

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Summer 2018

Subject: Mechanics of Structure

Sub. Code: 17311

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer: Summer 2018

Subject: Mechanics of Structure

Sub. Code: 17311

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(d) And.	Define modulus of rigidity. State its unit. Modulus of rigidity : - The ratio of shear stress to shear strain is called as Modulus of Rigidity. Unit: - N/m ² Or Pascal Or N/mm ² .	1	2
	(e) Ans.	 State any four assumptions made in the theory of long column. Assumptions made in the theory of long column are as follows : The material of the column is perfectly homogeneous and isotropic in nature. The column is long enough and it fails due to buckling only. The load on column is exactly vertical and axial type. The self weight of column is neglected. The column is initially straight and of uniform lateral dimensions. The column is stressed upto the limit of proportionality. 	¹ / ₂ each (any four)	2
	(f)	State end conditions for column along with effective lengths (any two).		
	Ans.	i. When both end of column are hinged, $L_e = L$ ii. When both end of column are fixed, $L_e = \frac{L}{2}$	1 each (any two)	2
		iii. When one end is fixed and other end is hinged, $L_e = \frac{L}{\sqrt{2}}$ iv. When one end is fixed and other end is free, $L_e = 2.L$		
	(g) Ans.	Define strain energy and state its unit. Strain Energy: The energy stored in the material, when it is loaded within its elastic limit, is called as 'Strain Energy'. Unit: N.m or Joule or N.mm.	1	2
	(h) Ans.	Define proof resilience. Give its expression. Proof Resilience: The maximum energy stored in the material at the point of elastic limit, is called as 'Proof Resilience'.	1	
		Expression: $U_{max} = \frac{\sigma_{max}^2 \times V}{2 \times E}$	1	2

Model Answer: Summer 2018

Subject: Mechanics of Structure

Sub. Code: 17311

Attempt any TWO of the following: A simply supported beam of span 10 m carries a udl of 100 kN/m over its entire span. Calculate the modulus of section required, if its bending stress is not to exceed 190 MPa. Given: To find: L = 10 m = 10 x 10 ³ mm Z = ? Simply supported W = 100 kN/m = 100 N/mm over entire span $\sigma_{\text{bmax}} = 190 \text{ MPa} = 190 \text{ N/mm}^2$ Solution: We know, the flexural formula, $\frac{M}{I} = \frac{\sigma_b}{y}$ $\sigma_b = \frac{M}{I} \times y = \frac{M}{\left(\frac{I}{y}\right)} = \frac{M}{Z}$ $Z = \frac{M}{\sigma_b}$ Here, $M = \frac{w \times L^2}{8}$	1	Marks 8
over its entire span. Calculate the modulus of section required, if its bending stress is not to exceed 190 MPa. Given: To find: $L = 10 \text{ m} = 10 \times 10^3 \text{ mm}$ Z = ? Simply supported w = 100 kN/m = 100 N/mm over entire span $\sigma b_{max} = 190 \text{ MPa} = 190 \text{ N/mm}^2$ Solution: We know, the flexural formula, $\frac{M}{I} = \frac{\sigma_b}{y}$ $\sigma_b = \frac{M}{I} \times y = \frac{M}{\left(\frac{I}{y}\right)} = \frac{M}{Z}$ $Z = \frac{M}{\sigma_b}$		4
Given: L = 10 m = 10 x 10 ³ mm Simply supported w = 100 kN/m = 100 N/mm over entire span $\sigma b_{max} = 190 \text{ MPa} = 190 \text{ N/mm}^2$ Solution: We know, the flexural formula, $\frac{M}{I} = \frac{\sigma_b}{y}$ $\sigma_b = \frac{M}{I} \times y = \frac{M}{\left(\frac{I}{y}\right)} = \frac{M}{Z}$ $Z = \frac{M}{\sigma_b}$	1	4
$L = 10 \text{ m} = 10 \text{ x } 10^3 \text{ mm} \qquad Z = ?$ Simply supported w = 100 kN/m = 100 N/mm over entire span $\sigma b_{max} = 190 \text{ MPa} = 190 \text{ N/mm}^2$ Solution: We know, the flexural formula, $\frac{M}{I} = \frac{\sigma_b}{y}$ $\sigma_b = \frac{M}{I} \times y = \frac{M}{\left(\frac{I}{y}\right)} = \frac{M}{Z}$ $Z = \frac{M}{\sigma_b}$	1	4
$\sigma b_{max} = 190 \text{ MPa} = 190 \text{ N/mm}^2$ Solution: We know, the flexural formula, $\frac{M}{I} = \frac{\sigma_b}{y}$ $\sigma_b = \frac{M}{I} \times y = \frac{M}{\left(\frac{I}{y}\right)} = \frac{M}{Z}$ $Z = \frac{M}{\sigma_b}$	1	4
We know, the flexural formula, $\frac{M}{I} = \frac{\sigma_{b}}{y}$ $\sigma_{b} = \frac{M}{I} \times y = \frac{M}{\left(\frac{I}{y}\right)} = \frac{M}{Z}$ $Z = \frac{M}{\sigma_{b}}$	1	4
$\sigma_{b} = \frac{M}{I} \times y = \frac{M}{\left(\frac{I}{y}\right)} = \frac{M}{Z}$ $Z = \frac{M}{\sigma_{b}}$	1	4
$Z = \frac{M}{\sigma_{h}}$	1	4
$Z = \frac{M}{\sigma_{b}}$ Here, $M = \frac{W \times L^{2}}{W}$	1	
Here, $M = \frac{W \times L^2}{W}$		
	1	
$=\frac{100\times10000^2}{8}=125\times10^7\text{N.mm}$	1	
$Z = \frac{125 \times 10^7}{190}$	1	
$Z = 6.578 \times 10^6 \text{ mm}^3$		
A simply supported beam carries a udl of 22 kN/m over the entire span of 6 m. Beam has circular c/s of 150 mm diameter. Determine the maximum shear stress at a section 2.5 m from the		
support.		
Given:To find: $w = 22 \text{ kN/m}$ over entire span q_{max} at 2.5 m from support = ? $L = 6 \text{ m}$ Simply supported $d = 150 \text{ mm}$		
	$Z = 6578947.36 \text{ mm}^{3}$ $Z = 6.578 \times 10^{6} \text{ mm}^{3}$ A simply supported beam carries a udl of 22 kN/m over the entire span of 6 m. Beam has circular c/s of 150 mm diameter. Determine the maximum shear stress at a section 2.5 m from the support. Given: To find: w = 22 kN/m over entire span q _{max} at 2.5 m from support = ? L = 6 m Simply supported	1901 $Z = 6578947.36 \text{ mm}^3$ $\overline{Z} = 6.578 \times 10^6 \text{ mm}^3$ A simply supported beam carries a udl of 22 kN/m over the entire span of 6 m. Beam has circular c/s of 150 mm diameter. Determine the maximum shear stress at a section 2.5 m from the support.Given:To find: max at 2.5 m from support = ? $L = 6 \text{ m}$ Simply supported

