{\left(\frac{2.387}{2000}\right)} \\ & \delta d=0.00573 \mathrm{~mm} \end{aligned}$ 3. Calculate e $e=\frac{\delta L}{L}=\frac{2.387}{2000}=1.193 \times 10^{-3}$ 4. Calculate $\delta \mathbf{v}$ $\begin{aligned} & e_{v}=\frac{\sigma_{x}}{E}(1-2 \mu) \\ & \frac{\delta v}{v}=e(1-2 \mu) \\ & \delta v=(1-2 \mu) A L \\ & \delta v=1.1935 \times 10^{-3}(1-2 \times 0.24) \times \frac{\pi}{4} \times 20^{2} \times 2000 \\ & \delta v=390 \mathrm{~mm}^{3} \end{aligned}$	1 1	8

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	b) Ans.	An axial pull of 150 kN was applied on a bar of 20 mm diameter. The extension over a gauge length of 200 mm was observed to be 0.48 mm and the diameter was reduced by 0.012 mm . Calculate Poisson's ratio and three modulli. $\begin{aligned} & \text { Data: } \mathrm{P}=150 \mathrm{kN} \mathrm{~d}=20 \mathrm{~mm} \mathrm{~L}=200 \mathrm{~mm} \delta \mathrm{~L}=0.48 \mathrm{~mm} \delta \mathrm{~d}=0.012 \mathrm{~mm} \\ & \text { Find: } \mu=? \quad \mathrm{E}=? \quad \mathrm{G}=? \quad \mathrm{~K}=? \end{aligned}$ I. Calculate E: $\begin{aligned} & \mathrm{E}=\frac{\mathrm{PL}}{\mathrm{~A} \delta \mathrm{~L}} \\ & \mathrm{E}=\frac{150 \times 10^{3} \times 200}{\frac{\pi}{4} \times 20^{2} \times 0.48} \\ & \mathrm{E}=198.943 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ II. Calculate μ : $\begin{aligned} & \mu=\frac{\text { Lateral Strain }}{\text { Linaer Strain }}=\frac{\left(\frac{\delta \mathrm{d}}{\mathrm{~d}}\right)}{\left(\frac{\delta \mathrm{L}}{\mathrm{~L}}\right)} \\ & \mu=\frac{\left(\frac{0.012}{20}\right)}{\left(\frac{0.48}{200}\right)}=0.25 \end{aligned}$ III. Calculate G: $\begin{aligned} & \mathrm{E}=2 \mathrm{G}(1+\mu) \\ & 198.943 \times 10^{3}=2 \mathrm{G}(1+0.25) \\ & \mathrm{G}=79.577 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ IV. Calculate K: $\mathrm{E}=3 \mathrm{~K}(1-2 \mu)$ $198.943 \times 10^{3}=3 \mathrm{~K}(1-2 \times 0.25)$ $\mathrm{K}=132.628 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$	1 1	8

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	c)	A beam is loaded and supported as shown in Figure (2). Calculate magnitude and position of maximum BM. Draw SF diagram and BM diagram. Figure 2 1. Calculation of support reactions: $\begin{aligned} & \sum_{(16 \times 3} \mathrm{M}_{\mathrm{A}}=0 \\ & \mathrm{R}_{\mathrm{D}}=38 \mathrm{kN} \\ & \sum \mathrm{~F}_{\mathrm{y}}=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{D}}=(16 \times 3)+10 \times 3+22 \times 4=\mathrm{R}_{\mathrm{D}} \times 5 \\ & \mathrm{R}_{\mathrm{A}}+38=80 \\ & \mathrm{R}_{\mathrm{A}}=42 \mathrm{kN} \end{aligned}$ 2. SF calculations: SF at $\mathrm{A}_{\mathrm{L}}=0 \mathrm{kN}$ $\begin{aligned} & A_{R}=+42 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{L}}=+42-(16 \times 3)=-6 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{R}}=-6-10=-16 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{L}}=-16 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{R}}=-16-22=-38 \mathrm{kN} \\ & D_{\mathrm{L}}=-38 \mathrm{kN} \\ & D_{R}=-38+38=0 \mathrm{kN}(\therefore \text { ok }) \end{aligned}$ 3. Location of point of contra shear: Let $\mathrm{AE}=\mathrm{x}$ SF at $\mathrm{E}=0$ $42-16 \mathrm{x}=0$ $\mathrm{x}=2.625 \mathrm{~m}$ from A 4. Bending moment calculations: BM at A and $\mathrm{D}=0$ (A and D are simple supports) $\mathrm{C}=+38 \times 1=+38 \mathrm{kN} . \mathrm{m}$ B $=+38 \times 2-22 \times 1=+54 \mathrm{kN} . \mathrm{m}$ $\mathrm{E}=+42 \times 2.625-\frac{16 \times 2.625^{2}}{2}=+55.125 \mathrm{kN} . \mathrm{m}$	1/2	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	c)		1	8

