Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelming errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	c)	Define modulus of rigidity.		
	Ans.	Modulus of Rigidity: - It is defined as the ratio of shear stress to shear strain.	02	02
	d)	State meaning of punching shear stress.		
	Ans.	The shear stress produced due to punching in a plate is called punching shear stress.	02	02
	e)			
	Ans.	State four conditions for effective lengths of a column depend on their end fixities.		
		i. When both end of column are hinged, $L_{e}=L$ ii. When both end of column are fixed, $L_{e}=\frac{L}{2}$	$1 / 2$ Each	02
		iii. When one end is fixed and other end is hinged, $L_{e}=\frac{L}{\sqrt{2}}$ iv. When one end is fixed and other end is free, $L_{e}=2 . L$		
		State meaning of effective length of column.		
		Effective length of column: - It is a length between the point of contraflexture of buckled columned it depend on the end conditions of the column.	02	02
	g) Ans.	Define resilience and modulus of resilience.	01	
		Resilience: -It is energy stored in the body, when it is strained within elastic limit, is called as Resilience or strain energy.		02
		Modulus of Resilience: - It is the proof resilience per unit volume of body is called as modulus of resilience.	01	

Subject: - Mechanics of Structure

Subject: - Mechanics of Structure

(ISO/IEC-27001-2005 Certified)

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.		$\begin{array}{ll} \mathrm{Y}_{1}=\frac{10}{2}=5 \mathrm{~mm}, & \mathrm{Y}_{2}=10+\frac{115}{2}=67.5 \mathrm{~mm} \\ \bar{X}=\frac{A_{1} X_{1}+A_{2} X_{2}}{A_{1}+A_{2}}=17.83 \mathrm{~mm}, & \bar{Y}=\frac{A_{1} Y_{1}+A_{2} Y_{2}}{A_{1}+A_{2}}=42.83 \mathrm{~mm} \\ & \\ \bar{Y}=42.83 \\ \bar{X}= \end{array}$ ii) Calculation of I_{xx} :- $\begin{aligned} & I_{x x}=I_{x x 1}+I_{x x 2} \\ & I_{x x}=\left(I_{G 1}+A_{1} h_{1}{ }^{2}\right)+\left(I_{G 2}+A_{2} h_{2}{ }^{2}\right) \\ & I_{x x}=\left(I_{G 1}+A_{1} h_{1}{ }^{2}\right)+\left(I_{G 2}+A_{2} h_{2}{ }^{2}\right) \end{aligned}$ Here, $\mathrm{h}_{1}=\bar{Y}-Y=42.83-5=37.83 \mathrm{~mm}$ $\begin{aligned} & \mathrm{h}_{2}=Y_{2}-\bar{Y}=67.5-42.83=24.67 \mathrm{~mm} \\ & I_{x x}=\left(\frac{75 \times 10^{3}}{12}+750 \times 37.83^{2}\right)+\left(\frac{10 \times 115^{3}}{12}+1150 \times 24.67^{2}\right) \\ & I_{x x}=3.046 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	02 03	08

Subject: - Mechanics of Structure

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline 2. \& b)

Ans. \& | iii) Calculation of $\mathrm{I}_{Y Y}$:- $\begin{aligned} & I_{Y Y}=I_{Y Y 1}+I_{Y Y 2} \\ & I_{Y Y}=\left(I_{G 1}+A_{1} h_{3}{ }^{2}\right)+\left(I_{G 2}+A_{2} h_{4}{ }^{2}\right) \end{aligned}$ |
| :--- |
| Here, $\mathrm{h}_{3}=\bar{X}-X=37.5-17.83=19.67 \mathrm{~mm}$ $\begin{aligned} & \mathrm{h}_{4}=\bar{X}-X_{2}=17.83-5=12.83 \mathrm{~mm} \\ & I_{Y Y}=\left(\frac{10 \times 75^{3}}{12}+750 \times 19.67^{2}\right)+\left(\frac{115 \times 10^{3}}{12}+1150 \times 12.83^{2}\right) \\ & I_{Y Y}=840.627 \times 10^{3} \mathrm{~mm}^{4} \end{aligned}$ |
| Determine moment of Inertia about the centroidal axes X-X and $Y-Y$ of an unsymmetrical I section with the following details. |
| Top flange $\mathbf{- 1 0 0 \times 2 0 ~ m m ~}$ |
| Bottom flange $\mathbf{- 1 6 0 \times 2 0} \mathbf{~ m m}$ |
| Web - $\mathbf{8 0 \times 2 0} \mathbf{~ m m}$ |
| i) Calculation of centroid: - |
| As given section is unsymmetrical about $y-y$ axis, | \& 03 \&