Model Answer: Summer 2018

Subject: Mechanics of Structure

Sub. Code: 17311

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1		Solution: X w = 22 kN/m A 2.5 m X L = 6 m $RA = \frac{wL}{2}$ $RB = \frac{wL}{2}$		
		Shear force at a section x-x 2.5 m from support		
		$S = \frac{W \times L}{2} - (W \times 2.5)$		
		$=\frac{22\times6}{2}-(22\times2.5)$ S=11kN		
		$S = 11 \times 10^3 $ N	1	4
		$q_{avg} = \frac{S}{A}$		
		$=\frac{\frac{11\times10^{3}}{\frac{\pi}{4}\times150^{2}}}{=0.622 \text{N/mm}^{2}}$	1	
		$q_{max} = \frac{4}{3} \times q_{avg}$	1	
		$=\frac{4}{3} \times 0.622$		
		$\boxed{\mathbf{q}_{\max} = 0.83 \mathrm{N/mm^2}}$	1	
		$A = \frac{\pi}{8} \times d^2 = \frac{\pi}{8} \times 150^2 = 8835.729 \mathrm{mm}^2$		
		$\overline{y} = \frac{4 \times R}{3 \times \pi} = \frac{4 \times 75}{3 \times \pi} = 31.831 \text{mm}$ b=d=150 mm	2	
		$I = \frac{\pi}{64} \times d^4 = \frac{\pi}{64} \times 150^4 = 24850488.76 \mathrm{mm}^4$		
		$q_{at2.5m} = \frac{S \times A \times y}{b \times I} = \frac{11 \times 10^3 \times 8835.729 \times 31.831}{150 \times 24850488.76} = 0.83 \text{ N/mm}^2$		
		$q_{at2.5m} = 0.83 \text{N/mm}^2$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Sub. Code: 17311

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(c)	A column of square section 150 mm x 150 mm is 3 m long. If it is fixed at its both ends, find the Euler's critical load on the column. Take $E = 175$ GPa.		
	Ans.	Take $E = 1/5$ GF a.		
		Given: To find:		
		Square column $P_e = ?$ both ends fixed		
		L = 3 m = 3000 mm E = 175 GPa = 175 x 10 ³ N/mm ²		
		Solution:	1	
		Effective length (L _e) = $\frac{L}{2} = \frac{3000}{2} = 1500 \text{ mm}$	1	
		Moment of Inertia $(I_{xx}) = (I_{yy}) = (I_{min})$		4
		$=\frac{b^4}{12}=\frac{150^4}{12}=42.187\times10^6\mathrm{mm}^4$	1	
		Euler's critical load (P _E) = $\frac{\pi^2 \times E \times I_{min}}{(L_e)^2}$	1	
		$=\frac{\pi^2 \times 175 \times 10^3 \times 42.187 \times 10^6}{(1500)^2}$		
		$P_{\rm E} = 32.384 \times 10^6 {\rm N}$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	2	Attempt any TWO of the following:		16
	(a)	Calculate the moment of inertia about its both centroidal axes of a T – section having flange 200 mm x 20 mm and web 250 mm x 25 mm. Overall depth is 270 mm.		
	Ans.	Given: To find: I_{xx} and $I_{yy} = ?$ To find: I_{xx} and $I_{yy} = ?$ Solution: As given T-section is symmetrical about Y-Y axis, $\overline{x} = \frac{Flange \ width}{2} = \frac{200}{2} = 100 \ mm$ $A_1 = 250 \times 25 = 6250 \ mm^2$ $A_2 = 200 \times 20 = 4000 \ mm^2$ $y_1 = \frac{250}{2} = 125 \ mm$		
		$y_{2} = 250 + \frac{20}{2} = 260 \text{ mm}$ $\overline{y} = \frac{(A_{1} \times y_{1}) + (A_{2} \times y_{2})}{(A_{1} + A_{2})}$ (6250 \times 125) + (4000 \times 260)		8
		$=\frac{(6250\times125)+(4000\times260)}{(6250+4000)}$ =177.683 mm from bottom	1	
		$I_{xx} = I_{xx_1} + I_{xx_2}$ = $(I_{G_1} + A_1 \times h_1^2) + (I_{G_2} + A_2 \times h_2^2)$	1	
		Here, $h_1 = \overline{y} \cdot y_1 = 177.68 \cdot 125 = 52.68 \text{ mm}$ $h_2 = y_2 \cdot \overline{y} = 260 \cdot 177.68 = 82.32 \text{ mm}$	1	
		$I_{xx} = \left(\frac{bd^3}{12} + A_1 \times h_1^2\right) + \left(\frac{bd^3}{12} + A_2 \times h_2^2\right)$	1	
		$= \left(\frac{25 \times 250^{3}}{12} + (6250 \times 52.68^{2})\right) + \left(\frac{200 \times 20^{3}}{12} + (4000 \times 82.32^{2})\right)$		
		$I_{xx} = 77.136 \times 10^6 \text{ mm}^4$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2		$I_{yy} = I_{yy_1} + I_{yy_2}$ = $\left[\frac{db^3}{12}\right]_1 + \left[\frac{db^3}{12}\right]_2$ = $\frac{250 \times 25^3}{12} + \frac{20 \times 200^3}{12}$ $\left[I_{yy} = 13.658 \times 10^6 \text{ mm}^4\right]$	1 1 1	
	(b)	A steel stanchion is built up of 100 mm x 150 mm RSJ with one 150 mm x 15 mm plate riveted to each flange. The overall depth of the stanchion is 180 mm. Calculate M.I. about its both centroidal axes. Properties of RSJ are A = 2167 mm ² , $I_{xx} = 8.40 \times 10^6 \text{ mm}^4$, $I_{yy} = 0.95 \times 10^6 \text{ mm}^4$.		
	Ans.	Given: A = 2167 mm ² $I_{xx} = 8.40 \times 10^{6} mm^{4}$ $I_{yy} = 0.95 \times 10^{6} mm^{4}$ Solution: $\int \frac{\varphi}{100} \int \frac{1}{100} \int \frac{1}{100}$		
		$I_{xx} = I_{xx} \text{ of } RSJ + 2(I_{xx} \text{ of plate})$ = $I_{xx} \text{ of } RSJ + 2\left(\frac{b \times d^3}{12} + (A \times h^2)\right)$ = $(8.40 \times 10^6) + 2\left(\frac{150 \times 15^3}{12} + \left(2250 \times \left(75 + \frac{15}{2}\right)^2\right)\right)$ $I_{xx} = 39.113 \times 10^6 \text{ mm}^4$	1 1 2 1	8

