Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	3)	State the use of following- 1 . Arrow 2. Wooden peg Ans- 1. Arrow Arrows are used for counting the number of chains while measuring a chain line. 2. Wooden peg Pegs are used for fixing the instrument station on the ground permanent marking	1 1	2
	4)	Define - 1. Base line 2.Check line Ans- 1. Base line- The line on which the framework of the survey is built is known as Base line. OR The longest of the main survey line is consider as Base line. 2. Check line The line joining the apex point of triangle to some fixed point on its base is known as the Check line	1 1	2
	5)	What is mean by perpendicular and oblique offset? Ans- Perpendicular offset- When the offset is taken at 90° or right angle to the survey line, then it is known as perpendicular offset.	1	
		Oblique offset- When the offset is taken at an angle other than 90° to the survey line, then it is known as Oblique offset.	1	2
	6)	State principle of plane table survey. Ans- Principle of plane table survey- 1. The rays drawn from different points should pass through a single point i.e. position of station point. 2. The position of table should be same as that of previous station i.e. orientation should be done at each changed station.	$\begin{gathered} 1 \\ \text { marks } \\ \text { each } \end{gathered}$	2
	7)	Define True Meridian and Magnetic Meridian. Ans- 1. True Meridian: The line or plane passing through the geographical north pole, geographical south pole and any point on the surface of the earth is known as True Meridian. 2. Magnetic Meridian: The direction indicated by freely suspended and properly balanced Magnetic needle unaffected by local attractive force is called magnetic meridian.	1 1	2

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	8) (B) 1) 2)	Define- 1. Datum 2. Change point Ans- 1. Datum- It is the imaginary level surface or level line from which the vertical distance of different points are measured. 2. Change point- It is the point at which both back sight and foresight readings are taken before and after shifting the level instrument. Attempt any TWO of the following: State \& explain principle of survey. Ans- Principle of surveys are as follows - 1.To work from the whole to the part According to the first principle, the whole area is first enclosed by main stations and main survey lines. The area is then divided into a number of parts by forming well conditioned triangles. A nearly equilateral triangle is considered to be the best well conditioned triangle. The main survey lines are measured very accurately with a standard chain. The sides of triangles are measured. The purpose of this process of working is to prevent accumulation of error. 2.To locate a new station by at least two measurement. The new stations should always be fixed by at least two measurement from fixed reference points. Linear measurements refer to horizontal distance measured by chain or tape. Angular measurements refer to the magnetic bearing or horizontal angle taken by a prismatic compass or theodolite. A line was measured by a 20 m chain which was accurate before starting the day's work. After chaining 900 m , the chain was found to be $\mathbf{6 c m}$ too long. After chaining 1575 m the chain was found to be 14 cm too long. Find the true distance of the line. Ans- Given data Standard length of chain $=L=20 \mathrm{~m}$, Measured length of chain $(A B)=M L=900 \mathrm{~m}$, Error at B $=0.06 \mathrm{~m}$ long Measured length of chain $(\mathrm{AC})=\mathrm{ML}=1575 \mathrm{~m}$, Error at $\mathrm{C}=0.14 \mathrm{~m}$ long To find- True length AC For 900 m distance (AB) Incorrect length $=20+((0+0.06) / 2)=20.03 \mathrm{~m}$ $\mathrm{TL}(\mathrm{AB})=\left(\mathrm{L}^{1} / \mathrm{L}\right) \mathrm{X} \mathrm{ML}(\mathrm{AB})$ TL(AB) $=(20.03 / 20) X 900$ $\mathbf{T L}(\mathrm{AB})=\mathbf{9 0 1 . 3 5} \mathbf{m}$	1 1	2 8 4

