Model Answer: Summer 2017

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	i) Ans. ii) Ans.	Attempt any six of the following : Define moment of inertia. State MI of triangular section about its base. Moment of Inertia: - It is the second moment of area which is equal to product of area of the body and square of the distance of its centroid from that axis, is called as moment of Inertia. OR Moment of inertia of a body about any axis is defined as the sum of second moment of all elementary areas about that axis. MI of triangular section about base $\mathrm{I}_{\text {base }}=\frac{b h^{3}}{12}$ Where, $\quad b=$ Base of triangle and $h=$ Height of triangle Calculate polar MI of solid circular shaft section having Dia. 'D' $I_{x x}=I_{y y}=\frac{\pi}{64} \times D^{4}$ for soild circular section. Polar moment of inertia , $\begin{aligned} & \mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{yy}} \\ & \mathrm{I}_{\mathrm{p}}=\frac{\pi}{64} D^{4}+\frac{\pi}{64} D^{4} \\ & \mathrm{I}_{\mathrm{p}}=\frac{\pi}{32} \mathrm{D}^{4} \text { Or } \mathrm{I}_{\mathrm{p}}=0.098170 \mathrm{D}^{4} \end{aligned}$	01 01 01 01	12

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	viii) Ans. B) i) Ans.	1. Weight on balance. 2. Load in truck. 3. Person standing on weighing balance. 4. Load lifted by a small height and dropped on platform. Equation for stress developed due to suddenly applied load, $\sigma=\frac{2 P}{A}$ Where, $\mathrm{P}=$ Load, $\mathrm{A}=$ Cross section area Define resilience and modulus of resilience. Resilience: - It is the energy stored in the body or material, when loaded within elastic limit is called as strain energy or resilience. Modulus of Resilience: - It is the proof resilience per unit volume, called as modulus of resilience is called as modulus of resilience. OR It is the maximum strain energy stored in body per unit volume is called modulus of resilience. Attempt any two of the following : State any four assumptions made in theory of pure bending. 1. The material of the beam is homogeneous and isotropic i.e. the beam made of the same material throughout and it has the same elastic properties in all the directions. 2. The beam is subjected to pure bending that is shear stress is totally neglected. 3. The beam material is stressed within its elastic limit and thus obeys Hooke's law. 4. The transverse sections which where plane before bending remains plane after bending. 5. Each layer of the beam is free to expand or contact independently of the layer above or below it. 6. Young's modulus (E) for the material has the same value in tension and compression.	$\begin{gathered} \hline 1 / 2 \\ \text { mark } \\ \text { each } \\ \text { (any } \\ \text { two) } \\ 01 \\ \\ \hline 01 \\ \hline 01 \\ \hline \end{gathered}$	02

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	ii) Ans. iii) Ans.	7. The radius of curvature is large as compared to the dimensions of the cross section A circular section diameter 150 mm is subjected to shear force 10 kN when used as a beam. Calculate average and maximum shear stress and draw shear stress distribution diagram. $\begin{aligned} & \mathrm{A}=\frac{\pi}{4}\left(D^{2}\right)=\frac{\pi}{4}(150)^{2}=17671.45868 \mathrm{~mm}^{2} \\ & q_{\text {avg }}=\frac{S}{A}=\frac{10 \times 10^{3}}{17671.458}=0.566 \mathrm{~N} / \mathrm{mm}^{2} \\ & q_{\max }=\frac{4}{3} q_{\text {avg }}=\frac{4}{3} \times 0.566=0.754 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ A column having diameter 300 mm is 5 m long. Determine Euler's crippling load, if both end of column are fixed. Take $E=$ $2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. $\begin{aligned} & L e=\frac{L}{2}=\frac{5000}{2}=2500 \mathrm{~mm} \\ & I_{\min }=\frac{\pi}{64}(D)^{4}=\frac{\pi}{64}(300)^{4} \\ & I_{\min }=397607820.2 \mathrm{~mm}^{4} \end{aligned}$ $\begin{aligned} & P=\frac{\pi^{2} E I_{\min }}{(L e)^{2}} \\ & P=\frac{\pi^{2} \times 2 \times 10^{5} \times 397607820.2}{(2500)^{2}} \\ & P=125575420.6 \mathrm{~N} \\ & P=125.575 \times 10^{6} \mathrm{~N} \end{aligned}$	01 01	04