Model Answer: Summer 2018

Subject: Mechanics of Structure

Subje				
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2		$I_{yy} = I_{yy}$ of RSJ + 2(I_{yy} of plate)	1	
		$= I_{yy} \text{ of } RSJ + 2\left(\frac{d \times b^3}{12}\right)$	1	
		$= (0.95 \times 10^6) + 2\left(\frac{15 \times 150^3}{12}\right)$		
		$I_{yy} = 9.387 \times 10^6 \text{ mm}^4$	1	
	(c)-(i)	Calculate the M.I. of a semi circle of diameter 190 mm about its both centroidal axes.		
	Ans.	Given:To find:Semicircle of dia. (d) = 190 mm I_{xx} and I_{yy} = ?		
		Solution:		
		x		
		$\mathbf{R} = 95 \text{ mm}$		
		$\mathbf{D} = 190 \text{ mm}$		
		$I_{xx} = 0.11 \times R^4 = 0.11 \times 95^4$	1	
		$\frac{I_{xx} = 8.959 \times 10^6 \text{mm}^4}{\pi D^4 - \pi \times 190^4}$	1	4
		$I_{yy} = \frac{\pi D^4}{128} = \frac{\pi \times 190^4}{128}$	1	
		$\boxed{I_{yy}=31.985\times10^6\text{mm}^4}$ OR	1	
		$I_{yy} = \frac{\pi R^4}{8} = \frac{\pi \times 95^4}{8}$	1	
		$I_{yy} = 31.985 \times 10^6 \text{mm}^4$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	(c)(ii)	A force of 50 kN is required to punch a circular hole of 20 mm diameter in a metal plate having 3.5 mm thickness. Calculate shear stress and compressive stress developed in the punching rod.		
	Ans.	Given: To find: $P = 50 \text{ kN} = 50 \text{ x } 10^3 \text{ N}$ $q = ?$ $d = 20 \text{ mm}$ $\sigma_{comp} = ?$ $t = 3.5 \text{ mm}$ Solution:		
		$q = \frac{P}{\pi \times d \times t}$ $= \frac{50 \times 10^3}{\pi \times 20 \times 3.5}$	1	4
		$\frac{\left[q = 227.364 \text{ N/mm}^2\right]}{\sigma_{\text{comp}} = \frac{P}{A}}$ $= \frac{50 \times 10^3}{\frac{\pi}{4} \times 20^2}$	1	
		$\sigma_{\rm comp} = 159.155 \rm N/mm^2$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Sub. Code: 17311

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3		Attempt any TWO of the following:		16
	(a)	A hollow circular steel tube of external diameter 400 mm and uniform thickness of 25 mm throughout is filled in with concrete from inside. Calculate the total axial compressive load the column can support if permissible stress in concrete and steel are 4 MPa and 130 MPa respectively. The modular ratio is 18.		
	Ans.	Given:To find: $D = 400 \text{ mm}$ $P = ?$ $t = 25 \text{ mm}$ $\sigma_c = 4 \text{ MPa}$ $\sigma_c = 4 \text{ MPa}$ $\sigma_s = 130 \text{ MPa}$ $m = 18$ Solution: $d = (D - 2 \times t) = (400 - 2 \times 25) = 350 \text{ mm}$		
		$A_{s} = \frac{\pi}{4} (D^{2} - d^{2})$ $= \frac{\pi}{4} (400^{2} - 350^{2})$ $= 29452.43 \mathrm{mm}^{2}$	1	
		$A_{c} = \frac{\pi}{4} \times d^{2}$ $= \frac{\pi}{4} \times 350^{2}$ $= 96211.275 \mathrm{mm}^{2}$	1	
		But, $\frac{\sigma_s}{E_s} = \frac{\sigma_c}{E_c}$ $\sigma_s = \left(\frac{E_s}{E_c}\right) \times \sigma_c = m \times \sigma_c$ $\sigma_s = 18 \times 4$	1	8
		$\sigma_s = 72 \text{ MPa} < 130 \text{ MPa}$ If $\sigma_s = 130 \text{ N/mm}^2$ is taken $\sigma_s = \frac{\sigma_s}{130} = 7.22 \text{ N/mm}^2 > 4 \text{ MPa}$	1	
		$ σc = \frac{σ_s}{18} = \frac{130}{18} = 7.22 \text{ N/mm}^2 > 4 \text{ MPa} $ ∴ Take σ _s = 72 N/mm ² $ P = P_s + P_c $ $ P = (σ_s × A_s) + (σ_c × A_c) $ $ = (72 × 29452.43) + (4 × 96211.275) $	1 1 1	
		$= (72 \times 29432.43) + (4 \times 96211.273)$ $= 2505420.06 \text{ N}$ $\boxed{P = 2505.42 \text{ kN}}$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

