Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(d) And.	Define modulus of rigidity. State its unit. Modulus of rigidity : - The ratio of shear stress to shear strain is called as Modulus of Rigidity. Unit: - $\mathrm{N} / \mathrm{m}^{2}$ Or Pascal Or $\mathrm{N} / \mathrm{mm}^{2}$.	1 1	2
	(e) Ans.	State any four assumptions made in the theory of long column. Assumptions made in the theory of long column are as follows : 1) The material of the column is perfectly homogeneous and isotropic in nature. 2) The column is long enough and it fails due to buckling only. 3) The load on column is exactly vertical and axial type. 4) The self weight of column is neglected. 5) The column is initially straight and of uniform lateral dimensions. 6) The column is stressed upto the limit of proportionality.	$1 / 2$ each (any four)	2
	(f) Ans.	State end conditions for column along with effective lengths (any two). i. When both end of column are hinged, $L_{e}=L$ ii. When both end of column are fixed, $L_{e}=\frac{L}{2}$ iii. When one end is fixed and other end is hinged, $L_{e}=\frac{L}{\sqrt{2}}$ iv. When one end is fixed and other end is free, $L_{e}=2 . L$	1 each (any two)	2
	(g) Ans.	Define strain energy and state its unit. Strain Energy: The energy stored in the material, when it is loaded within its elastic limit, is called as 'Strain Energy'. Unit: N.m or Joule or N.mm.	1 1	2
	(h) Ans.	Define proof resilience. Give its expression. Proof Resilience: The maximum energy stored in the material at the point of elastic limit, is called as 'Proof Resilience'. Expression: $\mathrm{U}_{\max }=\frac{\sigma_{\max }^{2} \times \mathrm{V}}{2 \times \mathrm{E}}$	1 1	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		Solution: Shear force at a section x-x 2.5 m from support $\begin{aligned} \mathrm{S} & =\frac{\mathrm{w} \times \mathrm{L}}{2}-(\mathrm{w} \times 2.5) \\ & =\frac{22 \times 6}{2}-(22 \times 2.5) \\ S & =11 \mathrm{kN} \\ S & =11 \times 10^{3} \mathrm{~N} \\ \mathrm{q}_{\text {avg }} & =\frac{\mathrm{S}}{\mathrm{~A}} \\ & =\frac{11 \times 10^{3}}{\frac{\pi}{4} \times 150^{2}} \\ & =0.622 \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{q}_{\max } & =\frac{4}{3} \times \mathrm{q}_{\mathrm{avg}} \\ & =\frac{4}{3} \times 0.622 \\ \mathrm{q}_{\max } & =0.83 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ OR $\begin{aligned} & \mathrm{A}=\frac{\pi}{8} \times \mathrm{d}^{2}=\frac{\pi}{8} \times 150^{2}=8835.729 \mathrm{~mm}^{2} \\ & \overline{\mathrm{y}}=\frac{4 \times \mathrm{R}}{3 \times \pi}=\frac{4 \times 75}{3 \times \pi}=31.831 \mathrm{~mm} \\ & \mathrm{~b}=\mathrm{d}=150 \mathrm{~mm} \\ & \mathrm{I}=\frac{\pi}{64} \times \mathrm{d}^{4}=\frac{\pi}{64} \times 150^{4}=24850488.76 \mathrm{~mm}^{4} \\ & \mathrm{q}_{\text {at2.5m }}=\frac{\mathrm{S} \times \mathrm{A} \times \overline{\mathrm{y}}}{\mathrm{~b} \times \mathrm{I}}=\frac{11 \times 10^{3} \times 8835.729 \times 31.831}{150 \times 24850488.76}=0.83 \mathrm{~N} / \mathrm{mm}^{2} \\ & \mathrm{q}_{\text {at } 2.5 \mathrm{~m}}=0.83 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	1 1 1 2 1	4