Model Answer: Summer 2016

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	3)	Explain principle, construction, use of optical square. Ans- Principle : The angle between the first incident ray and the last reflected ray is twice the angle between the mirrors. In this case, the angle between the mirrors is fixed at 45°.so the angle between the horizon sight and index sight will be 90°. Working of optical square- 1. Optical square works on principle of optical square to set perpendicular offset 2. Keep ranging rods at point B and C as shown in fig. 3. Observe the both rods through eye vane of optical square ass in figure 6(b) i.e. one direct image and other reflected image. 4. Now, move the along survey line AB with looking through optical square, till both rods coincided as in figure6(c) 5. Once, both rods matched each other point D can be marked on ground and distance CD is measured as perpendicular offset. Use: It is used for setting out right angles. Convert following bearing to another bearing system. 1) $\mathbf{N} 28^{\circ} 33^{\prime} \mathrm{E}$ 2) $\mathrm{S}^{\prime} 1^{\circ} 5^{\prime} \mathrm{E}$ 3) $240^{\circ} 13^{\prime} 0^{\prime \prime}$ 4) $270^{\circ} 0^{\prime}$ Ans- 1) $\quad \mathrm{N} 28^{\circ} 33^{\prime} \mathrm{E}$ $\begin{aligned} & \mathrm{WCB}=\mathrm{RB} \\ & \mathbf{W C B}=\mathbf{2 8} \mathbf{8}^{\circ} \mathbf{3 3} \end{aligned}$ 2) $\mathbf{S 4 1}{ }^{\circ} 5^{\prime} \mathbf{E}$ $\begin{aligned} & \mathrm{WCB}=180^{\circ}-\mathrm{RB} \\ & \mathrm{WCB}=180^{\circ}-41^{\circ} 5^{\prime} \\ & \mathbf{W C B}=\mathbf{1 3 8}^{\circ} \mathbf{5 5} \end{aligned}$ 3) $240^{\circ} 13,0^{\prime}$, $\begin{aligned} & \mathrm{RB}=\mathrm{WCB}-180^{\circ} \\ & \mathrm{RB}=240^{\circ} 13^{\prime}-180^{\circ} \\ & \mathbf{R B}=\mathbf{S 6 0} 0^{\circ} \mathbf{1 3} \mathbf{W} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	4) 5) 6)	4) $270^{\circ} 0^{\prime}$ $\begin{aligned} & \mathrm{RB}=\mathrm{WCB}-180^{\circ} \\ & \mathrm{RB}=270^{\circ}-180^{\circ} \\ & \mathbf{R B}=\mathbf{S 9 0} \mathbf{}{ }^{\circ} \mathbf{W} \text { or } \mathbf{N 9 0}{ }^{\circ} \mathbf{W} \end{aligned}$ What is meant by orientation in plane table survey? State its method and explain any one. Ans- Orientation is the process of keeping plane table in same position as that is occupied in previous station. Methods of orientation: i) Magnetic meridian method using trough compass ii) Back sighting method using alidade Backsight method of orientation- 1.Assume we have to orient the table at next station ' B ' represented on paper by point ' b '. 2.the line 'ba' is drawn on previous station ' A '. 3.the alidade is kept on line 'ba' and the table is turned around its vertical axis such a way that line of sight passes through ground station ' A '. 4. When the plotted line 'ab' coincides with line ' $A B$ ' and table will be oriented. OR Magnetic meridian method of orientation- 1.The trough compass is placed on the top right corner of the plane table such a way that magnetic needle point exactly towards the N-S direction 2.Draw these line along the edge of compass. 3. Shift \& set up the plane table on next station. 4.place the trough compass along the N-S line. Rotate the table till the magnetic needle coincides the N-S line drawn previously Explain temporary adjustments of Dumpy Level. Ans- 1. Setting up the level. a. The level fixed on tripod. b. The legs of tripod stand are well spread so that the level will remain stable on tripod. c. Bring all the three foot screws in the Centre of their run so that they can be turned clockwise or anticlockwise as required, for levelling purpose d. Adjust the height of the instrument so that the observer can comfortably see through the telescope and note the readings. e. Fix two legs of tripod and adjust third leg in such a way that the levelling head will become as horizontal as possible by eye judgment.		$4{ }^{4}$

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answers \& Marks \& Total Marks \\
\hline Q. 2 \& 6) \& \begin{tabular}{l}
2. Levelling up the level. \\
a. The base of the tripod is already leveled with the help of cross bubble. \\
b. To make accurate adjustment of the level, the longitudinal level is adjusted in the Centre of its run, with the help of three foot screws. \\
c. Make the bubble parallel to the any selected pair of foot screws. Now; turn both the foot screws either inward or outward with the help of foot screws till the bubble appears in the center. \\
d. Turn the telescope through 900 as shown in fig. below and now with the help of third screw bring the bubble of levelling tube in the center. \\
3. Focusing the Eye piece. \\
a. Hold a sheet of white paper in front of the objective glass 4 to 6 cm away from objective glass and see through the eye piece. \\
b. Turn the eye piece inwards od outwards in the socket so that the cross hair on the diaphragm appears sharp and clear. \\
4. Focusing the Object glass. \\
a. Direct the telescope towards any object, say a levelling staff in the field which is kept at a distance. See through eyepiece whether the staff is visible, distinct or not. \\
b. If not, then turn the focusing screw till the image is distinct and clear. The cross hair on the diaphragm should also be seen clearly.
\end{tabular} \& 1