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	a) Ans.	Solve any two from a), b) and c): Draw SF and BM diagram for an overhanging beam loaded as shown in Figure (3). Locate the position of point of contra-flexure from A. Figure 3 1. Calculation of support reactions: $\begin{aligned} & \sum M_{\mathrm{A}}=0 \\ & (40 \times 4) \times 2+16 \times 5.5=4 R_{\mathrm{B}} \\ & R_{\mathrm{B}}=102 \mathrm{kN} \\ & \sum F_{\mathrm{y}}=0 \\ & R_{\mathrm{A}}+R_{\mathrm{B}}=(40 \times 4)+16 \\ & R_{\mathrm{A}}+102=176 \\ & R_{\mathrm{A}}=74 \mathrm{kN} \end{aligned}$ 2. SF calculations: SF at $\mathrm{A}=+74 \mathrm{kN}$ $\begin{aligned} & \mathrm{B}_{\mathrm{L}}=+74-(40 \times 4)=-86 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{R}}=-86+102=+16 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{L}}=+16 \mathrm{kN} \\ & \mathrm{C}=-16+16=0 \mathrm{kN}(\therefore \text { ok }) \end{aligned}$ 3. Bending moment calculations: BM at $\mathrm{A}=0$ (Support A is simple) $\mathrm{C}=0(\mathrm{C}$ is free end) $\mathrm{B}=-16 \times 1.5=-24 \mathrm{kN} . \mathrm{m}$ 4. Maximum bending moment calculations: Let $\mathrm{AD}=\mathrm{x}$ SF at $\mathrm{D}=0$ $74-40 x=0$ $\mathrm{x}=1.85 \mathrm{~m}$ from support A BM at $\mathrm{D}=+74 \times 1.85-40 \times \frac{(1.85)^{2}}{2}=+68.45 \mathrm{kN} . \mathrm{m}$ 5. Location of point of contra flexure: Let, E be point of contra-flexure $(\mathrm{AE}=\mathrm{y})$ $B M$ at $E=0$ $74 y-40 \frac{\mathrm{y}^{2}}{2}=0$ $y=3.7 \mathrm{~m}$ from support A	1/2	(16)

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	b) i) ii) Ans. ii) Ans.	A 2 m long cantilever carries a vertical downward point load of 5 kN at free end. It also carries a clockwise couple of $6 \mathrm{kN}-\mathrm{m}$ at 1 m from fixed end. Calculate SF and BM at free end, fixed end and 1 m from fixed end of cantilever. Diagram Draw SF and BM diagram for cantilever in Q. 5 (b)(i) 1. SF calculations: SF at $\mathrm{A}=+5 \mathrm{kN}$ $\begin{aligned} & \mathrm{B}=+5 \mathrm{kN} \\ & \mathrm{C}=+5 \mathrm{kN} \end{aligned}$ 2. Bending moment calculations: BM at $\mathrm{C}=0$ $\begin{aligned} & \mathrm{B}_{\mathrm{R}}=-5 \times 1=-5 \mathrm{kN} . \mathrm{m} \\ & \mathrm{~B}_{\mathrm{L}}=-5 \times 1-6=-11 \mathrm{kN} . \mathrm{m} \\ & \mathrm{~A}=-5 \times 2-6=-16 \mathrm{kN} . \mathrm{m} \end{aligned}$	1	8