\hline
\end{tabular}

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.		$\begin{aligned} & \bar{X}=\frac{L \text { arg } e \text { flange width }}{2}=\frac{160}{2}=80 \mathrm{~mm} \\ & \mathrm{~A}_{1}=160 \times 20=3200 \mathrm{~mm}^{2}, \quad \mathrm{~A}_{1}=80 \times 20=1600 \mathrm{~mm}^{2}, \\ & A_{3}=100 \times 20=2000 \mathrm{~mm}^{2} \\ & \mathrm{Y}_{1}=\frac{20}{2}=10 \mathrm{~mm}, \quad \mathrm{Y}_{2}=20+\frac{80}{2}=60 \mathrm{~mm}, \\ & \mathrm{Y}_{3}=20+80+\frac{20}{2}=110 \mathrm{~mm}, \\ & \bar{Y}=\frac{(3200 \times 10)+(1600 \times 60)+(2000 \times 110)}{6800}=51.17 \mathrm{~mm} \end{aligned}$ ii) Calculation of I_{xx} :- $\begin{aligned} & I_{x x}=I_{x x 1}+I_{x x 2}+I_{x x 3} \\ & I_{x x}=\left(I_{G 1}+A_{1} h_{1}{ }^{2}\right)+\left(I_{G 2}+A_{2} h_{2}{ }^{2}\right)+\left(I_{G 3}+A_{3} h_{3}{ }^{2}\right) \\ & I_{x x}=\left(\frac{b d^{3}}{12}+A_{1} h_{1}{ }^{2}\right)+\left(\frac{b d^{3}}{12}+A_{2} h_{2}{ }^{2}\right)+\left(\frac{b d^{3}}{12}+A_{3} h_{3}^{2}\right) \end{aligned}$ Here, $\mathrm{h}_{1}=\bar{Y}-Y_{1}=1.17-10=41.17 \mathrm{~mm}$ $\begin{gathered} \mathrm{h}_{2}=Y_{2}-\bar{Y}=60-51.17=8.83 \mathrm{~mm} \\ \mathrm{~h}_{3}=Y_{3}-\bar{Y}=110-51.17=58.83 \mathrm{~mm} \\ I_{x x}=\left(\frac{160 \times 20^{3}}{12}+3200 \times 41.17^{2}\right)+\left(\frac{20 \times 80^{3}}{12}+1600 \times 8.83^{2}\right)+ \\ \left(\frac{100 \times 20^{3}}{12}+2000 \times 58.83^{2}\right) \\ I_{x x}=13.496 \times 10^{6} \mathrm{~mm}^{4} \end{gathered}$ iii) Calculation of $\mathrm{I}_{Y Y}$:- $\begin{aligned} & I_{Y Y}=I_{Y Y 1}+I_{Y Y 2}+I_{Y Y 3} \\ & I_{Y Y}=\left(I_{G 1}+A_{1} h_{1}^{2}\right)+\left(I_{G 2}+A_{2} h_{2}^{2}\right)+\left(I_{G 3}+A_{3} h_{3}^{2}\right) \\ & I_{Y Y}=\left(\frac{d b^{3}}{12}\right)+\left(\frac{d b^{3}}{12}\right)+\left(\frac{d b^{3}}{12}\right) \\ & I_{Y Y}=\left(\frac{20 \times 160^{3}}{12}\right)+\left(\frac{80 \times 20^{3}}{12}\right)+\left(\frac{20 \times 100^{3}}{12}\right) \\ & I_{Y Y}=8.546 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	01	08