			Marks	Total Marks

Model Answer: Summer 2018

Model Answer: Summer 2018

Model Answer: Summer 2018

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline Q. 3 \& \begin{tabular}{l}
(c) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
A cube of 150 mm side is acted upon by stress along the three directions as 20 MPa (tensile), 30 MPa (compressive) and 17 MPa (compressive). Calculate strains in all the three directions and change in the volume of the cube. Take \(\mathrm{E}=210 \mathrm{GPa}\) and \(\mu=0.29\). \\
Given: \\
\(\sigma_{\mathrm{x}}=+20 \mathrm{~N} / \mathrm{mm}^{2}\) \\
\(\sigma_{\mathrm{y}}=-30 \mathrm{~N} / \mathrm{mm}^{2}\)
\[
\begin{aligned}
\& \mathrm{a}=150 \mathrm{~mm} \\
\& \mathrm{E}=210 \mathrm{GPa}
\end{aligned}
\]
\[
\sigma_{\mathrm{z}}=-17 \mathrm{~N} / \mathrm{mm}^{2}
\]
\[
\mu=0.29
\] \\
To find: \\
\(\mathrm{e}_{\mathrm{x}}, \mathrm{e}_{\mathrm{y}}, \mathrm{e}_{\mathrm{z}}, \delta_{\mathrm{v}}=\) ? \\
Solution: \\
17 MPa (C)
\[
\begin{aligned}
e_{x} \& =\left(\frac{\sigma_{x}}{\mathrm{E}}\right)-\left(\mu \times \frac{\sigma_{y}}{\mathrm{E}}\right)-\left(\mu \times \frac{\sigma_{z}}{\mathrm{E}}\right) \\
\& =\frac{1}{\mathrm{E}}\left(\sigma_{\mathrm{x}}-\mu \times \sigma_{\mathrm{y}}-\mu \times \sigma_{z}\right) \\
\& =\frac{1}{210 \times 10^{3}}(20+(0.29 \times 30)+(0.29 \times 17)) \\
\mathrm{e}_{\mathrm{x}} \& =1.60 \times 10^{-4}
\end{aligned}
\]
\[
\begin{aligned}
e_{y} \& =\left(\frac{\sigma_{y}}{E}\right)-\left(\mu \times \frac{\sigma_{z}}{E}\right)-\left(\mu \times \frac{\sigma_{x}}{E}\right) \\
\& =\frac{1}{\mathrm{E}}\left(\sigma_{y}-\mu \times \sigma_{z}-\mu \times \sigma_{x}\right) \\
\& =\frac{1}{210 \times 10^{3}}(-30+(0.29 \times 17)-(0.29 \times 20)) \\
e_{y} \& =-1.468 \times 10^{-4}
\end{aligned}
\]
\end{tabular} \& 1

1
1
1
1 \& 8

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	(b) Ans.	$\begin{aligned} & \mathrm{E}=\frac{\sigma}{\mathrm{E}}=\left(\frac{\left(\frac{\mathrm{P}}{\mathrm{~A}}\right)}{\left(\frac{\delta_{\mathrm{L}}}{\mathrm{~L}}\right)}\right) \\ & \mathrm{E}=\left(\frac{\left(\frac{200 \times 10^{3}}{\frac{\pi}{4} \times 25^{2}}\right)}{\left(\frac{0.45}{250}\right)}\right) \end{aligned}$ $E=2.26 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{E}=2 \times \mathrm{G}(1+\mu)$ $G=\frac{E}{2 \times(1+\mu)}=\frac{2.26 \times 10^{5}}{2 \times(1+0.115)}$ $\mathrm{G}=1.015 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{E}=3 \times \mathrm{K}(1-2 \times \mu)$ $\begin{aligned} & \mathrm{K}=\frac{\mathrm{E}}{3 \times(1-2 \times \mu)}=\frac{2.26 \times 10^{5}}{3 \times(1-2 \times 0.115)} \\ & \mathrm{K}=0.979 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ A steel rod is subjected to a pull of 15 kN and rigidly fixed at the ends at a certain temperature. Find the magnitude of stress and its nature due to change in temperature by $29^{\circ} \mathrm{C}$ (both rise and fall). Area of the bar is $250 \mathrm{~mm}^{2}, \mathrm{E}=210 \mathrm{GPa}, \alpha=12 \times 10^{-6} /{ }^{\circ} \mathrm{C}$. Given: $\begin{aligned} & \mathrm{P}=15 \mathrm{kN} \\ & \Delta \mathrm{t}=29^{\circ} \mathrm{C} \quad \text { rise } \\ & \Delta \mathrm{t}=29^{\circ} \mathrm{C} \text { fall } \\ & \mathrm{A}=250 \mathrm{~mm}^{2} \end{aligned}$ To find: σ and nature $=$?	1 1 1 1 1	8

