## MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC-270001 - 2005 certified)

## SUMMER-14 EXAMINATION

Subject code: 17310 Model Answer

## Important Instructions to examiners:

1) The answer should be examined by keywords and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language error such as grammatical, spelling errors should not be given more importance.(Not applicable for subject English and communication skill).
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figure drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In the some cases, the assumed constants values may vary and there may be some difference in the candidates answer and model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidates understanding.

| Q1) a).Attempt any SIX of the following | 12 |
| :---: | :---: |
| i) State the Primary classification of survey | 1 |
| Ans.: Surveys are classified as plane survey and geodetic survey <br> Plane Survey: It is the type of survey in which the mean surface of the earth is <br> considered as a plane that is curvature of the earth surface is neglected. <br> Geodetic Survey : It's the type of survey in which the shape of the earth surface <br> is taken into account that is curvature of the earth surface is consider | 1 |
| ii) State different objective of survey. | 1 |


| 2) Object of survey is to determine the precise position on the surface of the earth. | 1 |
| :---: | :---: |
| iii) Define ranging and list the instrument required for ranging. |  |
| Ranging: - "The operation of establishing intermediate points on a straight line between the terminal Stations (end points) is known as ranging." <br> Instrument required for ranging <br> 1) Ranging Rods. <br> 2) Line ranger or thedolite | $1$ <br> 1 |
| iv) Write the bearing of line AB and line CD . <br> 1) <br> 2) |  |
| Ans.: 1) Bearing of line AB ---- $285^{\circ} 30^{\prime}$ <br> 2) Bearing of line $C D---219^{\circ} 45$, | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ |
| v) Write any four personnel errors in compass survey. |  |
| Ans.: 1) Inaccurate leveling of the compass box. <br> 2) Inaccurate centering of the compass over the stations. <br> 3) Inaccurate bisection of the object. <br> 4) Taking wrong reading and recording wrongly. <br> 5) Reading the Bearing in wrong direction. | (1/2 <br> mark <br> each <br> any <br> four) |
| vi) List the accessories required for plane table survey. |  |
| Ans.: Following are the accessories required for plane table survey. <br> 1) Plumbing / U- Fork with plumb bob <br> 2) Plane Alidade or telescopic Alidade <br> 3) Set of Level tube. <br> 4) Trough compass | (1/2 <br> mark <br> each) |
| vii) Define datum line and Bench Mark. |  |
| Ans.: Datum line: "It can be defined as the line parallel to the mean spheriodal earth Surface from which the vertical distances are measured". <br> Bench Mark: "It can be defined as the point of known elevation" | $1$ <br> 1 |
| 2/20 |  |

viii) Describe in brief negative staff reading.
Ans.: In leveling work some points are situated below the line of sight and some
points are situated above the line of sight. The reduced levels of points below the
line of sight can be determined by taking the reading on the staff normal, where
as when the points are situated above the line of sight the staff is required to be
held inverted for taking the readings. The Reading taken in this position known
as negative staff reading.
b ) Attempt any two of the following
i ) Explain the principals of surveying.
Ans.: Following are the principles of surveying

1) To work from the whole to the part.
2) To fix the position of new station by at least two independent processes (i.e
the processes may be both linear, both angular, one linear \& one angular.
According to the first principal the whole area is first enclosed by main
station and main survey line. The area is the divided in to the no. of well
condoned (Equilateral triangles).The propose of this is to prevent accumulation
of errors. But if the process is reverse from part to the whole then minor errors
in the measurement will be magnified and becomes uncontrolled

