MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Solution : Summer 2015

SUMMER - 2015 EXAMINATION

MODEL ANSWER

Subject: Surveying
Subject Code: 17310

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	c) Ans:	Define Ranging and Chaining. Ranging : The operation of establishing intermediate points on a straight line between two survey stations, when distance between them is more than one chain length is known as ranging. Chaining : The process of measuring distance of a line with the help of chain is called chaining.	01 01	02
	d) Ans:	Define : i) Traversing ii) Magnetic Meridian i) Traversing : Traversing is the series of survey lines connecting successive established traverse stations along the route of survey ii) Magnetic Meridian : The direction indicated by freely suspended and properly balanced Magnetic needle unaffected by local attractive force is called magnetic meridian.	01 01	02
	e) Ans:	Define local attraction. State two causes of local attraction. Local attraction: It is the deviation or deflection of magnetic needle from its normal position under influence of external magnetic forces is called as local attraction. Causes of local attraction : 1. Iron or steel structure 2. Electric cable line 3. High voltage current 4. Bunch of key 5. Steel Tape	$\begin{gathered} 01 \\ \\ 1 / 2 \\ \text { mark } \\ \text { (any } \\ \text { two) } \end{gathered}$	02
	f) Ans:	State two principle of plane table survey. Principle of plane table survey- 1. The rays drawn from different points should pass through a single point i.e. position of station point.	01	
		2. The position of table should be same as that of previous station i.e. orientation should be done at each changed station.	01	02
	g) Ans:	Define horizontal line and vertical line. Horizontal line : A straight line tangential to the level line and perpendicular to the plumb line is called horizontal line. Vertical line : A line perpendicular to horizontal line and coinciding plumb line is known as vertical line	$\begin{aligned} & 01 \\ & 01 \end{aligned}$	02