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	c)	$\begin{aligned} & \bar{Y}=\frac{a_{1} x_{1}+a_{2} x_{2}}{a_{1}+a_{2}} \\ & \bar{Y}=\frac{(200 \times 20) 10+(200 \times 20) \times 120}{(200 \times 20)+(200 \times 20)} \\ & \bar{Y}=65 \mathrm{~mm} \\ & \text { from top } \\ & I_{x x}=\left[\frac{1}{12} b_{1} d_{1}^{3}+A_{1} h_{1}^{2}\right]-\left[\frac{1}{12} b_{2} d_{2}^{2}+A_{2} h_{2}^{2}\right] \\ & I_{x x}=\left[\frac{1}{12} \times 200 \times 20^{3}+\left((200 \times 20) \times 55^{2}\right)\right]+\left[\frac{1}{12} \times 20 \times 200^{3}+\left((20 \times 200) \times 55^{2}\right)\right] \\ & I_{x x}=12.233 \times 10^{6}+25.433 \times 10^{6} \\ & I_{x x}=37.67 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ i) Calculate the radius of gyration of steel pipe having external diameter 22 mm and internal diameter 16 mm . ii) Find the diameter of circular rod 2.4 m long when subjected to an axial pull 15 kN , shows an elongation of 1 mm . Take $E=205$ $\mathrm{kN} / \mathrm{mm}^{2}$. $\begin{aligned} & i) \\ & \begin{array}{l} K_{x x}=\sqrt{\frac{I_{x x}}{A}} \\ K_{y y}=\sqrt{\frac{I_{y y}}{A}} \\ I_{x x}=I_{y y}=\frac{\pi}{64}\left(D^{4}-d^{4}\right) \\ \quad=\frac{\pi}{64}\left(22^{4}-16^{4}\right) \\ I_{x x}=I_{y y}=8282.024 \mathrm{~mm}^{4} \end{array} \end{aligned}$ Area, $\begin{aligned} A & =\frac{\pi}{4}\left(D^{2}-d^{2}\right) \\ & =\frac{\pi}{4}\left(22^{2}-16^{2}\right) \\ A & =179.07 \mathrm{~mm}^{2} \end{aligned}$	02 02 02 02 01 01 01	08

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2		$\begin{aligned} & K_{x x}=K_{y y}=\sqrt{\frac{8282.024}{179.07}} \\ & K_{x x}=K_{y y}=6.80 \mathrm{~mm} \end{aligned}$ ii) $\begin{aligned} & P=15 \mathrm{kN}=15 \times 10^{3} \mathrm{~N} \\ & t=2.4=2400 \mathrm{~mm} \\ & \delta l=1 \mathrm{~mm} \\ & E=205 \mathrm{kN} / \mathrm{mm}^{2}=205 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\ & d=? \\ & \delta L=\frac{P L}{A E} \\ & A=\frac{P L}{E \delta L} \\ & \frac{\pi}{4}(d)^{2}=\frac{P L}{E \delta L} \\ & d^{2}=\frac{4 P L}{\pi E \delta L} \\ & d=\sqrt{\frac{4 P L}{\pi E \delta L}} \\ & d=\sqrt{\frac{4 \times 15 \times 10^{3} \times 2400}{\pi \times 205 \times 10^{3} \times 1}} \\ & d=\sqrt{223.5932859} \\ & d=14.953 \mathrm{~mm} \end{aligned}$	01 01 01 02	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	b) Ans.	A steel tube with $\mathbf{4 0} \mathbf{~ m m}$ inside diameter and 4 mm thickness is filled with concrete. Determine load shared by each material due to axial thrust of 60 kN . Take $\mathbf{E}_{\text {steel }}=210 \mathrm{~N} / \mathrm{mm}^{2}$ $E_{\text {concrete }}=14 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2}$ Given : $\begin{aligned} & d=40 \mathrm{~mm} \\ & t=4 \mathrm{~mm} \\ & P=60 \mathrm{KN} \\ & E_{S}=210 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\ & E_{C}=14 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\ & D=d+2 t=40+(2 \times 4) \\ & D=48 \mathrm{~mm} \\ & A_{S}=\frac{\pi}{4} \times\left(D^{2}-d^{2}\right) \\ & A_{S}=\frac{\pi}{4} \times\left(48^{2}-40^{2}\right) \\ & A_{S}=552.92 \mathrm{~mm}^{2} \end{aligned}$ $A_{C}=\frac{\pi}{4} \times\left(d^{2}\right)$ $A_{C}=\frac{\pi}{4} \times\left(40^{2}\right)$ $A_{C}=1256.637 \mathrm{~mm}^{2}$ $m=\frac{E_{S}}{E_{C}}=\frac{210 \times 10^{3}}{14 \times 10^{3}}=15$ $e_{s}=e_{c}$ $\frac{\sigma_{s}}{E_{S}}=\frac{\sigma_{c}}{E_{C}}$ $\sigma_{s}=\left(\frac{E_{S}}{E_{C}}\right) \sigma_{c}$ $\sigma_{s}=15 \sigma_{c}$ $\begin{align*} & P=P_{S}+P_{C} \tag{ii}\\ & P=\sigma_{s} A_{S}+\sigma_{c} A_{C} \\ & 60 \times 10^{3}=15 \sigma_{c} \times 552.92+\sigma_{c} \times 1256.637 \end{align*}$	01 01 01 01 01	08

