

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (IS O/IEC - 27001 - 2005 Certified)

Model Answer: Summer 2017

Subject: Mechanics of Structures

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que.	Sub.	Model Answers	Marks	Total Marks
No.	Que.	Attempt <u>any six</u> of the following :		Marks 12
-	i)	Define moment of inertia. State MI of triangular section about its		
	1)	base.		
		Moment of Inertia: -		
	Ans.	It is the second moment of area which is equal to product of area of		
		the body and square of the distance of its centroid from that axis, is		
		called as moment of Inertia.	01	
		OR		
		Moment of inertia of a body about any axis is defined as the sum of		02
		second moment of all elementary areas about that axis.		02
		MI of triangular section about base $I_{\text{base}} = \frac{bh^3}{12}$	01	
		Where, $b = Base of triangle and h = Height of triangle$		
	ii)	Calculate polar MI of solid circular shaft section having Dia. 'D'		
	Ans.	$I_{xx} = I_{yy} = \frac{\pi}{64} \times D^4$ for soild circular section.	01	
		Polar moment of inertia,		
		$I_p = I_{xx} + I_{yy}$		02
		$I_{p} = \frac{\pi}{64}D^{4} + \frac{\pi}{64}D^{4}$	01	
		$I_{\rm p} = \frac{\pi}{32} D^4 \text{Or} I_{\rm p} = 0.098170 D^4$	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	iii)	Define 'Modulus of rigidity'. State its SI unit.		TTUINS
	Ans.	Modulus of rigidity : - It is ratio of shear stress to shear strain, is called as Modulus of Rigidity. Unit: - N/m ² Or Pascal Or N/mm ²	01 01	02
	IV)	Draw stress-strain curve for a ductile material showing important		
		points.		
	Ans.	Stress (N/mm^2) A = Proportional limit point B = Elastic limit point C = Upper yield point D = Lower yield point F = Breaking load point	02	02
		(Note: One mark for curve and one mark for important point shown		
		in curve)		
	V)	State the relationship between linear strain and lateral strain.		
	,	Lateral strain is directly proportional to linear strain. When a		
	Ans.	homogeneous material is loaded within its elastic limit, the ratio of lateral strain to linear strain is called as Poisson's ratio.	02	02
		Lateral strain produced in any material is equal to product of		
		Poission's ratio and linear strain of same material.		
	vi)	Define slenderness ratio.		
	Ans.	It is the ratio of effective length of column to minimum radius of gyration, is called as slenderness ratio.	02	02
	••	Give an example of suddenly applied load. Also write equation for		
	vii)	stress developed due to suddenly applied load.		
	Ans.	Example: -		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	240.	1. Weight on balance.	1/2	Trianto
		2. Load in truck.	mark	
		3. Person standing on weighing balance.	each	
		4. Load lifted by a small height and dropped on platform.	(any	02
			two)	
		Equation for stress developed due to suddenly applied load, $\sigma = \frac{2P}{A}$	01	
		Where, $P = Load$, $A = Cross section area$		
	viii)	Define resilience and modulus of resilience.		
	Ans.	Resilience: -		
		It is the energy stored in the body or material, when loaded within	01	
		elastic limit is called as strain energy or resilience.		
		Modulus of Resilience: -		02
		It is the proof resilience per unit volume, called as modulus of		
		resilience is called as modulus of resilience.	01	
		OR		
		It is the maximum strain energy stored in body per unit volume is		
		called modulus of resilience.		08
	B)	Attempt <u>any two</u> of the following :		
	i)	State any four assumptions made in theory of pure bending.		
	Ans.	1. The material of the beam is homogeneous and isotropic i.e. the		
		beam made of the same material throughout and it has the		
		same elastic properties in all the directions.		
		2. The beam is subjected to pure bending that is shear stress is		
		totally neglected.	01	04
		3. The beam material is stressed within its elastic limit and thus	mark	
		obeys Hooke's law.	each	
		4. The transverse sections which where plane before bending	(any	
		remains plane after bending.	four)	
		5. Each layer of the beam is free to expand or contact	,	
		independently of the layer above or below it.		
		6. Young's modulus (E) for the material has the same value in		
		tension and compression.		