Model Answer: Summer 2018

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answers \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline Q. 4 \& (c)

Ans. \& \begin{tabular}{l}
Case 1: Rise in temperature
$$
\begin{aligned}
& \sigma_{1}=\alpha \times(\Delta \mathrm{t}) \times \mathrm{E} \\
&=\left(12 \times 10^{-6}\right) \times 29 \times\left(210 \times 10^{3}\right) \\
& \sigma_{1}=73.08 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{C}) \\
& \sigma_{2}=\frac{\mathrm{P}}{\mathrm{~A}}=\frac{15 \times 10^{3}}{250} \\
& \sigma_{2}= 60 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{~T}) \\
& \text { Netstress }\left(\sigma_{\text {net }}\right)=\sigma_{1}-\sigma_{2} \\
&=73.08-60
\end{aligned} \quad \begin{aligned}
\sigma_{\text {net }} & =13.08 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{C})
\end{aligned}
$$

Case 2 : Fall in temperature
$$
\text { Net stress }\left(\sigma_{\text {net }}\right)=\sigma_{1}+\sigma_{2}
$$
$$
=73.08+60
$$
$$
\sigma_{\text {net }}=133.08 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{~T})
$$

Draw S.F.D. and B.M.D. for a beam loaded as shown in the Fig. No. 01 showing all important values.

I) To calculate support reactions
$$
\begin{aligned}
& \sum \mathrm{M}_{\mathrm{A}}=0 \\
& 8 \times \mathrm{R}_{\mathrm{B}}=100+(35 \times 4) \times 6 \\
& \mathrm{R}_{\mathrm{B}}=117.50 \mathrm{kN} \\
& \sum \mathrm{~F}_{\mathrm{y}}=0 \\
& \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=(35 \times 4) \\
& \mathrm{R}_{\mathrm{A}}+117.50=(35 \times 4) \\
& \mathrm{R}_{\mathrm{A}}=22.50 \mathrm{kN}
\end{aligned}
$$