1
1
1 \& 4

\hline Q. 3 \& 1) \& | Attempt any Four of the following Explain chaining on sloping ground. |
| :--- |
| Ans. |
| Procedure- |
| 1. If A and B are the two points on sloping ground, for which horizontal distance is to be measured. |
| 2. Unfold the chain. By touching handle to station A, stretch it up to maximum possible distance (without sag). |
| 3. Suspend the plumb-bob from that stretched point and mark the point C on ground. |
| 4. Now measure the distance L1 on chain by counting brass rings, brass talleys and links accurately. |
| 5. Now, from point C, repeat steps 2,3and 4 up to station B and note down corresponding horizontal distances L2, L3 etc. |
| 6. Thus total horizontal distance on sloping ground is calculated as $\mathrm{d}(\mathrm{AB})=\mathrm{L} 1+\mathrm{L} 2+\mathrm{L} 3$ in meters | \& 1 \& 16

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	(5)	Explain Radiation method of plane method of plane table survey. Ans Radiation Method- Procedure- 1. Select a suitable point \mathbf{P} on the ground such that all the details are visible from it 2. Center and level the plane table over \mathbf{P} 3. Mark the direction of the North on the sheet by using compass 4. Locate instrument station p on the sheet by using plumbing fork, such that p on sheet is exactly over P on ground 5. Centering the alidade on point p sight various details step by step and draw a ray from each detail along the fiducial edge of the alidade 6. Let the details be named as A, B, C, D, E etc. 7. Now measure the distances of each point from P i.e. PA, PB, $\mathrm{PC}, \mathrm{PD}, \mathrm{PE}$ and plot them to scale on the sheet as $\mathrm{pa}, \mathrm{pb}, \mathrm{pc}$, pd, pe respectively Joint a, b, c, d, and e to give the outline State fundamental axis of dumpy level and give their relationship Ans Fundamental axes of dumpy level : i) The vertical axis ii) The axis of bubble tube iii) The line of collimation iv) The axis of the telescope Relations of Fundamental axes : i) The axis of the level tube should be perpendicular to the vertical axis. ii) The line of collimation should be parallel to the axis of the bubble tube. iii) Axis of telescope and line of collimation should coincide.	mark each 1 mark each (any two)	4 4

Model Answer: Summer 2016

2)

Find the missing readings. Calculate RL's of all stations apply arithmetical check.

St.	BS	IS	FS	Rise	Fall	RL	Remark
$\mathbf{1}$	$\mathbf{2 . 3 4 5}$					$\mathbf{1 2 9 . 5 0}$	BM1
2	$\mathbf{1 . 6 5 0}$		\mathbf{X}	$\mathbf{0 . 0 3 5}$			
$\mathbf{3}$		$\mathbf{2 . 2 1 0}$			\mathbf{X}		
$\mathbf{4}$	X		$\mathbf{1 . 8 5 0}$	\mathbf{X}			
$\mathbf{5}$	$\mathbf{1 . 8 5 0}$		$\mathbf{1 . 9 2 5}$		$\mathbf{0 . 4 5 5}$		
$\mathbf{6}$			\mathbf{X}	$\mathbf{0 . 3 7}$		$\mathbf{1 2 9 . 0 0}$	$\mathbf{B M 2}$

Ans.
Note- Given RL of station 6 is wrong, therefore only BS \&FS \& rise \& fall check will be correct.

1) $\mathbf{F S}$ of Station $2=$

BS of station 1 - FS of Station $2=$ Rise at station 2 $2.345-\mathrm{FS}$ of Station $2=0.035$ FS of Station $2=2.310$
2) Fall of station 3=

BS of station 2 - IS of Station $3=$ Fall at station 3
$1.650-2.210=$ Fall at station 3 Fall at station $3=-0.56$
3) Rise of Station $4=$

IS of station 3 - FS of Station $4=$ Rise at station 4 $2.21-1.85=$ Rise at station 4 Rise at station $4=0.36$