-	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	(b)	A circular bar of 1000 mm length has cross – section as given below : First 200 mm has a diameter 10 mm, second 500 mm has a diameter 25 mm and the last 300 mm has diameter of 15 mm. Determine the maximum axial pull which the bar may be subjected if the maximum stress is limited to 150 MPa. Find total elongation of the bar. Take E = 200 GPa.		
	Ans.	Given: $\sigma_{max} = 150 \text{ MPa}$ E = 200 GPa Solution: $P = 10^{10} + 10^{10} $	1	
		$A_{III} = \frac{\pi}{4} \times 15^{2} = 176.71 \mathrm{mm}^{2}$ $P_{max} = \sigma_{max} \times A_{I}$ $= 150 \times 78.54$ $= 11780.97 \mathrm{N}$ $\boxed{P_{max} = 11.781 \mathrm{kN}}$ $\delta_{L} = (\delta_{L})_{I} + (\delta_{L})_{II} + (\delta_{L})_{III}$ $= \left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{I} + \left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{II} + \left(\frac{\mathrm{PL}}{\mathrm{AE}}\right)_{III}$ $= \frac{\mathrm{P}}{\mathrm{E}} \left[\left(\frac{\mathrm{L}}{\mathrm{A}}\right)_{I} + \left(\frac{\mathrm{L}}{\mathrm{AE}}\right)_{II} + \left(\frac{\mathrm{L}}{\mathrm{AE}}\right)_{III} \right]$ $= \frac{11780.97}{200 \times 10^{3}} \times \left[\left(\frac{200}{78.54}\right) + \left(\frac{500}{490.87}\right) + \left(\frac{300}{176.71}\right) \right]$ $\boxed{\delta_{L} = 0.31 \mathrm{mm}}$	1 1 1 1 1 1 1	8

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	(c)	A cube of 150 mm side is acted upon by stress along the three directions as 20 MPa (tensile), 30 MPa (compressive) and 17 MPa (compressive). Calculate strains in all the three directions and change in the volume of the cube. Take $E = 210$ GPa and $\mu = 0.29$.		
	Ans.	$ \begin{array}{lll} \mbox{Given:} & & & \mbox{To find:} \\ \sigma_x = \ + \ 20 \ N/mm^2 & & \mbox{a} = \ 150 \ mm & & \mbox{e}_x, \ e_y, \ e_z, \ \delta_v = \ ? \\ \sigma_y = \ - \ 30 \ N/mm^2 & & \mbox{E} = \ 210 \ GPa \\ \sigma_z = \ - \ 17 \ N/mm^2 & & \ \mu = \ 0.29 \end{array} $		
		Solution: 30 MPa (C)		
		20 MPa (T)		
		150 17 MPa (C)		
		$\mathbf{e}_{\mathbf{x}} = \left(\frac{\boldsymbol{\sigma}_{\mathbf{x}}}{E}\right) - \left(\boldsymbol{\mu} \times \frac{\boldsymbol{\sigma}_{\mathbf{y}}}{E}\right) - \left(\boldsymbol{\mu} \times \frac{\boldsymbol{\sigma}_{\mathbf{z}}}{E}\right)$	1	8
		$=\frac{1}{E} \left(\sigma_{x} - \mu \times \sigma_{y} - \mu \times \sigma_{z} \right)$		
		$=\frac{1}{210\times10^{3}} (20 + (0.29\times30) + (0.29\times17))$ $\boxed{e_{x} = 1.60\times10^{-4}}$	1	
		$\mathbf{e}_{y} = \left(\frac{\sigma_{y}}{E}\right) - \left(\mu \times \frac{\sigma_{z}}{E}\right) - \left(\mu \times \frac{\sigma_{x}}{E}\right)$	1	
		$=\frac{1}{E} \left(\sigma_{y} - \mu \times \sigma_{z} - \mu \times \sigma_{x} \right)$		
		$=\frac{1}{210\times10^{3}}(-30 + (0.29\times17) - (0.29\times20))$ $\boxed{e_{y}=-1.468\times10^{-4}}$	1	
			1	