0110	Cub			Total
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	ii)	7. The radius of curvature is large as compared to the dimensions of the cross sectionA circular section diameter 150 mm is subjected to shear force		
	п <i>)</i>			
		10kN when used as a beam. Calculate average and maximum		
		shear stress and draw shear stress distribution diagram.	01	
	Ans.	$A = \frac{\pi}{4}(D^2) = \frac{\pi}{4}(150)^2 = 17671.45868mm^2$	01	
		$q_{avg} = \frac{S}{A} = \frac{10 \times 10^3}{17671.458} = 0.566N / mm^2$	01	0.4
		$q_{\text{max}} = \frac{4}{3}q_{avg} = \frac{4}{3} \times 0.566 = 0.754 N / mm^2$	01	04
		$\frac{N}{100000000000000000000000000000000000$	01	
	iii)	A column having diameter 300mm is 5 m long. Determine Euler's		
		crippling load, if both end of column are fixed. Take E =		
	Ans.	$2x10^{5} \text{N/mm}^{2}.$ $Le = \frac{L}{2} = \frac{5000}{2} = 2500 mm$	01	
		$I_{\min} = \frac{\pi}{64} (D)^4 = \frac{\pi}{64} (300)^4$	01	
		$I_{\rm min} = 397607820.2mm^4$	• -	
		$P = \frac{\pi^2 E I_{\min}}{\left(Le\right)^2}$	01	04
		$P = \frac{\pi^2 \times 2 \times 10^5 \times 397607820.2}{(2500)^2}$		
		P = 125575420.6N		
		$P = 125.575 \times 10^6 N$	01	

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2		$\overline{Y} = \frac{a_1 x_1 + a_2 x_2}{a_1 + a_2}$ $\overline{Y} = \frac{(200 \times 20)10 + (200 \times 20) \times 120}{(200 \times 20) + (200 \times 20)}$	02	
		$(200 \times 20) + (200 \times 20)$ $\overline{\overline{Y}} = 65mm$ from top	02	
		$I_{xx} = \left[\frac{1}{12}b_1d_1^3 + A_1h_1^2\right] - \left[\frac{1}{12}b_2d_2^2 + A_2h_2^2\right]$	02	08
		$I_{xx} = \left[\frac{1}{12} \times 200 \times 20^3 + \left((200 \times 20) \times 55^2\right)\right] + \left[\frac{1}{12} \times 20 \times 200^3 + \left((20 \times 200) \times 55^2\right)\right]$		
		$I_{xx} = 12.233 \times 10^{6} + 25.433 \times 10^{6}$ $\boxed{I_{xx} = 37.67 \times 10^{6} mm^{4}}$	02	
	c)	i) Calculate the radius of gyration of steel pipe having external diameter 22 mm and internal diameter 16 mm.		
		ii) Find the diameter of circular rod 2.4 m long when subjected to		
		an axial pull 15 kN, shows an elongation of 1 mm. Take $E=205$		
		kN/mm ² .		
	Ans.	i) $K_{xx} = \sqrt{\frac{I_{xx}}{A}}$ $K_{yy} = \sqrt{\frac{I_{yy}}{A}}$	01	
		$I_{xx} = I_{yy} = \frac{\pi}{64} (D^4 - d^4)$		
		$= \frac{\pi}{64} (22^4 - 16^4)$ $I_{xx} = I_{yy} = 8282.024 mm^4$	01	
		Area, $A = \frac{\pi}{4} (D^2 - d^2)$		0.0
		$=\frac{\pi}{4}(22^2 - 16^2)$		08
		$A = 179.07 \text{ mm}^2$	01	