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	c) Ans.	i) Find moment of Inertia about the diagonal of a square section having diagonal 400 mm . ii) Draw stress - strain curve for mild steel under tensile loading showing important points on it. i) To find MI at diagonal AB , $\begin{aligned} & \mathrm{I}_{\mathrm{AB}}=2\left(\frac{b h^{3}}{12}\right) \quad(M I \text { at base of triangle }) \\ & \mathrm{I}_{\mathrm{AB}}=2\left(\frac{400 \times 200^{3}}{12}\right) \\ & \mathrm{I}_{\mathrm{AB}}=5.33 \times 10^{8} \mathrm{~mm}^{4} \end{aligned}$ ii) Fig. Strain curve for Mild Steel	02	08

Subject: - Mechanics of Structure

Subject: - Mechanics of Structure

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.		$\begin{aligned} & \delta_{V}=\mathrm{e}(1-2 \mu) V \\ & \delta_{V}=\frac{\delta_{L}}{L}(1-2 \mu) V \\ & \delta_{V}=\frac{0.2}{500}(1-2 \times 0.3) \times 20 \times 10 \times 500 \\ & \delta_{V}=64 \mathrm{~mm}^{3} \end{aligned}$	01 01	(16)
	a)	In a biaxial stress systems shown in figure No. 3, the stresses along the two perpendicular directions. Calculate the strains along these two directions. Take $E=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\boldsymbol{\mu}=0.28$. Also find change in length in both directions if section is square of $\mathbf{4 m}$.		

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	Ans.	Given:- $\begin{gathered} \sigma_{x}=+70, \sigma_{y}=-40, \\ \mu=0.28, \mathrm{E}=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{e}_{x}=\frac{\sigma_{x}}{E}-\mu \frac{\sigma_{y}}{E}=\frac{1}{E}\left(\sigma_{x}-\mu \sigma_{y}\right) \\ =\frac{1}{2 \times 10^{5}}(70-(0.28 \times(-40))) \\ =3.687 \times 10^{-4}(T) \\ \mathrm{e}_{y}=\frac{\sigma_{y}}{E}-\mu \frac{\sigma_{x}}{E}=\frac{1}{E}\left(\sigma_{y}-\mu \sigma_{x}\right) \\ =\frac{1}{2 \times 10^{5}}((-40)-(0.28 \times 70)) \\ =-2.838 \times 10^{-4}(C) \\ \mathrm{e}_{x}=\frac{\delta L_{P Q}}{P Q} \\ \left.\delta L_{P Q}=\left(\mathrm{e}_{x}\right) \times P Q=\left(3.867 \times 10^{-4}\right) \times 4000=1.5467 \text { mm(Increase }\right) \\ \mathrm{e}_{y}=\frac{\delta L_{Q R}}{Q R} \\ \delta L_{Q R}=\left(\mathrm{e}_{y}\right) \times Q R=\left(2.838 \times 10^{-4}\right) \times 4000=1.135 \text { mm }(\text { Decrease }) \end{gathered}$ A rod is subjected to an initial compressive stress $50 \mathrm{~N} / \mathrm{mm} 2$ and held in rigid supports at temperature of $50{ }^{\circ} \mathrm{C}$. Find i) The temperature at which rod will become stress free. ii) What tensile stress will be developed at temperature $30{ }^{\circ} \mathrm{C}$? iii) What will be compressive stress at temperature $30^{\circ} \mathrm{C}$? iv) What will be elongation of rod at temperature $30^{\circ} \mathrm{C}$? Take $\alpha=12 \times 10^{-6} /^{\circ} \mathrm{C}$ $\begin{aligned} & E=200 \mathrm{kN} / \mathrm{mm}^{2} \\ & \text { c/s Area }=400 \mathrm{~mm}^{2} \\ & \text { length }=4 \mathrm{~m} \end{aligned}$	01 02 01 02 01 01	08