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	Que.	$e_{z} = \left(\frac{\sigma_{z}}{E}\right) - \left(\mu \times \frac{\sigma_{x}}{E}\right) - \left(\mu \times \frac{\sigma_{y}}{E}\right)$ $= \frac{1}{E} \left(\sigma_{z} - \mu \times \sigma_{x} - \mu \times \sigma_{y}\right)$ $= \frac{1}{210 \times 10^{3}} \left(-17 - (0.29 \times 20) + (0.29 \times 30)\right)$ $\boxed{e_{z} = -6.714 \times 10^{-5}}$ $\frac{\delta_{v}}{V} = e_{x} + e_{y} + e_{z}$ $\delta_{v} = \left(e_{x} + e_{y} + e_{z}\right) \times V$	1	
Q. 4		$= \left[\left(1.60 \times 10^{-4} \right) + \left(-1.468 \times 10^{-4} \right) + \left(-6.714 \times 10^{-5} \right) \right] \times (150)^{3}$ $\delta_{v} = -182.057 \text{ mm}^{3}$ $\delta_{v} = 182.057 \text{ mm}^{3}$ (Decrease) Attempt any two of the following:	1	16
	(a)	In a tension test on a certain specimen 25 mm diameter, 250 mm long, an axial pull of 200 kN produces an elongation 0.45 mm and reduction in diameter is observed to be 0.0052 mm. Determine the value of Poisson ratio and three elastic modulii.		
	Ans.			
		Solution: Poisson's Ratio = $\frac{\text{Lateral Strain}}{\text{Linear Strain}}$ $= \left(\frac{\left(\frac{\delta_{d}}{d}\right)}{\left(\frac{\delta_{L}}{L}\right)}\right) = \left(\frac{\left(\frac{0.0052}{25}\right)}{\left(\frac{0.45}{250}\right)}\right)$	1	
		$Poisson's Ratio(\mu)=0.115$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Sub.			FT
Que.	Model Answers	Marks	Total Marks
	$E = \frac{\sigma}{E} = \left(\frac{\left(\frac{P}{A}\right)}{\left(\frac{\delta_{L}}{L}\right)}\right)$ $E = \left(\frac{\left(\frac{200 \times 10^{3}}{\frac{\pi}{4} \times 25^{2}}\right)}{\left(\frac{0.45}{250}\right)}\right)$	1	8
	$E = 2.26 \times 10^5 \text{ N/mm}^2$	1	
	$E = 2 \times G(1+\mu)$ $G = \frac{E}{1} = \frac{2.26 \times 10^5}{10^5}$	1	
		1	
		_	
	$K = \frac{E}{3 \times (1 - 2 \times \mu)} = \frac{2.26 \times 10^5}{3 \times (1 - 2 \times 0.115)}$	1	
(b)	A steel rod is subjected to a pull of 15 kN and rigidly fixed at the ends at a certain temperature. Find the magnitude of stress and its nature due to change in temperature by 29° C (both rise and fall). Area of the bar is 250 mm ² , E = 210 GPa, $\alpha = 12 \times 10^{-6}$ /°C.		
Ans.	Given: To find: $P = 15 \text{ kN}$ $E = 210 \text{ GPa}$ σ and nature = ? $\Delta t = 29^{\circ}\text{C}$ rise $\alpha = 12 \times 10^{-6}/^{\circ}\text{C}$ $\Delta t = 29^{\circ}\text{C}$ fall $A = 250 \text{ mm}^2$ Solution:		
	(b)	$E = \frac{\sigma}{E} = \left(\frac{\left(\frac{P}{A}\right)}{\left(\frac{\delta_{L}}{L}\right)} \right)$ $E = \left(\frac{\left(\frac{200 \times 10^{3}}{\left(\frac{\pi}{4} \times 25^{2}\right)}\right)}{\left(\frac{0.45}{250}\right)} \right)$ $E = 2.26 \times 10^{5} \text{ N/mm}^{2}$ $E = 2 \times G(1+\mu)$ $G = \frac{E}{2 \times (1+\mu)} = \frac{2.26 \times 10^{5}}{2 \times (1+0.115)}$ $G = 1.015 \times 10^{5} \text{ N/mm}^{2}$ $E = 3 \times K(1-2 \times \mu)$ $K = \frac{E}{3 \times (1-2 \times \mu)} = \frac{2.26 \times 10^{5}}{3 \times (1-2 \times 0.115)}$ $K = \frac{0.000}{1000} = \frac{10000}{1000} \text{ K} = \frac{10000}{1000} \text{ K} = \frac{100000}{1000} \text{ K} = 1000000000000000000000000000000000000$	$E = \frac{\sigma}{E} = \left(\frac{\left(\frac{P}{A}\right)}{\left(\frac{\delta_{L}}{L}\right)} \right)$ $E = \left(\frac{\left(\frac{200 \times 10^{3}}{\frac{\pi}{4} \times 25^{2}}\right)}{\left(\frac{0.45}{250}\right)} \right)$ $E = 2 \times G(1 + \mu)$ $G = \frac{E}{2 \times (1 + \mu)} = \frac{2.26 \times 10^{5}}{2 \times (1 + 0.115)}$ $G = \frac{1}{2 \times (1 + \mu)} = \frac{2.26 \times 10^{5}}{2 \times (1 + 0.115)}$ $E = 3 \times K(1 - 2 \times \mu)$ $K = \frac{E}{3 \times (1 - 2 \times \mu)} = \frac{2.26 \times 10^{5}}{3 \times (1 - 2 \times 0.115)}$ $K = \frac{0}{3 \times (1 - 2 \times \mu)} = \frac{2.26 \times 10^{5}}{3 \times (1 - 2 \times 0.115)}$ I (b) A steel rod is subjected to a pull of 15 kN and rigidly fixed at the ends at a certain temperature. Find the magnitude of stress and its nature due to change in temperature by 29° C (both rise and fall). Area of the bar is 250 mm ² , E = 210 GPa, \sigma = 12 \times 10^{6} / °C. Ans. Given: To find: P = 15 kN E = 210 GPa σ and nature = ? $\Delta t = 29^{\circ}C$ rise $\alpha = 12 \times 10^{-6} / °C$ $\Delta t = 29^{\circ}C$ rise $\alpha = 12 \times 10^{-6} / °C$