Page No. 03/18

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	a)	i) Write three types of obstacles in chaining with examples.		02
	Ans :	1. Obstacle which can be chained across but cannot be ranged across. ,		
		Examples: Hill Intervening, rising ground.	01 mark	
		2. Obstacle which can be ranged but cannot be chained across., Example: River, pond etc.	each	
		3. Obstacle which can be neither be ranged across not be chained across, Example: Building obstruction	$\begin{aligned} & \text { (any } \\ & \text { two) } \end{aligned}$	
		ii) Draw sketches (two), how to overcome pond across the chain line		
			01 mark each	
		-7)	(any two)	
	b)	i)Define Dip and deflection of needle. Dip of the magnetic needle: It is the upward or downward movement of magnetic needle in vertical plane due to earth's gravitational force is known as dip of needle.	01	
		Deflection of needle : It is the shifting or deviation of magnetic north from true north direction towards east or west direction, that horizontal angle between magnetic and true north is said to be declination of needle.	01	
		ii)Find the magnetic declination if the magnetic bearing of the sun at noon is $355^{\circ} 30^{\prime}$.		
	Ans	The true bearing at noon is will be 360°		
		As,True Bearing $=$ Magneic Bearing +_ Declination Declination $=\mathrm{TB}-\mathrm{MB}=360^{\circ}-355^{\circ} 30^{\prime}=4^{\circ} 30^{\prime}$ (East)	01	
		The declination will be towards East, because MB observed is lesser than TB	01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	c)	Write the functions of the following components of prismatic compass i) Prism, ii) Lifting pin, iii) Prism cap, iv) Agate cap		
	Ans:	i) Prism: Reading printed on horizontal face of compass ring can be read from vertical position		
		ii) Lifting pin: When the instrument not in use the sight vane passes against the lifting pin which lift the needle off the pivot and holds it against a glass lid ; thus it prevents the undue wear of pivot point iii) Prism cap: Provided at the bottom of prism, closes window of prism when not in use	01 mark each	
		iv) Agate cap: A small piece of hard glass provided on top of pivoted point, to reduce wear and tear of the point		04
	d)	Define the terms i) Fore Bearing, ii) Open traverse, iii) Closing error, iv) Reduced bearing		
	Ans :	i) Fore bearing : The bearing observed in the direction of progress of survey in clockwise manner is called fore bearing		
		ii) Open traverse : When the first and last survey lines does not meets at common point and hence does not form a closed polygon, then it is said to be open traverse iii) Closing error : While plotting compass traverse, when first and last survey line does not coincides by some amount of distance, that distance is called as closing error.	01 mark each	
		iv) Reduce bearing : The bearing measures with respective to either north or south direction in clockwise or anticlockwise manner is known as reduced or quadrantal bearing.		04
	e) Ans:	i) State temporary adjustments of prismatic compass		
		a) Setting the prismatic compass over prefixed survey station b) Centering the compass over nail point of station using plumb bob c) Leveling of compass in horizontal plane using level tube d) Focusing of prism by raising and lowering the focussing stud	1/2 mark each	
		ii) Why zero is marked at south end on a graduated circle of prismatic compass?		
	Ans:	As bearing of any line is measured with respective north direction, while observing north direction, reading should be $0^{0} 0^{\prime}$. Therefore when object vane is bisecting north direction, at the same time zero marked at south end gets reflected through prism. Thus to get bearings with respective north direction always, zero is marked at south end of magnetic needle.	02	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	f)	Draw and explain graphical adjustment of closing error in compass traverse survey.		
	Ans :	"- \quad Unclosed traverse		
			1	
		Explanation : 1. To distribute the closing error AA_{1} (Fig. a), draw one horizontal line of length equal to perimeter of traverse with some reduced scale. 2. Now mark the survey stations on it proportionally (Fig. b) and transfer closing error of same length using roller scale to point a. 3. Join the point A and A_{1} with straight line. Also draw parallel lines at point b,c.d and e. 4. Transfer $B_{1} b, C_{1} c, D_{1} d$ and $E_{1} e$ to point B_{1}, C_{1}, D_{1} and E_{1} respectively in compass traverse. 5. Finally join new points to get corrected traverse ABCDEA after graphical adjustment of closing error.	3	4
Q. 4	a)	i) Correct the following bearings. Reduced bearing $S 5_{5}{ }^{\mathbf{1}} \mathbf{1 5}^{\prime} \mathrm{W}$ and Whole circle bearing 372°		
	Ans :	$\begin{aligned} & \text { Corrected } \mathrm{RB}=\mathbf{S ~ 6 5} \mathbf{5}^{\mathbf{0}} \mathbf{1 5} \mathbf{~} \mathbf{~ W} \\ & \text { Corrected WCB }=372^{0}-360^{0}=\mathbf{1 2}^{\mathbf{0}} \end{aligned}$	1	
		ii) Convert the following bearings. $\begin{aligned} & \text { RB to } W C B=N 30^{0} 15^{\prime} \mathrm{W} \\ & \mathrm{WCB} \text { to } \mathrm{RB}=119^{0} \mathbf{4 5} \end{aligned}$	1	
	Ans :	$\begin{aligned} & \mathrm{WCB}=360^{0}-30^{0} 15^{\prime}=\mathbf{3 2 9}^{\mathbf{0}} \mathbf{4 5} \\ & \mathrm{RB}=180^{0}-119^{0} 45^{\prime}=\mathbf{S} \mathbf{6 0}^{\mathbf{0}} \mathbf{1 5}, \mathbf{E} \end{aligned}$	1	
				4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	d) Ans :	Write any four advantages of intersection method of plane tabling over radiation method of plane tabling. Advantages of intersection method: 1. Interection method requires less ground distance measurement than radiation method. 2. By this method we can locate inaccessible points which cannot be located by radiation method i.e. from single station. 3. As objects can be located by intersection of lines, this method is more accurate in positioning and verifying the objects than radiation method. 4. As compared to radiation method, intersection method eliminates undulation error, bisection error and plotting errors.	01 mark each	4
	e) Ans : Ans :	i) State two advantages of telescopic alidade over simple alidade. Advantages of telescopic alidade : i) Telescopic alidade is more accurate in bisection than simple alidade ii) Telescopic alidade is useful in comparatively longer range objects. iii) It can be easily bisect the objects at higher elevation or depressions which is not possible by simple alidade. iv) It gives quicker bisection which saves time ultimately. ii)State advantages of plane table survey one each with respect to booking and suitability Booking of observations: i) Field work and plotting work done simultaneously ii)) Notes of measurement are seldom required and possibility of mistakes in booking is eliminated. Suitability of PT Survey: i) Plane table is suitable for small scale map and work where great accuracy is not required. ii) Mostly suitable for survey in plain terrain	01 mark each (Any two) 01 mark each (Any one) 01 mark each (Any one)	4