Subject: - Mechanics of Structure

$\begin{gathered} \hline \text { Que. } \\ \text { No. } \\ \hline \end{gathered}$	Sub. Que.	Model Answers	Marks	Total Marks
4.	Ans.	The temperature at which rod will become stress free. $\begin{aligned} & \sigma=E \alpha T \\ & \therefore \mathrm{~T}=\frac{\sigma}{E \alpha} \\ & T=\frac{50}{2 \times 10^{5} \times 12 \times 10^{-6}} \\ & \mathrm{~T}=20.833^{\circ} \mathrm{C} \end{aligned}$ i.e. The temperature is reduced by $20.833^{\circ} \mathrm{C}$ The rod will become Stress free at $50^{\circ} \mathrm{C}-20.833^{\circ} \mathrm{C}=29.1667^{\circ} \mathrm{C}$ Case ii) What tensile stress will be developed at temperature $30^{\circ} \mathrm{C}$? At temp. $30^{\circ} \mathrm{C}$ the stress will be $\begin{aligned} \sigma & =E \alpha \square t \\ & =2 \times 10^{5} \times 12 \times 10^{-6} \times(30) \\ \sigma & =72 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ \therefore Net stress in the rod at $30^{\circ} \mathrm{C}$ will be $-50+72=22 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{~T})$ Case iii) What will be compressive stress at temperature $30^{\circ} \mathrm{C}$? At temperature $30^{\circ} \mathrm{C}$ compressive stress is, $\begin{aligned} \sigma & =E \alpha T \\ & =2 \times 10^{5} \times 12 \times 10^{-6} \times(30-29.1667) \\ \sigma & =1.99992 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Case iv) What will be elongation of rod at temperature $30^{\circ} \mathrm{C}$? A elongation of rod at temperature $30^{\circ} \mathrm{C}$ is Net stress T $30^{\circ} \mathrm{C}$ is $(+22-2)=20 \mathrm{~N} / \mathrm{mm}^{2}$ and $\square \mathrm{T}$ is $\left(50^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}\right)=20^{\circ} \mathrm{C}$ $\begin{aligned} \delta L & =\delta L_{1}+\delta L_{2} \\ & =\frac{\sigma L}{E}+L \alpha T=\frac{20 \times 4000}{2 \times 10^{5}}+4000 \times 12 \times 10^{-6} \times(20) \\ & =0.4+0.96=1.36 \mathrm{~mm} \\ & \delta L=1.36 \mathrm{~mm} \text { (increase) } \end{aligned}$	02 02 02 02	08

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	c) Ans.	An overhanging beam $A B C$ is such that $A B=4 \mathrm{~m}, \mathrm{BC}=1 \mathrm{~m}$, is supported at A and B. The beam ABC is subjected to VDL of 30 kN / m over the entire length ABC. It is subjected to point load 50 kN at the free end C. Draw SFD and BMD with calculations and locate the point of contra flexure. i) To calculte the reactions at supports:- $\begin{aligned} & R_{B} \times 4=(30 \times 5 \times 2.5)+50 \times 5 \\ & \mathrm{R}_{\mathrm{B}}=156.25 \mathrm{kN} \\ & R_{A}=(30 \times 5 \times 50)-156.25 \\ & R_{A}=43.75 \mathrm{kN} \end{aligned}$ ii) Shear force calculations SF at $\mathrm{A}=43.75 \mathrm{kN}$ SF at $\mathrm{B}_{L}=43.75-30 \times 40=-76.25 \mathrm{kN}$ SF at $B_{R}=-76.25+156.25=80 \mathrm{kN}$ SF at $C_{L}=80-30 \times 1=50 \mathrm{kN}$ SF at $\mathrm{C}=50-50=0 \quad(\therefore \mathrm{Ok})$ iii)Bending moment calculations BM at A and $\mathrm{C}=0$. $\begin{aligned} \text { BM at } B & =-50 \times 1-30 \times 1 \times \frac{1}{2} \\ & =-65 \mathrm{kN}-\mathrm{m} \end{aligned}$ iv) To calcuate Maximum Bending Moment $\begin{aligned} & \quad \text { SF at } \mathrm{x}=0, \\ & \therefore 43.75-30 \times \mathrm{x}=0 \\ & \therefore \mathrm{x}=1.458 \mathrm{~m} \text { from A } \\ & \mathrm{BM}_{\max }=43.75 \times 1.458-30 \times \frac{1.458^{2}}{2} \\ & \mathrm{BM}_{\max }=31.90 \mathrm{kN}-\mathrm{m} \end{aligned}$ v)To locate point of contraflexure $\mathrm{BM} \text { at } \mathrm{x}^{\prime}=0$ $43.75 x^{\prime}-30 \times \frac{x^{\prime}}{2}=0$ $\mathrm{x}^{\prime}=2.916 \mathrm{~m} \text { from A }$	01	08