 \&

1

1
\end{tabular} \& 8

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	Ans.	I) To calculate support reactions		
		$\sum \mathrm{M}_{\mathrm{A}}=0$		
		$(10 \times 2)+\left(\mathrm{R}_{\mathrm{B}} \times 5\right)=\left((30 \times 7) \times \frac{7}{2}\right)+(25 \times 7)$		
		$\mathrm{R}_{\mathrm{B}}=178 \mathrm{kN}$		
		$\sum \mathrm{F}_{\mathrm{y}}=0$		
		$\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=10+(30 \times 7)+25$	1	
		$\mathrm{R}_{\mathrm{A}}+178=245$		
		$\mathrm{R}_{\mathrm{A}}=67 \mathrm{kN}$		
		II) SF calculation		
		SFat $\mathrm{C}=-10 \mathrm{kN}$		
		$\mathrm{C}_{\mathrm{R}}=-10 \mathrm{kN}$		
		$\mathrm{A}_{\mathrm{L}}=-10 \mathrm{kN}$	1	
		$\mathrm{A}_{\mathrm{R}}=-10+67=+57 \mathrm{kN}$		
		$\mathrm{B}_{\mathrm{L}}=+57-(30 \times 5)=-93 \mathrm{kN}$		
		$\mathrm{B}_{\mathrm{R}}=-93+178=+85 \mathrm{kN}$		
		$\mathrm{D}_{\mathrm{L}}=+85-(30 \times 2)=+25 \mathrm{kN}$		8
		$\mathrm{D}=+25-25=0(\therefore \mathrm{ok})$		8
		III)BM calcualtion BMat $\mathrm{C}=0 \quad----$ ((Free end)		
		$\mathrm{A}=-(10 \times 2)=-20 \mathrm{kNm}$		
		$\mathrm{B}=-(25 \times 2)-(30 \times 2) \times 1=-110 \mathrm{kNm}$	1	
		D $=0 \quad$----- (Freeend)		
		IV) To calculate $\mathrm{BM}_{\text {max }}$		
		$\mathrm{B}_{\text {max }}$ occur at point of contrashear i.e. at E .		
		SF at $\mathrm{E}=0$		
		$-10+67-30 \times X=0$		
		$\mathrm{X}=1.9 \mathrm{~m}$ from support A	1	
		$B_{\max }=-10 \times(2+1.9)+(67 \times 1.9)-(30 \times 1.9) \times \frac{1.9}{2}$		
		$=+34.15 \mathrm{kNm}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5		V) To locate point of contraflexure Let F and G are two points of contraflexure. Dist $y_{1}=A F$ BMat $\mathrm{F}=0$ $\begin{aligned} & -10 \times\left(2+y_{1}\right)+\left(67 \times y_{1}\right)-\left(30 \times \frac{y_{1}{ }^{2}}{2}\right)=0 \\ & -20-\left(10 \times y_{1}\right)+\left(67 \times y_{1}\right)-\left(15 \times y_{1}{ }^{2}\right)=0 \\ & -\left(15 \times y_{1}{ }^{2}\right)+\left(57 \times y_{1}\right)-20=0 \\ & \left(y_{1}{ }^{2}\right)-\left(3.8 \times y_{1}\right)+1.33=0 \\ & y_{1}=\frac{-b \pm \sqrt{b^{2}-4 \times a \times c}}{2 \times a}=\frac{3.8 \pm \sqrt{-(3.8)^{2}+(4 \times 1 \times 1.33)}}{2 \times 1} \end{aligned}$ Solving the equation $\mathrm{y}_{1}=0.39 \mathrm{~m} \text { from support } \mathrm{A}$ $\mathrm{BM} \text { at } \mathrm{G}=0$ $\begin{aligned} & -25 \times\left(2+y_{2}\right)+\left(178 \times y_{2}\right)-\left(30 \times \frac{\left(2+y_{2}\right)^{2}}{2}\right)=0 \\ & -50-\left(25 \times y_{2}\right)+\left(178 \times y_{2}\right)-\left(15 \times\left(2+y_{2}\right)^{2}\right)=0 \\ & -\left(15 \times\left(4+4 y_{2}+y_{2}{ }^{2}\right)\right)+\left(153 \times y_{2}\right)-50=0 \\ & -\left(15 \times y_{2}{ }^{2}\right)+\left(93 \times y_{2}\right)-110=0 \\ & \left(y_{2}{ }^{2}\right)-\left(6.2 \times y_{2}\right)+7.33=0 \\ & y_{2}=\frac{-b \pm \sqrt{b^{2}-4 \times a \times c}}{2 \times a}=\frac{6.2 \pm \sqrt{(-6.2)^{2}-(4 \times 1 \times 7.33)}}{2 \times 1} \end{aligned}$ Solving the equation $\mathrm{y}_{2}=1.591 \mathrm{~m} \text { from support } \mathrm{B}$	$1 / 2$ $1 / 2$	