Subject: Mechanics of Structures

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
2		$K_{xx} = K_{yy} = \sqrt{\frac{8282.024}{179.07}}$ $K_{xx} = K_{yy} = 6.80 \text{mm}$	01	
		ii)		
		$P = 15kN = 15 \times 10^3 N$		
		t = 2.4 = 2400 mm		
		$\delta l = 1mm$ $E = 205kN / mm^2 = 205 \times 10^3 N / mm^2$		
		$E = 205 \text{ k/V} / \text{mm}^2 = 205 \times 10^6 \text{ N} / \text{mm}^2$ d = ?		
		$\delta L = \frac{PL}{AE}$ $A = \frac{PL}{E\delta L}$	01	
		$\frac{\pi}{4}(d)^{2} = \frac{PL}{E\delta L}$ $d^{2} = \frac{4PL}{\pi E\delta L}$ $\boxed{4PL}$		
		$d = \sqrt{\frac{4PL}{\pi E \delta L}}$ $d = \sqrt{\frac{4 \times 15 \times 10^3 \times 2400}{\pi \times 205 \times 10^3 \times 1}}$	01	
		$d = \sqrt{223.5932859}$ $d = 14.953mm$	02	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	Que.	Solve <i>any two</i> of the following:		16
	a)	A bar of uniform cross section area 100 mm ² is subjected to axial		
		forces as shown in fig 2. Calculate the net change in length of the		
		bar. Take $E = 25 \times 10^5 \text{ N/mm}^2$.		
	Ans.			
		A B C D		
		1KN PKN 2KN 2KN		
		1 300 mm 1 400 mm 1 600 mm 1		
		$A = 100mm^2 \qquad E = 2 \times 10^5 N/mm^2 \qquad \delta L = ?$		
		To calculate, P		
		1+4=P-2 P=5-2	01	
		P = 3kN	U1	
		$\delta L = -\delta L_{AB} + \delta L_{BC} - \delta L_{CD}$	01	
		$\delta L = -\left(\frac{PL}{AE}\right)_{AB} + \left(\frac{PL}{AE}\right)_{BC} - \left(\frac{PL}{AE}\right)_{CD}$	02	
			02	08
		$\delta L = -\left(\frac{1 \times 10^3 \times 300}{100 \times 200 \times 10^3}\right)_{AB} + \left(\frac{2 \times 10^3 \times 400}{100 \times 200 \times 10^3}\right)_{BC} - \left(\frac{2 \times 10^3 \times 600}{100 \times 200 \times 10^3}\right)_{CD}$	03	00
		$\delta L = -0.015 + 0.04 - 0.06$		
		$\delta L = -0.035 mm$	01	

Que.	Sub.	Model Answers	Marks	Total Marks
No. 3	Que. b)	A steel tube with 40 mm inside diameter and 4 mm thickness is		Marks
		filled with concrete. Determine load shared by each material due		
		to axial thrust of 60 kN.		
		Take $E_{steel} = 210 \text{ N/mm}^2$		
		$E_{concrete} = 14 \times 10^3 \text{ N/mm}^2$		
	Ans.	Given :		
		d = 40mm		
		t = 4mm		
		P = 60KN		
		$E_s = 210 \times 10^3 N/mm^2$		
		$E_C = 14 \times 10^3 \ N/mm^2$		
		$D = d + 2t = 40 + (2 \times 4)$		
		D = 48mm	01	
		$A_{S} = \frac{\pi}{4} \times \left(D^{2} - d^{2} \right)$		
		$A_{\rm S} = \frac{\pi}{4} \times \left(48^2 - 40^2\right)$		
		$A_{s} = 552.92mm^{2}$	01	
		$A_{C} = \frac{\pi}{4} \times \left(d^{2}\right)$ $A_{C} = \frac{\pi}{4} \times \left(40^{2}\right)$		
		$A_{c} = 1256.637 mm^{2}$	01	
		$m = \frac{E_s}{E_c} = \frac{210 \times 10^3}{14 \times 10^3} = 15$		
		$e_s = e_c$		
		$\frac{\sigma_s}{E_s} = \frac{\sigma_c}{E_c} \qquad \dots $		
		$\sigma_s = \left(\frac{E_s}{E_c}\right) \sigma_c$		
		$\sigma_s = 15\sigma_c$	01	
		$P = P_S + P_C \qquad \dots \dots \dots \dots (ii)$		
		$P = \sigma_s A_s + \sigma_c A_C$		08
		$60 \times 10^3 = 15\sigma_c \times 552.92 + \sigma_c \times 1256.637$		