Explanation :

1. First the back sight reading is taken on floor level whose RL is known to us; from which RL of instrument axis can be find out by adding RL of BM and BS reading.
2. Now the inverted staff is kept touching to bottom of slab and from same instrument station the reading is taken on it.
3. Then RL of chajja is calculated by adding RL of instrument axis to inverted staff reading.
4. Finally height of chajja is calculated as RL of slab bottom RL of floor top.
c)

State the purposes of following methods of leveling. i)Profile leveling, ii)Fly leveling, iii)Check leveling iv)Reciprocal leveling

Ans:

1. Profile leveling- To determine the undulation of ground surface along given line for alignment of road, canal or pipe, railway line
2. Fly leveling-It is used to for connecting B.M. to the starting point mark and to establish the B.M.
3. Check leveling-It is used to check the accuracy of the leveling work
4. Reciprocal leveling- It is used to find the difference in leveling between two points two point obstructed due to river or pond.

Que. No.	Sub. Que.	Model Answers
Q.5	d)	State the important points kept in mind while recording the staff readings in level pages with respect first reading, intermediate reading, last reading, change point, carry forward from one page

Marks

Total Marks

Ans :
e) Write errors in leveling and corresponding precaution

Ans: i) Instrument error with respect to bubble tube, leveling staff.
1.If bubble tube is sluggish it may apparently be in the center though the bubble line is not horizontal.
Precaution - Sluggish bubble tube should be replaced by good one. 2.Erroneous divisions of the leveling staff will cause some error.

Precaution-Replace the leveling staff by standard leveling staff
ii) Manipulation error respect to parallax, leveling of instrument

1. Poor object image is appearing due to reading taken without removing parallax.
Precaution - Focussing of object glass and eye piece should be properly done.
2.Improper leveling of instrument causes serious error of incorrect reading.
Precaution- Leveling should be properly done by bringing the bubble of bubble tube at Centre.
f) Distinguish between HI method and Rise-Fall method with respect to time, checks, application and simplicity.

Ans:

Sr. No.	Points	H.I method	Rise \& Fall method
1	Time	The method is more rapid \& require less time	 require more time
2	Check	EB.S.-F.S=Last RL-first RL	EB.S.-EF.S= Last RL-first RL $=\Sigma$ Rise $-\Sigma$ Fall
3	Applica tion	It is used for calculating RL of Profile leveling \& in construction work Like canal, roads etc.	It is used for calculating RL of Precise leveling work \& check leveling
4	Simplic ity	It is simple \& requires less calculation.	It is complicated require more calculations.

1) First reading is on bench mark point and should be noted in back sight(BS) column
2) Intermediate reading (IS) should be taken on the points between first and last station.
3) Last reading should be noted in Fore sight(FS) column.
4) Both reading BS and FS reading should be entered in same row and can be denoted by change point
5) On each page last reading should be enter in FS column and same should be carried forward in BS column of next page
6) Remark column should have denote First and Last RL along with change points.