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	c)	$60 \times 10^{3}=\sigma_{c} \times 8293.8+\sigma_{c} \times 1256.637$		
		$\sigma_{c}=\frac{60 \times 10^{3}}{9550.437}$		
		$\sigma_{c}=6.2824 \mathrm{~N} / \mathrm{mm}^{2}$	01	
		$P_{c}=\sigma_{c} A_{C}$		
		$P_{c}=6.2824 \times 1256.637$		
		$P_{c}=7894.74 \mathrm{~N}$		
		$P_{c}=7.89 \mathrm{kN}$	01	
		$\sigma_{s}=15 \sigma_{c}$		
		$\sigma_{s}=15 \times 6.2824$	01	
		$\sigma_{s}=94.236 \mathrm{~N} / \mathrm{mm}^{2}$		
		$P_{s}=\sigma_{s} A_{S}$		
		$P_{s}=94.236 \times 552.92$		
		$P_{s}=52104.96 \mathrm{~N}$		
		$P_{s}=52.104 \mathrm{kN}$	01	
		i) A square rod $10 \mathrm{~mm} \times 10 \mathrm{~mm}$ in cross section and 1 m long is at $20^{0} \mathrm{C}$. Find free expansion of rod, if temperature to $70^{0} \mathrm{C}$. If this		
		expansion is prevented, find temperature stress developed in the bar. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\alpha=12 \times 12^{-6} \operatorname{per}^{0} \mathrm{C}$		
		ii) With a neat sketch show effective length of Column for various end conditions. (min. four)		
	Ans.			
		$L=1 \mathrm{~m}=1 \times 10^{3} \mathrm{~mm}$		
		$t_{1}=20^{\circ} \mathrm{C}$		
		$t_{2}=70^{\circ} \mathrm{C}$		
		$E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$		
		$\alpha=12 \times 10^{-6} /{ }^{0} \mathrm{C}$		
		$\Delta t=t_{2}-t_{1}=70-20=50^{\circ} \mathrm{C}$	01	
		i)Free Expansion, $(\delta L)=L \alpha T$		
		$=1 \times 10^{3} \times 12 \times 10^{-6} \times 50$		
		($\delta L)=0.6 \mathrm{~mm}$	01	

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	c) Ans.	$\begin{aligned} & \frac{\delta V}{V}=\frac{\sigma_{x}+\sigma_{y}+\sigma_{z}}{E}(1-2 \mu) \\ & E=\frac{3 \sigma}{\left(\frac{\delta V}{V}\right)}(1-2 \mu) \\ & E=\frac{3 \times 90}{\left(\frac{5000}{\left.8 \times 10^{6}\right)}\right.}(1-2 \times 0.28) \\ & \mathrm{E}=1.9 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Draw SFD and BMD for the cantilever beam loaded as shown in Fig. 3 SF Calculations: SF at $\mathrm{A}=+50 \mathrm{kN}$ $\begin{aligned} \mathrm{C}_{\mathrm{L}} & =+50 \mathrm{kN} \\ \mathrm{C}_{\mathrm{R}} & =+50-30=20 \mathrm{kN} \\ \mathrm{~B}_{\mathrm{L}} & =+20 \mathrm{kN} \\ \mathrm{~B} & =+20-20=0 \end{aligned}$ BM Calculations: $\begin{aligned} \mathrm{BM} \text { at } \mathrm{B} & =-15 \mathrm{kN}-\mathrm{m} \\ \mathrm{BM} \text { at } \mathrm{C} & =-15-20 \times 1.5=-45 \mathrm{kN}-\mathrm{m} \\ \mathrm{BM} \text { at } \mathrm{A} & =-15-20 \times 2.5-30 \times 1=-95 \mathrm{kN}-\mathrm{m} \end{aligned}$ (a) Beam (b) SFD in kN	01 01 02 01 02 03 01 02	08