Subject: Mechanics of Structures

0.00	Sub			Tatal
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	2	$60 \times 10^3 = \sigma_c \times 8293.8 + \sigma_c \times 1256.637$		
		$\sigma_c = \frac{60 \times 10^3}{9550.437}$		
		$\sigma_c = 6.2824 N/mm^2$	01	
		$P_c = \sigma_c A_C$		
		$P_c = 6.2824 \times 1256.637$		
		$P_c = 7894.74N$		
		$P_c = 7.89 kN$	01	
		$\sigma_s = 15\sigma_c$	01	
		$\sigma_s = 15 \times 6.2824$	01	
		$\sigma_s = 94.236 N/mm^2$	01	
		$P_{s} = \sigma_{s} A_{s}$		
		$P_{\rm s} = 94.236 \times 552.92$		
		$P_s = 52104.96N$		
		$P_s = 52.104 kN$	01	
		i) A source and 10 mm v 10 mm in areas section and 1 m long is at		
	c)	i) A square rod 10 mm x 10 mm in cross section and 1 m long is at 20° C. Find free encounter of rod if terms to 70° C. If this		
		20° C. Find free expansion of rod, if temperature to 70° C. If this		
		expansion is prevented, find temperature stress developed in the		
		bar. Take $E = 2 \times 10^5 \text{N/mm}^2$ and $\alpha = 12 \times 12^{-6} \text{ per}^{0} \text{C}$		
		ii) With a neat sketch show effective length of Column for various		
		end conditions. (min. four)		
	Ans.	i)		
		$L = 1m = 1 \times 10^3 mm$		
		$t_1 = 20^0 C$		
		$t_2 = 70^{\circ}C$		
		$E = 2 \times 10^5 N/mm^2$		
		$\alpha = 12 \times 10^{-6} / {}^{0} C$	01	
		$\Delta t = t_2 - t_1 = 70 - 20 = 50^{\circ} C$	VI	
		i)Free Expansion,		
		$(\delta L) = L\alpha T$		
		$=1 \times 10^{3} \times 12 \times 10^{-6} \times 50$	A1	
		$(\delta L) = 0.6mm$	01	