Subject: - Mechanics of Structure

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	b)	i) State relation between shear force and rate of loading and also relation between shear force and bending moment. ii) Draw SFD and BMD with calculations for the beam shown in figure No. 5. i) 1) The relation between shear force and rate of loading :- The rate of shear force w.r.t. distance is equal to the intensity of loading, i.e. $\frac{d F}{d x}=W$ 2) The relation between shear force and bending moment: - The rate of change of bending moment at any section is equal to shear force at that section i.e. $\frac{d M}{d x}=F$ Where, W - Intensity if loading F - Shear force M - bending moment x - distance ii) i) To calculte the reactions at supports:- $\begin{aligned} & R_{C} \times 8=(10 \times 4 \times 2)+80 \times 4+20 \times 4 \times 6 \\ & \mathrm{R}_{C}=110 \mathrm{kN} \\ & R_{A}=(10 \times 4)+(20 \times 4)+80-110 \\ & R_{A}=90 \mathrm{kN} \end{aligned}$ ii) Shear Force calculations $\begin{aligned} & \mathrm{SF} \text { at } \mathrm{A}=90 \mathrm{kN} \\ & \mathrm{SF} \text { at } \mathrm{B}_{L}=90-10 \times 4=50 \mathrm{kN} \\ & \mathrm{SF} \text { at } \mathrm{B}_{\mathrm{R}}=50-80=-30 \mathrm{kN} \\ & \mathrm{SF} \text { at } \mathrm{C}_{\mathrm{L}}=-30-20 \times 4=-110 \mathrm{kN} \\ & \mathrm{SF} \text { at } \mathrm{C}=-110+110=0 \quad(\therefore O \mathrm{k}) \end{aligned}$	02 02 01	08

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.		SFD (KN) iii)Bending moment calculations BM at A and $\mathrm{C}=0$. BM at $\mathrm{B}=110 \times 4-20 \times 4 \times 2$ $=280 \mathrm{kN}-\mathrm{m}$	01 01 01	