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	b) Ans.	$\begin{aligned} & \sigma_{b(\max)}=\frac{\mathrm{M}}{I} \times Y \\ & \sigma_{b(\max)}=\frac{\left(20 \times 10^{6}\right)}{337.5 \times 10^{6}} \times 150 \\ & \sigma_{b(\max)}=8.89 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ $\begin{aligned} & \frac{\mathrm{M}}{I}=\frac{\sigma_{\mathrm{b}}}{Y}=\frac{E}{R} \\ & R=\frac{\mathrm{E}}{\sigma_{\mathrm{b}}} \times Y \quad \text { OR } \quad R=\frac{\mathrm{E}}{M} \times I \\ & R=\frac{\left(1.4 \times 10^{3}\right)}{8.89} \times 150 \quad \text { OR } \quad R=\frac{\left(1.4 \times 10^{3}\right)}{\left(20 \times 10^{6}\right)} \times 337.5 \times 10^{6} \\ & R=23625 \mathrm{~mm} \\ & R=23.625 \mathrm{~m} \end{aligned}$ A beam $A B C$ supported at A and B such that $B C$ as overhang. $A B$ $=3 \mathrm{~m}, \mathrm{BC}=1 \mathrm{~m}$, span AB carried udl $10 \mathrm{kN} / \mathrm{m}$ and point load of 6 kN acts at point C . Draw shear force and bending moment diagrams. Also locate point of contra flexure, if any. Step1 Calculation of Reaction, $\begin{aligned} & \sum \mathrm{F}_{\mathrm{y}}=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=(10 \times 3+6) \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=36 \\ & \sum M_{A}=0 \\ & \mathrm{R}_{\mathrm{B}} \times 3=\left(10 \times 3 \times \frac{3}{2}\right)+6 \times 4 \\ & R_{B}=23 \mathrm{kN} \\ & R_{A}=36-23=13 \mathrm{kN} \end{aligned}$ Step 2 Shear force calculation, SF at $\mathrm{A}=+13 \mathrm{kN}$ $\begin{aligned} & \mathrm{B}_{\mathrm{L}}=+13-10 \times 3=-17 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{R}}=-17+23=6 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{L}}=6 \mathrm{kN} \\ & C=6-6=0 \end{aligned}$	01 $1 / 2$ 01 01 01	

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	C Ans.	i) A simply supported beam of span ' L ' carries central point load 'W'. Draw SFD and BMD. ii) Define shear force and bending moment. Write unit of each. Also state relation between them. i) Step 1 Calculation of Reaction, As, the load is at centre so, support reaction are equal, $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{\mathrm{B}}=\frac{\mathrm{W}}{2}$ Step 2 Shear force calculation a) S.F. at any section between A and C is, $\mathrm{F}_{\mathrm{x}}=+\mathrm{R}_{\mathrm{A}}=\frac{\mathrm{W}}{2}$ b) S.F. at any section between B and C is, $F_{x}=-R_{B}=-\frac{W}{2}$ Step-3 Bending Moment Calculation, Beam is simply supported at the end A and B, $\begin{aligned} & \therefore \mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}}=0 \\ & \therefore \mathrm{M}_{\max }=\mathrm{Mc}=+\frac{\mathrm{W}}{2} \times \frac{L}{2} \\ & \therefore \mathrm{Mc}=\frac{\mathrm{WL}}{4} \end{aligned}$ (i) Simply supported beam (III) BMD	01	04