Subject: Mechanics of Structures

0	C1-			T-4-1
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	Que.	Solve <i>any two</i> of the following		16
	a)	A metal rod 20 mm diameter and 2 m long when subjected to		
		tensile force of 60 kN shows an elongation of 2 mm and reduction		
		in diameter 0.006 mm. Calculate the modulus of elasticity and		
		modulus of rigidity.		
	Ans.		01	
	Alls.	$E = \frac{PL}{A\delta L}$	01	
			01	
		$E = \frac{60 \times 10^3 \times 2 \times 10^5}{\frac{\pi}{4} \times 20^2 \times 2}$	01	
		·		
		$E = 1.91 \times 10^5 \text{ N/mm}^2$	01	
		$\mu = \frac{\text{Lateral Strain}}{1}$	01	
		linear Strain $\begin{pmatrix} \delta d \end{pmatrix} \begin{pmatrix} 0.006 \end{pmatrix}$		08
		$\left(\frac{\partial \mathbf{d}}{\partial t}\right) = \left(\frac{\partial \partial \partial \partial \mathbf{d}}{20}\right)$		
		$\mu = \frac{\left(\frac{\delta d}{d}\right)}{\left(\frac{\delta L}{L}\right)} = \frac{\left(\frac{0.006}{20}\right)}{\left(\frac{2}{2000}\right)}$	01	
		$\left(\frac{1}{L}\right)$ $\left(\frac{1}{2000}\right)$		
		$\mu = 0.3$	01	
		$\mathbf{E} = 2\mathbf{G}\left(1 + \mu\right)$	01	
		= 2G(1+0.3)		
		$1.91 \times 10^5 = 2G(1+0.3)$		
		$G = \frac{1.91 \times 10^5}{2 \times 1.2}$	01	
		$G = \frac{1}{2 \times 1.3}$		
		$G = 7.345 \times 10^4 \mathrm{N/mm^2}$		
	b)	A cube of 200 mm side is subjected to a compressive force of 3600		
	~)	kN on all its faces. The change in the volume of cube is found to be		
		5000 mm ³ . Calculate the Bulk modules. If the $\mu = 0.28$, Find the		
		Young's modulus.	02	
	Ans.		04	
	-1113.	$\sigma = \frac{P}{A} = \frac{3600 \times 10^3}{200 \times 200}$		
		$\sigma = 90 \text{ N/mm}^2$	Δ1	
		$V = L^3 = (200)^3$	01	
		$V = 8 \times 10^6 mm^3$		

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	Que.	$\delta V = \sigma_x + \sigma_y + \sigma_z$	01	08
		$\frac{\delta V}{V} = \frac{\sigma_x + \sigma_y + \sigma_z}{E} (1 - 2\mu)$		
		$E = \frac{3\sigma}{(3\pi)}(1-2\mu)$	01	
		$E = \frac{3\sigma}{\left(\frac{\delta V}{V}\right)} (1 - 2\mu)$		
		$E = \frac{3 \times 90}{3 \times 90} (1 - 2 \times 0.28)$	02	
		$E = \frac{3 \times 90}{\left(\frac{5000}{8 \times 10^6}\right)} (1 - 2 \times 0.28)$		
		· · · · · · · · · · · · · · · · · · ·	01	
		$E = 1.9 \times 10^5 \text{N/mm}^2$		
	c)	Draw SFD and BMD for the cantilever beam loaded as shown in		
		Fig. 3		
	Ans.	SF Calculations:		
		SF at $A = +50$ kN		
		$C_{L} = +50 \text{ kN}$	02	
		$C_{R} = +50-30 = 20 \text{ kN}$ $P_{R} = +20 \text{ kN}$		
		$B_{L} = +20kN$ B = +20-20 = 0		
		B = 120-20 = 0 BM Calculations:		
		BM at B = -15 kN-m		
		BM at C = $-15-20 \times 1.5 = -45$ kN-m	03	
		BM at A = $-15-20 \times 2.5-30 \times 1 = -95$ kN-m		
		30 KN 20 KN		08
				00
		1 m C 1.5 m 15 kN.m		
		(a) Beam		
		50 50		
		+ 20 20		
			01	
		(b) SFD in kN		
		15	02	
		45		
		95 (c) BMD in kN.m		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	Que.	Solve <u>any two</u> of the following.		16
		A timber beam 15mm wide and 300mm deep is simply supported		
	a)	over a span of 4m. It carries udl 10kN/m over entire span. Find		
		the maximum bending stress induced in the section. Draw bending		
		stress distribution diagram. Also find radius of curvature if E=1.4		
		kN/mm ² .		
	Ans.	$w = 10 \text{ kN/m}$ $A \longrightarrow L = 4 \text{ m}$ (a) Beam (b) Section (c) Bending stress distribution (c) Bending stress distribution	01	
		E =1.4 kN/mm ² = $1.4 \times 10^{3} N / mm^{2}$ b = $150mm, d = 300mm, L = 4m, w = 10kN / m$ Find : $-\sigma_{b(max)}$; R		
		$I_{xx} = I_{NA} = \frac{1}{12}bd^{3}$ $I_{xx} = I_{NA} = \frac{1}{12} \times 150 \times 300^{3}$	1/2	
		$I2 I_{xx} = I_{NA} = 337.5 \times 10^6 mm^4$	01	
		$Y = \frac{d}{2} = \frac{300}{2}$ $\boxed{Y = 150mm}$	1⁄2	
		$M_{\max} = \frac{wl^2}{8} = \frac{10 \times 4^2}{8} = 20kN - m$ $M_{\max} = 20 \times 10^6 N - mm$	1 1/2	08
		Using relation, $\frac{M}{I} = \frac{\sigma_{b}}{Y}$	01	