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	c) Ans.	The Tee section in Q. 2 (a) is used for a simply supported beam of span 5 m carrying an udl of $32 \mathrm{kN} / \mathrm{m}$. (including self weight) on entire span. Determine the magnitude and the nature of bending stress at top and bottom fibres and sketch the bending stress distribution diagram. Data: $\mathrm{L}=5 \mathrm{~m}, \mathrm{w}=32 \mathrm{kN} / \mathrm{m}$ Calculate: σ_{c} and σ_{t} Ref Q. 2 (a) $\mathrm{Y}_{\mathrm{c}}=52.857 \mathrm{~mm} \quad \mathrm{Y}_{\mathrm{t}}=147.143 \mathrm{~mm} \quad \mathrm{I}_{\mathrm{NA}}=15.226 \times 10^{6} \mathrm{~mm}^{4}$ $\begin{aligned} & \mathrm{M}=\frac{\mathrm{wL}}{}{ }^{2} \\ & 8 \\ & =\frac{32 \times 5^{2}}{8}=100 \mathrm{kN}-\mathrm{m}=100 \times 10^{6} \mathrm{~N}-\mathrm{mm} \\ & \sigma_{\mathrm{c}}=\left(\frac{\mathrm{M}}{\mathrm{I}}\right) \mathrm{y}_{\mathrm{c}} \\ & \sigma_{\mathrm{c}}=\left(\frac{100 \times 10^{6}}{15.226 \times 10^{6}}\right) \times 52.857=347.15 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\mathrm{t}}=\left(\frac{\mathrm{M}}{\mathrm{I}}\right) \mathrm{y}_{\mathrm{c}} \\ & \sigma_{\mathrm{t}}=\left(\frac{100 \times 10^{6}}{15.226 \times 10^{6}}\right) \times 147.143=966.39 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1 1 1 1 1 1 2	8

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	a)	Solve any two:		(16)
		A symmetrical I-section has two flanges each of $\mathbf{1 2 0} \mathbf{~ m m ~ x ~} 10 \mathrm{~mm}$ and web $10 \mathrm{~mm} \times 180 \mathrm{~mm}$ is used as a beam. At a particular section the shear force is 80 kN . Calculate the average and maximum shear stress.		
	Ans.	Data: $\mathrm{S}=80 \mathrm{kN}$		
		$1 \quad 120 \longrightarrow$		
		$\mathrm{I}_{\mathrm{NA}}=\left(\frac{B D^{3}-b d^{3}}{12}\right)$	1	
		$I_{\mathrm{NA}}=\left(\frac{120 \times 200^{3}-110 \times 180^{3}}{12}\right)=26540000 \mathrm{~mm}^{4}$	1	
		$q_{\max }=\frac{S A \bar{Y}}{b I}$	1	
		$q_{\max }=\frac{80 \times 10^{3} \times[(10 \times 90) \times 45]+[(120 \times 10)(90+5)]}{10 \times 26540000}=46.571 \mathrm{~N} / \mathrm{mm}^{2}$	3	8
		$q_{\text {avg. }}=\frac{S}{A}=\frac{80 \times 10^{3}}{2(120 \times 10)+(10 \times 180)}=\frac{80 \times 10^{3}}{4200}=19.0476 \mathrm{~N} / \mathrm{mm}^{2}$	2	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	c) Ans.	A bar 2.4 m long and 25 mm in diameter is fixed at the top and hangs vertically. It has a collar at the lower end. A load of 1.2 kN falls onto collar from a height of 100 mm . Calculate the maximum instantaneous stress and the maximum instantaneous elongation produced if $\mathbf{E}=205$ GPa. Data: $\mathrm{L}=2.4 \mathrm{~m}, \mathrm{~d}=25 \mathrm{~mm}, \mathrm{P}=1.2 \mathrm{kN}, \mathrm{h}=100 \mathrm{~mm}, \mathrm{E}=205 \mathrm{GPa}$ Calculate: $\sigma_{\max }=$? $\delta \mathrm{L}=$? $\begin{aligned} & \sigma_{\max }=\left(\frac{P}{A}\right)+\sqrt{\left(\frac{P}{A}\right)^{2}+\frac{2 P h E}{A L}} \\ & \sigma_{\max }=\left(\frac{1.2 \times 10^{3}}{\frac{\pi}{4} \times(25)^{2}}\right)+\sqrt{\left(\frac{1.2 \times 10^{3}}{\frac{\pi}{4} \times(25)^{2}}\right)^{2}+\frac{2 \times 1.2 \times 10^{3} \times 100 \times 205 \times 10^{3}}{\frac{\pi}{4} \times(25)^{2} \times 2400}} \\ & \sigma_{\max }=206.8174 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ $\begin{aligned} & \delta L=\frac{\sigma_{\max } \times L}{E} \\ & \delta L=\frac{206.8174 \times 2.4 \times 10^{3}}{205 \times 10^{3}} \\ & \delta L=2.42 \mathrm{~mm} \end{aligned}$	1 2 2 1 1 1	8