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que.	Sub.	Model Answers	Marks	Total
No. Q. 4	Que.	Case 1 : Rise in temperature		Marks
x		$\sigma_1 = \alpha \times (\Delta t) \times E$	1	
		$=(12\times10^{-6})\times29\times(210\times10^{3})$		
		$\sigma_1 = 73.08 \text{ N/mm}^2$ (C)	1	
			1	
		$\sigma_2 = \frac{P}{A} = \frac{15 \times 10^3}{250}$	-	
		$\sigma_2 = 60 \text{ N/mm}^2 (\text{T})$	1	8
		Net stress $(\sigma_{net}) = \sigma_1 - \sigma_2$	1	0
		=73.08-60		
		$\sigma_{\rm net} = 13.08 \text{N/mm}^2 (\text{C})$	1	
		Case 2 : Fall in temperature		
		Net stress $(\sigma_{net}) = \sigma_1 + \sigma_2$	1	
		=73.08+60		
		$\sigma_{net} = 133.08 \text{ N/mm}^2 (\text{T})$	1	
	(c)	Draw S.F.D. and B.M.D. for a beam loaded as shown in the Fig. No. 01 showing all important values. 100 KN-M $35 KN/mA C D B R B R B R B R B$		
	Ans.	I) To calculate support reactions $\sum M_{A} = 0$ $8 \times R_{B} = 100 + (35 \times 4) \times 6$		
		$R_{\rm B} = 117.50 \rm kN$	1	
		$\Sigma F_{y} = 0$		
		$R_A + R_B = (35 \times 4)$		
		$R_A + 117.50 = (35 \times 4)$	1	
		$R_{A} = 22.50 \text{ kN}$		

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4		II) SF calculation SF at A =+ 22.50 kN $D_L = + 22.50 kN$ $D_R = + 22.50 - 140 = +117.50 kN$ $B_L = +117.50 kN$ B = +117.50 - 117.50 = 0 kN (:: ok) III) BM calcualtion BM at A = 0 $C_L = +(22.5 \times 2) = +45 kNm$ $C_R = +45 + 100 = +145 kNm$	1	8
		D =+(117.50×4) -(35×4×2)=190 kNm B =0 IV) To calculate BM _{max} SF at E = 0 22.5-(35×X)=0 X = 0.643 m from D BM _{max} =+(117.5×3.357)-35× $\frac{3.357^2}{2}$ =+197.25 kNm OR	1	
		$BM_{max} = +(22.5 \times 4.643) + 100 - 35 \times \frac{0.643^2}{2} = +197.25 \text{ kNm}$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	Ans.	I) To calculate support reactions		Marks
		$\Sigma M_{A} = 0$		
		$(10\times2)+(R_B\times5)=((30\times7)\times\frac{7}{2})+(25\times7)$		
		R _B =178 kN		
		$\Sigma F_{y} = 0$		
		$R_{A} + R_{B} = 10 + (30 \times 7) + 25$	1	
		$R_{A} + 178 = 245$		
		$R_A = 67 kN$		
		II)SF calculation		
		SFat $C = -10 \text{ kN}$		
		$C_{R} = -10 \text{kN}$		
		$A_{I} = -10 \text{kN}$	1	
		$A_{R}^{2} = -10 + 67 = +57 \text{ kN}$	_	
		$B_L = +57 - (30 \times 5) = -93 kN$		
		$B_{R} = -93 + 178 = +85 kN$		
		$D_{L} = +85 - (30 \times 2) = +25 \text{ kN}$		8
		D = +25 - 25 = 0 (: ok)		0
		III)BM calcualtion		
		BM at $C = 0$ (Free end)		
		$A = -(10 \times 2) = -20 \text{ kNm}$		
		$B = -(25 \times 2) - (30 \times 2) \times 1 = -110 \text{ kNm}$	1	
		D = 0 (Free end)		
		IV) To calculate BM _{max}		
		B _{max} occur at point of contrashear i.e. at E.		
		SF at $E = 0$		
		$-10 + 67 - 30 \times X = 0$		
		$X = 1.9 \mathrm{m}\mathrm{from}\mathrm{support}\mathrm{A}$	1	
		$B_{max} = -10 \times (2+1.9) + (67 \times 1.9) - (30 \times 1.9) \times \frac{1.9}{2}$		
		=+34.15 kNm	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

ue. Sub.	Model Answers	Marks	Tota
o. Que.	Widder Answers	IVIAI'KS	Mark
5	V)To locate point of contraflexure		
	Let F and G are two points of contraflexure.		
	Dist $y_1 = AF$		
	BM at $F=0$		
	$-10 \times (2+y_1) + (67 \times y_1) - \left(30 \times \frac{y_1^2}{2}\right) = 0$		
	$-20-(10\times y_1)+(67\times y_1)-(15\times y_1^2)=0$		
	$-(15 \times y_1^2) + (57 \times y_1) - 20 = 0$		
	(y_1^2) -(3.8×y_1)+1.33=0		
	$y_{1} = \frac{-b \pm \sqrt{b^{2} - 4 \times a \times c}}{2 \times a} = \frac{3.8 \pm \sqrt{-(3.8)^{2} + (4 \times 1 \times 1.33)}}{2 \times 1}$		
	Solving the equation	1/	
	$y_1 = 0.39 \mathrm{m}\mathrm{from}\mathrm{support}\mathrm{A}$	1/2	
	BM at $G = 0$		
	$-25 \times (2+y_2) + (178 \times y_2) - \left(30 \times \frac{(2+y_2)^2}{2}\right) = 0$		
	$-50-(25\times y_2)+(178\times y_2)-(15\times (2+y_2)^2)=0$		
	$-(15\times(4+4y_2+y_2^2))+(153\times y_2)-50=0$		
	$-(15 \times y_2^2) + (93 \times y_2) - 110 = 0$		
	(y_2^2) -(6.2×y_2)+7.33=0		
	$y_{2} = \frac{-b \pm \sqrt{b^{2} - 4 \times a \times c}}{2 \times a} = \frac{6.2 \pm \sqrt{(-6.2)^{2} - (4 \times 1 \times 7.33)}}{2 \times 1}$		
	Solving the equation		
	$y_2 = 1.591 \mathrm{m}\mathrm{from}\mathrm{support}\mathrm{B}$	1/2	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que.	Sub.	Model Answers	Marks	Total
<u>No.</u> Q. 5	Que. (b)(ii)	A cantilever beam of span 3.5 m has u.d.l. of 20 kN/m throughout		Marks
Q. 5	(0)(11)	the span along with a downward point load of 20 kN at its free end. Draw S.F.D. and BM.D. showing all values.		
	Ans.	I) Reaction at A		
		$R_A = 20 + (20 \times 3.5) = 90 \text{ kN}$		
		II) SF calculations		
		SF at $A = +90$ kN	_	
		$B_L = +90 - (20 \times 3.5) = +20 \text{ kN}$	1	
		$B_{R} = +20 - 20 = 0 \ (:.ok)$		
		III) BM calculations		
		BM at $B = 0$ (Free end)	1	
		A = -(20×3.5) - (20×3.5)× $\frac{3.5}{2}$ = -192.50 kNm		
		A 20 KN/M B RA BEAM		4
		90 KN () () () () () () () () () ()	1	
		A B SFD		
		A O Curve B	1	
		192-5 км-т ВМD		