Subject: Mechanics of Structures

Que.	Sub.	Model Answers	Marks	Total
No. 5	Que.		IVIGINS	Marks
5		$\sigma_{b(\max)} = \frac{M}{I} \times Y$ $\sigma_{b(\max)} = \frac{(20 \times 10^6)}{337.5 \times 10^6} \times 150$ $\overline{\sigma_{b(\max)}} = \frac{8.89N}{mm^2}$ $\frac{M}{I} = \frac{\sigma_b}{Y} = \frac{E}{R}$	01	
		$\begin{bmatrix} I & Y & R \\ R = \frac{E}{\sigma_{b}} \times Y & \text{OR} & R = \frac{E}{M} \times I \\ R = \frac{(1.4 \times 10^{3})}{8.89} \times 150 & \text{OR} & R = \frac{(1.4 \times 10^{3})}{(20 \times 10^{6})} \times 337.5 \times 10^{6} \end{bmatrix}$	1/2	
		[R = 23625mm] $R = 23.625m$	01	
	b) Ans.	A beam ABC supported at A and B such that BC as overhang. AB = 3m, BC = 1m, span AB carried udl 10 kN/m and point load of 6 kN acts at point C. Draw shear force and bending moment diagrams. Also locate point of contra flexure, if any. Step1 Calculation of Reaction, $\sum F_y=0$ $R_A + R_B = (10 \times 3+6)$ $R_A + R_B = 36$ $\sum M_A = 0$ $R_B \times 3 = (10 \times 3 \times \frac{3}{2}) + 6 \times 4$ $R_B = 23kN$ $R_A = 36 - 23 = 13kN$ Step 2 Shear force coloulation	01	
		Shear force calculation , SF at A= +13kN $B_L = +13 \cdot 10 \times 3 = -17kN$ $B_R = -17 + 23 = 6kN$ $C_L = 6kN$ C = 6 - 6 = 0	01	

Subject: Mechanics of Structures

Que.	Sub.	Model Answers	Marks	Total Marks
Que. No. 5	Sub. Que.	Model AnswersStep 3Calculation of zero SF from A, $\frac{13}{X} = \frac{17}{(3-X)}$ $\boxed{X = 1.3m}$ From point ASF at section XX = 0 $13-10x = 0$ $x = 1.3m$ from support AStep 4Bending Moment calculation, $M_A = M_C = 0$	Marks 01 01 01	Total Marks 08
		$M_{A} - M_{C} = 0$ $M_{B} = -6 \times 1 = -6 \text{ kN-m}$ $M_{max} = 13 \times 1.3 - 10 \times \frac{1.3^{2}}{2} = 8.45 \text{ kN-m}$ $M_{max} = 8.45 \text{ kN-m}$ Step 5 To locate point of contraflexure at section Y-Y, $BM = 0$ $13Y - 10 \times \frac{Y^{2}}{2} = 0$ $13 - 5Y = 0$ $Y = 2.6 \text{ m} \text{ from support A.}$	01	
		X + 10 kN/m + 1 m	01	
		(c) BMD in kN.m 6 kN.m	01	