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	(b)(ii) Ans.	A cantilever beam of span 3.5 m has u.d.l. of $20 \mathrm{kN} / \mathrm{m}$ throughout the span along with a downward point load of 20 kN at its free end. Draw S.F.D. and BM.D. showing all values. I) Reaction at A $\mathrm{R}_{\mathrm{A}}=20+(20 \times 3.5)=90 \mathrm{kN}$ II) SF calculations SF at $\mathrm{A}=+90 \mathrm{kN}$ $\begin{aligned} & \mathrm{B}_{\mathrm{L}}=+90-(20 \times 3.5)=+20 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{R}}=+20-20=0(\therefore \mathrm{ok}) \end{aligned}$ III) BM calculations BM at B = 0 ------(Free end) $A=-(20 \times 3.5)-(20 \times 3.5) \times \frac{3.5}{2}=-192.50 \mathrm{kNm}$	1 1 1 1 1 1 1	4

Model Answer: Summer 2018

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline Q. 5 \& (c)

Ans. \& | The cross section of a simply supported beam is as shown in the figure No. 03. The permissible bending stresses in tension and compression are 200 MPa and 140 MPa respectively. Determine the moment of resistance. |
| :--- |
| I) To calculate \bar{y} $\begin{aligned} \bar{y} & =\frac{\left(a_{1} \times y_{1}\right)+\left(a_{2} \times y_{2}\right)}{\left(a_{1}+a_{2}\right)} \\ & =\frac{\left[(10 \times 300) \times \frac{300}{2}\right]+\left[(190 \times 10) \times\left(300-\frac{10}{2}\right)\right]}{[(10 \times 300)+(190 \times 10)]} \\ & =206.224 \mathrm{~mm} \text { from base } \\ y_{\mathrm{t}} & =206.224 \mathrm{~mm} \\ y_{c} & =300-206.224=93.775 \mathrm{~mm} \end{aligned}$ |
| II) To calculate $I_{x x}$ $\begin{aligned} \mathrm{h}_{\mathrm{I}} & =206.224-\frac{300}{2}=56.224 \mathrm{~mm} \\ \mathrm{~h}_{\mathrm{II}} & =93.775-\frac{10}{2}=88.775 \mathrm{~mm} \\ \mathrm{I}_{\mathrm{xx}} & =\left[\mathrm{I}_{\mathrm{xx}}\right]_{\mathrm{I}}+\left[\mathrm{I}_{\mathrm{xx}}\right]_{\mathrm{II}} \\ & =\left[\frac{\mathrm{b} \times \mathrm{d}^{3}}{12}+\left(\mathrm{a}^{2} \mathrm{~h}^{2}\right)\right]_{\mathrm{I}}+\left[\frac{\mathrm{b} \times \mathrm{d}^{3}}{12}+\left(\mathrm{a}^{2} \mathrm{~h}^{2}\right)\right]_{\mathrm{II}} \\ & =\left[\frac{10 \times 300^{3}}{12}+\left(3000 \times 56.224^{2}\right)\right]_{\mathrm{I}}+\left[\frac{190 \times 10^{3}}{12}+\left(1900 \times 88.775^{2}\right)\right]_{\mathrm{II}} \\ \mathrm{I}_{\mathrm{xx}} & =46973149.05 \mathrm{~mm}^{4}=46.973 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ | \& 1