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	b)	$\begin{aligned} & A \bar{Y}=a_{1} y_{1}+a_{2} y_{2} \\ & A \bar{Y}=(80 \times 20) \times 90+(20 \times 80) \times 40 \\ & A \bar{Y}=144000+64000 \\ & A \bar{Y}=208000 \\ & q_{\max }=\frac{S A \bar{Y}}{b I} \\ & q_{\max }=\frac{100 \times 10^{3} \times 208000}{20 \times 3.285 \times 10^{7}} \\ & q_{\max }=31.656 \mathrm{~N} / \mathrm{mm}^{2} \\ & \text { Ratio }=\frac{q_{\text {avg }}}{q_{\max }}=\frac{15.625}{31.656}=0.493 \\ & \frac{q_{\text {avg }}}{q_{\max }}=0.493 \end{aligned}$ A cast iron column 100 mm external diameter is an 80 mm internal diameter 2 m long. It is fixed at one end and hinged at other end. Calculate the safe axial load by Rankine's formula taking factor of safety 3 . Assume $\sigma_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}$ and Rankine's constant $\alpha=1 / 1600$. Given $\begin{aligned} & D=100 \mathrm{~mm}, d=80 \mathrm{~mm}, L=2 \mathrm{~m}=2000 \mathrm{~mm} \\ & F O S=3, \sigma_{c}=550 \mathrm{~N} / \mathrm{mm}^{2}, \alpha=\frac{1}{1600} \end{aligned}$ As, the column is fixed at one end and hinged at other end. Efeective length, $(L e)=\frac{L}{\sqrt{2}}=\frac{2000}{\sqrt{2}}$ $L e=1414.2 \mathrm{~mm}$ For hollow circular column, $\begin{aligned} & I_{\min .}=I_{x x .}=I_{y y .}=\frac{\pi}{64}\left(100^{4}-80^{4}\right) \\ & I_{\min .}=I_{x x .}=I_{y y .}=2898119.223 \mathrm{~mm}^{4} \end{aligned}$ Area, $\begin{aligned} & A=\frac{\pi}{4}\left(100^{2}-80^{2}\right) \\ & A=2827.433 \mathrm{~mm}^{2} \end{aligned}$	$1 / 2$ $1 / 2$ 01 01 $1 / 2$ 01 01 01	

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline \& C)

Ans. \& \begin{tabular}{l}
$$
\begin{aligned}
& K^{2}=\frac{I}{A} \\
& K^{2}=\frac{2898119.223}{2827.433} \\
& K=32.0156 m m \\
& \therefore 1+a \frac{(L e)^{2}}{K^{2}}=1+\left(\frac{1}{1600}\right) \times\left(\frac{(1414.2)^{2}}{32.0156}\right) \\
& 1+a \frac{(L e)^{2}}{K^{2}}=2.2195
\end{aligned}
$$

By using Rankine's formula,
$$
\begin{aligned}
& \mathrm{P}_{\mathrm{R}}=\frac{\sigma_{\mathrm{c}} \cdot \mathrm{~A}}{1+a \frac{(L e)^{2}}{K^{2}}} \\
& \mathrm{P}_{\mathrm{R}}=\frac{550 \times 2827.433}{2.2195} \\
& \mathrm{P}_{R}=707644.2077 N
\end{aligned}
$$
$$
\text { Safe Load }=\frac{\text { Rankine's crippling load }}{\text { Factor of safety }}
$$

Safe Load $=\frac{707644.2077}{3}$

Safe Load $=233548.0692 \mathrm{~N}$

Safe Load $=233.548 \mathrm{kN}$

A weight of 2 kN falls on a collar attached at the lower end of a vertical bar 3 m long and 25 mm in diameter. Calculate the height of drop if the instantaneous stress developed is $120 \mathrm{~N} / \mathrm{mm}^{2}$. Also calculate corresponding elongation and strain energy stored in the bar. Take $\mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$.

Given:
$$
\begin{aligned}
& \mathrm{W}=2 \mathrm{kN}=2000 \mathrm{~N} \\
& \mathrm{~L}=3 \mathrm{~m}=3000 \mathrm{~mm} \\
& \mathrm{~d}=25 \mathrm{~mm} \\
& \sigma=120 \mathrm{~N} / \mathrm{mm}^{2} \\
& E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\
& \text { Find }=h=?, \delta l=?, U=?
\end{aligned}
$$

 \&

01

01

01

01

01
\end{tabular} \& 08

\hline
\end{tabular}