Que.	Sub.	Model Answers	Marks	Total
No. 5	Que. C			Marks
5	C	i) A simply supported beam of span 'L' carries central point load 'W'. Draw SFD and BMD.		
		ii) Define shear force and bending moment. Write unit of each.		
		Also state relation between them.		
	Ans.	i)		
		Step 1		
		Calculation of Reaction,		
		As, the load is at centre so,		
		support reaction are equal,		
		$R_A = R_B = \frac{W}{2}$		
		2		
		Step 2		
		Shear force calculation		
		a) S.F. at any section between A and C is,		
		$F_x = +R_A = \frac{W}{2}$		
		b) S.F. at any section between B and C is,	01	
		$F_x = -R_B = -\frac{W}{2}$		
		Step-3 Bending Moment Calculation,		
		Beam is simply supported at the end A and B,		
		$\therefore M_{A} = M_{B} = 0$		
		$\therefore M_{max} = Mc = + \frac{W}{2} \times \frac{L}{2}$	01	
		\therefore Mc= $\frac{WL}{4}$		04
		$\frac{1}{4}$		
		I.M.		
		A B		
		$\begin{bmatrix} \mathbf{I}_{A} \\ \mathbf{I}_{A} \end{bmatrix} = W/2 \qquad \qquad$		
		(i) Simply supported beam		
		₩/2 + ↓ † - ₩/2	01	
		(II) SFD	UI	
		WL/4		
		+		
		(III) BMD	01	

Que.	Sub.	Model Answers	Marks	Total Marks
No. 5	Que.	ii)		Marks
5		Shear force: - Shear force at any cross section of the beam is the algebraic sum of vertical forces on the beam acting on right side or left side of the section is called as shear force. OR	01	
		A shear force is the resultant vertical force acting on the either side of	01	
		a section of a beam. Unit :- kN or N	1/2	04
		Bending Moment: - Bending moment at any section at any cross section is the algebraic sum of the moment of all forces acting on the right or left side of section is called as bending moment.	01	
		Unit: - kN-m or N-m	1/2	
		Relation between shear force and bending moment $\frac{dM}{dx} = F$	1⁄2	
		The rate of change of bending moment at any section is equal to the shear force at that section.	1/2	
6		Solve <u>any two</u> of the following		16
	a)	A channel section as shown in Fig. carries shear force of 100kN at a particular section. Calculate the ratio of average shear stress to maximum shear stress.		
	Ans.	Given :		
		$SF = 100kN, Find = \frac{q_{avg}}{q_{max}}$		
		$A = (2 \times 80 \times 20) + (160 \times 20)$ $A = 6400 \text{ mm}^2$	1/2	
		$q_{avg} = \frac{S}{A} = \frac{100 \times 10^3}{6400}$ $q_{avg} = 15.625 N / \text{mm}^2$	02	
		$I_{xx} = I_{NA} = \frac{1}{12} (BD^3 - bd^3)$	02	
		$I_{xx} = I_{NA} = \frac{1}{12} (80 \times 200^3 - 60 \times 160^3)$ $I_{xx} = I_{NA} = 3.285 \times 10^7 mm^4$	02	
		$I_{xx} - I_{NA} - 5.205 \times 10$ mm		08

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	Que.	$A\bar{Y} = a_1y_1 + a_2y_2$ $A\bar{Y} = (80 \times 20) \times 90 + (20 \times 80) \times 40$	1⁄2	TTUTUTKS
		$A\bar{Y} = 144000 + 64000$		
		$A\overline{Y} = 208000$	1/2	
		$q_{\rm max} = \frac{SAY}{bI}$	01	
		$q_{\text{max}} = \frac{100 \times 10^{3} \times 208000}{20 \times 3.285 \times 10^{7}}$ $\boxed{q_{\text{max}} = 31.656N / mm^{2}}$		
		$Ratio = \frac{q_{avg}}{q_{max}} = \frac{15.625}{31.656} = 0.493$	01	
		$\frac{q_{avg}}{q_{max}} = 0.493 \Box$	1⁄2	
	b) Ans.	A cast iron column 100 mm external diameter is an 80 mm internal diameter 2m long. It is fixed at one end and hinged at other end. Calculate the safe axial load by Rankine's formula taking factor of safety 3. Assume $\sigma_c = 550 \text{ N/mm}^2$ and Rankine's constant $\alpha = 1/1600$.		
		Given		
		D = 100mm, d = 80mm, L = 2m = 2000mm, $FOS = 3, \sigma_c = 550N / mm^2, \alpha = \frac{1}{1600}$		
		As, the column is fixed at one end and hinged at other end. Effective length, $(Le) = \frac{L}{\sqrt{2}} = \frac{2000}{\sqrt{2}}$		
		For hollow circular column,	01	
		$I_{min.} = I_{xx.} = I_{yy.} = \frac{\pi}{64} (100^4 - 80^4)$		
		$I_{\min.} = I_{xx.} = I_{yy.} = 2898119.223mm^4$	01	
		Area, $A = \frac{\pi}{4} (100^2 - 80^2)$ $A = 2827.433 mm^2$	01	