$1 / 2$
1
1
1
1
1 \& 8

\hline
\end{tabular}

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6		I) At top extreme fibre $\left(q_{0}\right)=0$ II) At bottom of top flange $\left(q_{1}\right)$ $\begin{aligned} & =\frac{S \times A \times \bar{Y}}{\mathrm{~b} \times \mathrm{I}} \\ & =\frac{\left(155 \times 10^{3}\right) \times(160 \times 12) \times 121}{160 \times\left(59.13 \times 10^{6}\right)} \\ & =3.806 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ III) At junction of top flange and web $\left(\mathrm{q}_{2}\right)$ $\begin{aligned} & =\frac{S \times A \times \bar{Y}}{b \times I} \\ & =\frac{\left(155 \times 10^{3}\right) \times(160 \times 12) \times 121}{10 \times\left(59.13 \times 10^{6}\right)} \\ & =60.899 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { IV }) \text { At N.A. }\left(q_{\text {max }}\right) \\ & =\frac{S \times(\mathrm{A} \times \overline{\mathrm{Y}})}{\mathrm{b} \times \mathrm{I}} \\ & \mathrm{a}_{1}=(160 \times 12)=1920 \mathrm{~mm}^{2} \\ & \mathrm{a}_{2}=(115 \times 10)=1150 \mathrm{~mm}^{2} \\ & \mathrm{y}_{1}=127-6=121 \mathrm{~mm} \\ & \mathrm{y}_{2}=\left(\frac{(127-12)}{2}\right)=57.50 \mathrm{~mm} \\ & \begin{array}{r} (\mathrm{A} \times \overline{\mathrm{Y}})=\left(\mathrm{a}_{1} \times \mathrm{y}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{y}_{2}\right) \\ =[(160 \times 12) \times 121]+[(115 \times 10) \times 57.5] \\ =298445 \end{array} \end{aligned}$ $\begin{aligned} & =\frac{\mathrm{S} \times(\mathrm{A} \times \overline{\mathrm{Y}})}{\mathrm{b} \times \mathrm{I}} \\ & =\frac{\left(155 \times 10^{3}\right) \times(298445)}{10 \times\left(59.13 \times 10^{6}\right)} \\ & =78.232 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ V) At junction of bottom flange and web $\left(q_{3}\right)$ $\begin{aligned} & =\frac{S \times A \times \bar{Y}}{\mathrm{~b} \times \mathrm{I}} \\ & =\frac{\left(155 \times 10^{3}\right) \times(240 \times 12) \times 91}{10 \times\left(59.13 \times 10^{6}\right)} \\ & =68.70 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$1 / 2$ 1 1 1 1 1	8