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	(c)	The cross section of a simply supported beam is as shown in the figure No. 03. The permissible bending stresses in tension and compression are 200 MPa and 140 MPa respectively. Determine the moment of resistance.		
	Ans.	$\frac{10 \text{ mm}}{10 \text{ mm}}$		
		I) To calculate y $\overline{y} = \frac{(a_1 \times y_1) + (a_2 \times y_2)}{(a_1 + a_2)}$ $= \frac{\left[(10 \times 300) \times \frac{300}{2} \right] + \left[(190 \times 10) \times \left(300 - \frac{10}{2} \right) \right]}{(a_1 + a_2)}$		
		$= \frac{[(10 \times 300) + (190 \times 10)]}{[(10 \times 300) + (190 \times 10)]}$ = 206.224 mm from base y _t = 206.224 mm y _c = 300-206.224 = 93.775 mm II) To calculate I _{xx} 300	1 1⁄2	
		$h_{I} = 206.224 - \frac{300}{2} = 56.224 \text{ mm}$ $h_{II} = 93.775 - \frac{10}{2} = 88.775 \text{ mm}$ $I_{xx} = [I_{xx}]_{I} + [I_{xx}]_{II}$ $= \left[\frac{b \times d^{3}}{12} + (a \times h^{2})\right]_{I} + \left[\frac{b \times d^{3}}{12} + (a \times h^{2})\right]_{II}$	1	8
		$= \left[\frac{10 \times 300^{3}}{12} + (3000 \times 56.224^{2})\right]_{I} + \left[\frac{190 \times 10^{3}}{12} + (1900 \times 88.775^{2})\right]_{II}$ I _{xx} = 46973149.05 mm ⁴ = 46.973 × 10 ⁶ mm ⁴	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que.	Sub.	Model Answers	Marks	Total Morlya		
No. Q. 5	Que.	III) To calculate Moment of resistance		Marks		
		$\mathbf{M}_{\mathrm{R}} = \left(\frac{\mathbf{\sigma}_{\mathrm{t}}}{\mathbf{y}_{\mathrm{t}}}\right) \times \mathbf{I}_{\mathrm{xx}}$	1⁄2			
		$= \left(\frac{200}{206.224}\right) \times 46973149.05$				
		$M_{R} = 45555463.04 \text{ Nmm} = 45.555 \times 10^{6} \text{ Nmm}$	1			
		$M_{R} = \left(\frac{\sigma_{c}}{y_{c}}\right) \times I_{xx}$	1⁄2			
		$= \left(\frac{140}{93.775}\right) \times 46973149.05$	1			
		$M_{R} = 70127868.48 \text{ Nmm} = 70.127 \times 10^{6} \text{ Nmm}$				
		Take minimum value of M_R from above $M_R = 45555463.04 \text{ Nmm} = 45.555 \times 10^6 \text{ Nmm}$	1/2			
				16		
Q. 6		Attempt any TWO of the following:				
	(a)	A beam of unsymmetrical I – section has the following details: Top flange – 160 mm x 12 mm, bottom flange – 240 mm x 12 mm, web – 10 mm x 200 mm, overall depth = 224 mm. The centroid of the section is at a distance of 97 mm from the base and $I_{xx} = 59.13 \times 10^6 \text{ mm}^4$. Draw the shear stress distribution diagram at a section where shear force is 155 kN.				
	Ans.	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}{} & 160 \\ \end{array} \\ \begin{array}{c} \end{array} \\ 127 \\ \end{array} \\ \begin{array}{c} \end{array} \\ 127 \\ \end{array} \\ \begin{array}{c} \end{array} \\ 10 \\ \end{array} \\ \begin{array}{c} \end{array} \\ 200 \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \end{array} \\	1			