Subject: Mechanics of Structures

Que.	Sub.	Model Answers	Marks	Total Marks
No.	Que.	$K^{2} = \frac{I}{A}$ $K^{2} = \frac{\frac{I}{2898119.223}}{2827.433}$ $\overline{K} = 32.0156mm$ $\therefore 1 + a \frac{(Le)^{2}}{K^{2}} = 1 + \left(\frac{1}{1600}\right) \times \left(\frac{(1414.2)^{2}}{32.0156}\right)$ $\overline{1 + a \frac{(Le)^{2}}{K^{2}}} = 2.2195$ By using Rankine's formula, $P_{R} = \frac{\sigma_{e} \cdot A}{1 + a \frac{(Le)^{2}}{K^{2}}}$ $P_{R} = \frac{550 \times 2827.433}{2.2195}$ $\overline{P_{R}} = \frac{550 \times 2827.433}{2.2195}$ $\overline{P_{R}} = 707644.2077N}$ Safe Load = $\frac{\text{Rankine's crippling load}}{\text{Factor of safety}}$ Safe Load = $\frac{707644.2077}{3}$ $\overline{Safe \text{ Load} = \frac{233548.0692N}{3.548kN}}$	01 01 01 01 01	08
	C)	A weight of 2 kN falls on a collar attached at the lower end of a vertical bar 3 m long and 25 mm in diameter. Calculate the height of drop if the instantaneous stress developed is 120 N/mm ² . Also calculate corresponding elongation and strain energy stored in the bar. Take $E=2 \times 10^5 \text{ N/mm}^2$.		
	Ans.	Given: W = 2kN = 2000N L=3m=3000mm d=25mm $\sigma=120N/mm^2$ $E = 2 \times 10^5 N/mm^2$ $Find = h = ?, \delta l = ?, U = ?$		

Subject: Mechanics of Structures

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		$\sigma = \frac{W}{A} + \sqrt{\left(\frac{W}{A}\right)^2 + \frac{2WEh}{AL}}$ $120 = \frac{2000}{\frac{\pi}{4} \times 25^2} + \sqrt{\left(\frac{2000}{\frac{\pi}{4} \times 25^2}\right)^2 + \frac{2 \times 2000 \times 2 \times 10^5 \times h}{\frac{\pi}{4} \times 25^2 \times 3000}}$ $120 = 4.074 + \sqrt{(4.074)^2 + 543.2h}$	01	
		$120 - 4.074 = \sqrt{(4.074)^2 + 543.2h}$ $(115.9256)^2 = 16.597 + 543.2h$ $h = 24.71mm$	03	
		$\delta l = \frac{\sigma L}{E} = \frac{120 \times 3000}{2 \times 10^5}$	02	
		$\frac{\delta l = 1.8mm}{U = \frac{\sigma^2}{2E} \times AL}$	01	
		$U = \frac{120^{2}}{2 \times 2 \times 10^{5}} \times \left(\frac{\pi}{4} \times 25^{2} \times 3000\right)$ U = 53014.376N - mm U = 53.014N - m	01	