Model Answer: Summer 2018

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6		VI) At junction of bottom flange $\left(\mathrm{q}_{4}\right)$ $=\frac{\mathrm{S} \times \mathrm{A} \times \overline{\mathrm{Y}}}{\mathrm{b} \times \mathrm{I}}$ $=\frac{\left(155 \times 10^{3}\right) \times(240 \times 12) \times 91}{240 \times\left(59.13 \times 10^{6}\right)}$ $=2.862 \mathrm{~N} / \mathrm{mm}^{2}$ VII $)$ At bottom extreme fibre $\left(\mathrm{q}_{0}\right)=0$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(b)	A certain column of hollow circular section has an external diameter 300 mm and metal thickness 40 mm . The column is 6 m long having one end fixed and one end hinged. Find the safe load for the column using Rankine's formula. Use a factor of safety of 8. Take $\sigma_{c}=567 \mathrm{MPa}$ and $\alpha=1 / 1600$. Given: $\mathrm{D}=300 \mathrm{~mm}$ $\mathrm{t}=40 \mathrm{~mm}$ $\mathrm{L}=6 \mathrm{~m}=6000 \mathrm{~mm}$ To find: $\mathrm{P}_{\text {safe }}=$? Solution: I) $\mathrm{L}_{\mathrm{e}}=\frac{\mathrm{L}}{\sqrt{2}}=\frac{6000}{\sqrt{2}}=4242.64 \mathrm{~mm}$ II) $\mathrm{d}=(\mathrm{D}-2 \times \mathrm{t})=(300-2 \times 40)=220 \mathrm{~mm}$ III) A $=\frac{\pi}{4} \times\left(\mathrm{D}^{2}-\mathrm{d}^{2}\right)=\frac{\pi}{4} \times\left(300^{2}-220^{2}\right)=32672.5636 \mathrm{~mm}^{2}$ IV) $\mathrm{I}_{\min }=\frac{\pi}{64} \times\left(\mathrm{D}^{4}-\mathrm{d}^{4}\right)=\frac{\pi}{64} \times\left(300^{4}-220^{4}\right)=282617675.1 \mathrm{~mm}^{4}$ V) $\mathrm{K}_{\text {min }}=\sqrt{\frac{\mathrm{I}_{\text {min }}}{\mathrm{A}}}=\sqrt{\frac{282617675.1}{32672.5636}}=93 \mathrm{~mm}$ OR $\mathrm{K}=\sqrt{\frac{\mathrm{D}^{2}+\mathrm{d}^{2}}{16}}=\sqrt{\frac{300^{2}+220^{2}}{16}}=93 \mathrm{~mm}$ VI) $\lambda^{2}=\left[\frac{\mathrm{L}_{\mathrm{e}}}{\mathrm{K}_{\text {min }}}\right]^{2}=\left[\frac{4242.64}{93}\right]^{2}=2081.165 \mathrm{~mm}$ VII) By Rankine's formula $\begin{aligned} \mathrm{P}_{\mathrm{R}} & =\frac{\sigma_{\mathrm{c}} \times \mathrm{A}}{1+\left(\alpha \times \lambda^{2}\right)} \\ & =\frac{567 \times 32672.5636}{1+\left(\frac{1}{1600} \times 2081.165\right)} \\ & =8052472.57 \mathrm{~N} \end{aligned}$ VIII) $\mathrm{P}_{\text {safe }}=\frac{\mathrm{P}_{\mathrm{R}}}{\text { FOS }}$ $=\frac{8052472.57}{8}$ $\mathrm{P}_{\text {safe }}=1006559.071 \mathrm{~N}$ $\mathrm{P}_{\text {safe }}=1006.559 \mathrm{kN}$	1 $1 / 2$ $1 / 2$ 1 1 $1 / 2$ 1 1 1 $1 / 2$	8

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(c) Ans.	A bar 22 mm in diameter and 1.2 m long is hung vertically and a collar is attached at the lower end. A weight of 1000 N falls through a height of 275 mm on the collar. Calculate maximum instantaneous stress, elongation and the strain energy stored in the bar. Take $\mathrm{E}=210 \mathrm{GPa}$. Given: To find: $\begin{aligned} & \mathrm{d}=22 \mathrm{~mm} \\ & \mathrm{~L}=1.2 \mathrm{~m}=1200 \mathrm{~mm} \\ & \mathrm{~W}=1000 \mathrm{~N} \\ & \mathrm{~h}=275 \mathrm{~mm} \\ & \mathrm{E}=210 \mathrm{GPa} \end{aligned}$ $\sigma_{\max }, \delta_{\mathrm{L},} \mathrm{U}=?$ Solution: $\begin{aligned} & \text { I) } \mathrm{A}=\frac{\pi}{4} \times \mathrm{d}^{2}=\frac{\pi}{4} \times 22^{2}=380.133 \mathrm{~mm}^{2} \\ & \text { V }=\mathrm{A} \times \mathrm{L}=380.133 \times 1200=456159.2533 \mathrm{~mm}^{3} \end{aligned}$ II) $\sigma_{\max }=\frac{\mathrm{W}}{\mathrm{A}}+\sqrt{\left(\frac{\mathrm{W}}{\mathrm{A}}\right)^{2}+\left(\frac{2 \times \mathrm{W} \times \mathrm{h} \times \mathrm{E}}{\mathrm{A} \times \mathrm{L}}\right)}$ $\begin{aligned} & =\frac{1000}{380.133}+\sqrt{\left(\frac{1000}{380.133}\right)^{2}+\left(\frac{2 \times 1000 \times 275 \times 210 \times 10^{3}}{456159.2533}\right)} \\ \sigma_{\max } & =505.828 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$1 / 2$ $1 / 2$ 1	8