Subject: - Mechanics of Structure

			Marks	Total Marks

Subject: - Mechanics of Structure

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	b)	$\begin{aligned} & A=(B D-b d)=(80 \times 160-60 \times 140) \\ & \mathrm{A}^{\prime}=4400 \mathrm{~mm}^{2} \\ & I_{N A}=\frac{1}{12}\left(B D^{3}-b d^{3}\right)=\frac{1}{12}\left(80 \times 160^{3}-60 \times 140^{3}\right) \\ & I_{N A}=13586666.67 \mathrm{~mm}^{4} \\ & q_{\text {avg }}=\frac{S}{A}=\frac{70 \times 10^{3}}{4400} \\ & q_{\text {avg }}=15.91 \mathrm{~N} / \mathrm{mm}^{2} \\ & q_{1}=\frac{S A \bar{Y}}{b I}=\frac{70 \times 10^{3} \times(80 \times 10) \times 75}{80 \times 13586666.67} \\ & q_{1}=3.864 \mathrm{~N} / \mathrm{mm}^{2} \\ & q_{2}=q_{1} \times \frac{80}{20}=3.864 \times 40 \\ & q_{2}=15.456 \mathrm{~N} / \mathrm{mm}^{2} \\ & q_{\text {add }}=\frac{S A \bar{Y}}{b I}=\frac{70 \times 10^{3} \times 2(70 \times 10) \times 35}{20 \times 13586666.67} \\ & q_{\text {add }}=12.622 \mathrm{~N} / \mathrm{mm}^{2} \\ & q_{N A}=q_{\text {max }}=q_{2}+q_{\text {add }} \\ & =15.456+12.622 \\ & q_{N A}=28.078 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Ratio, $\begin{aligned} & \frac{q_{\max }}{q_{\text {avg }}}=\frac{28.078}{15.91} \\ & \frac{q_{\max }}{q_{\text {avg }}}=1.765 \end{aligned}$ A hollow circular column $\mathbf{6 m}$ long has to transit a load of 800 kN , using Rankine's formula and factor of safety 4. Design a suitable section if both ends of columns are fixed. Take internal diameter $=$ $0.8 \times$ external dia. $\mathrm{Fc}=550 \mathrm{Mpa}, \alpha=1 / 1600$ $A=\frac{\pi}{4}\left(D^{2}-d^{2}\right)=\frac{\pi}{4}\left(D^{2}-(0.8 D)^{2}\right)=0.28 D^{2}$	01 01 01 01 01 01 $1 / 2$ $1 / 2$	08

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	Ans.		01 01 $1 / 2$ 01 02	08

Subject: - Mechanics of Structure

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	c) Ans.	$\begin{aligned} & \mathrm{d}=0.8 \times \mathrm{D}=0.8 \times 213.82 \\ & \mathrm{~d}=171.056 \mathrm{~mm} \end{aligned}$ A bar 10 mm diameter is subjected to following cases. Determine strain energy stored and modulus of resilience in following cases. i) A gradually applied load of $\mathbf{8 0 0 N}$ stretches bar by 0.3 mm ii) An impact load of $\mathbf{8 0 0} \mathrm{N}$ is dropped by $\mathbf{8 0} \mathbf{~ m m}$ on the collar attached at the lower end of the bare. Take $e=200 \mathrm{GPa}$. $\begin{aligned} & \delta L=\frac{P L}{A E} \\ & L=\frac{\delta L(A E)}{P}=\frac{0.3 \times \frac{\pi}{4} \times(10)^{2} \times 2 \times 10^{5}}{800} \\ & L=5890.486 \mathrm{~mm} \end{aligned}$ Case i) $\begin{aligned} & \sigma=\frac{P}{A}=\frac{800}{\frac{\pi}{4} \times(10)^{2}} \\ & \sigma=10.1859 \mathrm{~N} / \mathrm{mm}^{2} \\ & U=\frac{\sigma^{2}}{2 E} V=\frac{10.1859^{2}}{2 \times 2 \times 10^{5}} \times \frac{\pi}{4}(10)^{2} \times 5890.486 \\ & U=120.096 \mathrm{~N}-\mathrm{mm} \end{aligned}$ Modulus of Resiliance $=\frac{\sigma^{2}}{2 E}=\frac{10.1859^{2}}{2 \times 2 \times 10^{5}}$ Modulus of Resiliance $=2.5938 \times 10^{-4} \mathrm{~N}-\mathrm{mm} / \mathrm{mm}^{3}$ Case (ii) $\sigma=\frac{P}{A}+\sqrt{\left(\frac{P}{A}\right)^{2}+\frac{2 P h E}{A L}}$ $\sigma=\frac{800}{\frac{\pi}{4}(10)^{2}}+\sqrt{\left(\frac{800}{\frac{\pi}{4}(10)^{2}}\right)^{2}+\frac{2 \times 800 \times 80 \times 2 \times 10^{5}}{\frac{\pi}{4} \times(10)^{2} \times 5890.486}}$	01 01 01 01 01 01	

Subject: - Mechanics of Structure