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6		I) At top extreme fibre $(q_0)=0$	1/2	
		II) At bottom of top flange (q_1)		
		$=\frac{\mathbf{S}\times\mathbf{A}\times\overline{\mathbf{Y}}}{\mathbf{X}}$		
		b×I		
		$=\frac{(155\times10^{3})\times(160\times12)\times121}{160\times(59.13\times10^{6})}$		
			1	
		$= 3.806 \text{N/mm}^2$		
		III) At junction of top flange and web (q_2)		
		$=\frac{S \times A \times \overline{Y}}{b \times I}$		
		$=\frac{(155\times10^{3})\times(160\times12)\times121}{10\times(59.13\times10^{6})}$		
		$=60.899 \mathrm{N/mm^2}$	1	
		IV) At N.A. (q_{max})		
		$= \frac{S \times (A \times \overline{Y})}{S \times (A \times \overline{Y})}$		
		$=$ $\frac{1}{b \times I}$		
		$a_1 = (160 \times 12) = 1920 \mathrm{mm}^2$		
		$a_2 = (115 \times 10) = 1150 \text{ mm}^2$	1	
		y ₁ =127-6=121 mm		8
		$y_{2} = \left(\frac{(127-12)}{2}\right) = 57.50 \text{ mm}$ (A× \overline{Y})=(a ₁ ×y ₁)+(a ₂ ×y ₂)		
		$(A \times \overline{Y}) = (a_1 \times y_1) + (a_2 \times y_2)$		
		$= [(160 \times 12) \times 121] + [(115 \times 10) \times 57.5]$		
		=298445		
		$=\frac{S\times(A\times\overline{Y})}{b\times I}$		
		$=\frac{(155\times10^3)\times(298445)}{10\times(59.13\times10^6)}$		
		$=78.232 \mathrm{N/mm^2}$	1	
		V) At junction of bottom flange and web (q_3)		
		$=\frac{\mathbf{S}\times\mathbf{A}\times\overline{\mathbf{Y}}}{\mathbf{b}\times\mathbf{I}}$		
		$=\frac{(155\times10^3)\times(240\times12)\times91}{10\times(59.13\times10^6)}$		
		$=68.70 \text{ N/mm}^2$	1	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6		VI) At junction of bottom flange (q_4)		
		$=\frac{S \times A \times \overline{Y}}{\overline{Y}}$		
		b×I		
		$=\frac{(155\times10^{3})\times(240\times12)\times91}{240\times(59.13\times10^{6})}$		
			1	
		$=2.862 \text{N/mm}^2$		
		VII) At bottom extreme fibre $(q_0)=0$	1/2	

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	(b)	A certain column of hollow circular section has an external diameter 300 mm and metal thickness 40 mm. The column is 6 m long having one end fixed and one end hinged. Find the safe load for the column using Rankine's formula. Use a factor of safety of 8. Take $\sigma_c = 567$ MPa and $\alpha = 1/1600$.		
	Ans.			
		Solution: I) $L_e = \frac{L}{\sqrt{2}} = \frac{6000}{\sqrt{2}} = 4242.64 \text{ mm}$	1	
		II) d=(D-2×t)=(300-2×40)=220 mm III) A= $\frac{\pi}{4}$ ×(D ² -d ²)= $\frac{\pi}{4}$ ×(300 ² -220 ²)=32672.5636 mm ²	1/2 1/2	
		IV) $I_{min} = \frac{\pi}{64} \times (D^4 - d^4) = \frac{\pi}{64} \times (300^4 - 220^4) = 282617675.1 \text{mm}^4$	1	
		V) $K_{\min} = \sqrt{\frac{I_{\min}}{A}} = \sqrt{\frac{282617675.1}{32672.5636}} = 93 \mathrm{mm}$	1	
		OR		
		$K = \sqrt{\frac{D^2 + d^2}{16}} = \sqrt{\frac{300^2 + 220^2}{16}} = 93 \mathrm{mm}$		8
		VI) $\lambda^2 = \left[\frac{L_e}{K_{min}}\right]^2 = \left[\frac{4242.64}{93}\right]^2 = 2081.165 \text{mm}$	1/2	
		VII) By Rankine's formula	1	
		$P_{\rm R} = \frac{\sigma_{\rm c} \times A}{1 + (\alpha \times \lambda^2)}$	1	
		$=\frac{567\times32672.5636}{1+\left(\frac{1}{1600}\times2081.165\right)}$		
		$=8052472.57 \mathrm{N}$	1	
		$VIII) P_{safe} = \frac{P_R}{FOS}$	1	
		$=\frac{8052472.57}{8}$		
		$P_{safe} = 1006559.071 \mathrm{N}$	1/2	
		$P_{safe} = 1006.559 kN$		

Model Answer: Summer 2018

Subject: Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks	
Q. 6	(c)	A bar 22 mm in diameter and 1.2 m long is hung vertically and a collar is attached at the lower end. A weight of 1000 N falls through a height of 275 mm on the collar. Calculate maximum instantaneous stress, elongation and the strain energy stored in the bar. Take $E = 210$ GPa.			
	Ans.				
		Solution: I) $A = \frac{\pi}{4} \times d^2 = \frac{\pi}{4} \times 22^2 = 380.133 \text{mm}^2$	1/2		
		4 4 V=A×L=380.133×1200=456159.2533 mm ³	1⁄2		
		II) $\sigma_{\text{max}} = \frac{W}{A} + \sqrt{\left(\frac{W}{A}\right)^2 + \left(\frac{2 \times W \times h \times E}{A \times L}\right)}$	1		
		$=\frac{1000}{380.133}+\sqrt{\left(\frac{1000}{380.133}\right)^2+\left(\frac{2\times1000\times275\times210\times10^3}{456159.2533}\right)}$	1	8	
		$\sigma_{\rm max} = 505.828 \rm N/mm^2$	1	0	
		III) $\delta_{\rm L} = \frac{\sigma_{\rm max} \times L}{E}$	1		
		$=\frac{\frac{505.828 \times 1200}{210 \times 10^{3}}}{\delta_{\rm L}=2.89\rm{mm}}$	1		
		$IV) U = \frac{\sigma_{max}^{2}}{2 \times E} \times V$	1		
		$=\frac{505.828^{2}}{2\times210\times10^{3}}\times456159.2533$ U=277890.0075 Nmm U=277.89 Nm or J	1		