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{ii) State the uses of surveying.} \& \\
\hline \begin{tabular}{l}
1) It is used for measureme \\
2) It is used for engineering \\
3) It is used for making pla \\
4) Accurate map of wide a
\end{tabular} \& \begin{tabular}{l}
t of areas. commercial scientific military and navigation proposes. sor legal documents. \\
as can be obtained by using surveys.
\end{tabular} \& 1
1
1
1 \\
\hline \multicolumn{3}{|l|}{iii) Explain linear measurement by pacing and by speedometer.} \\
\hline \begin{tabular}{l}
Ans.: Linear measureme approximate distanced betw be used for linear measure paces between the two poin by knowing the average le individuals, and also with the \\
Linear measurement smooth than speedometer approximately. It works on wheel and multiplied by the
\end{tabular} \& \begin{tabular}{l}
by Pacing: This method is used only for knowing een the objects. In preliminary survey this method can ment. This method consists of counting the number of of a line. The length of the line can then be computed ghth of the pace. The length of the pace varies with nature of the ground and the speed of pacing. \\
by speedometer: If the nature of the ground is the f an automobile can be used to measure the distance he principals that the no of revolutions registered by the circumference of the wheel to get the distance.
\end{tabular} \& 2

2 <br>
\hline Q. 2 Attempt any four of the fo \& ing. \& 16 <br>
\hline \multicolumn{3}{|l|}{a) Differentiate between direct ranging and indirect ranging} <br>
\hline Direct ranging \& Indirect ranging \& <br>
\hline It is done when terminal stations are visible \& It is done when terminal stations are not indivisible \& 1 <br>
\hline It is suitable when the distance is less \& It is adopted when distance is more and if obstacle like hill is intervening between the stations \& 1 <br>
\hline Intermediate points are located on the survey line by line ranger \& Intermediate two points are located approximately in between terminal stations. \& 1 <br>

\hline Fig. \&  \& $$
1
$$ <br>

\hline
\end{tabular}

b) Explain the process of chaining on sloping ground by steping metghod with neat sketch.

## Direct Method By Stepping :-



By stepping: It consist in measuring the distance in small horizontal lengths (e.g.L ${ }_{1}$ ) Let the horizontal distance between A and B be measured by a chain or tape. A portion of chain say $2 \mathrm{~m}, 4 \mathrm{~m}, 5 \mathrm{~m}$, and 10 m is stretched horizontally with one end resting on the ground and other held in line at a convenient height say 1 to 1.5 m . The point vertically below this end is then accurately marked with the help of plumb bob. The next step will then start from this point and method is continued in the correct line with point B .
c) A 30 m Chain was found to be 5 cm to short after chaining 1200 m . it was found to be 10 cm too short after chaining 2100 m . If the chain was correct before commencement of work find the true distance.

Part I: Chain was correct before commencement of work.
Length of chain L: 30 m , Error in chain $5 \mathrm{~cm}=0.05 \mathrm{~m}$ too short.
Measured distanced D' $=1200 \mathrm{~m}$
$\mathrm{L}^{1}=$ Incorrect length of chain $=30.00-\left(\frac{0.05+0.00}{2}\right)=29.975 \mathrm{~m}$.
D1 $=($ True distance $)=$ Correct distance $=\left(\frac{\mathrm{L} 1}{\mathrm{~L}}\right) \mathrm{D}^{\prime}$
$=\left(\frac{29.975}{30.00}\right) 1200=1199 \mathrm{~m}$.

## Part II :

Length of chain L: 30 m
Measured distanced $\mathbf{D}^{\prime}=(2100-1200)=900$
Error in chain $=\left(\frac{0.05+0.10}{2}\right)=0.075$
$\mathrm{L}^{1}=$ Incorrect length of chain $=30.00-\left(\frac{0.05+0.10}{2}\right)=29.925 \mathrm{~m}$.

$$
\mathrm{D} 2=(\text { True distance })=\text { Correct distance }=\left(\frac{\mathrm{L} 1}{\mathrm{~L}}\right) \mathrm{D}^{\prime}
$$

$$
=\left(\frac{29.925}{30.00}\right) 900=897.75 \mathrm{~m} .
$$

Total True distance $=1199.00+897.75$
Ans. $\quad=\mathbf{2 0 9 6 . 7 5} \mathbf{~ m}$
d) States the points to be consider while selecting survey station.

Ans.: Following points to be considered while selecting survey stations.

1) Main survey station should be mutually visible.
2) All triangles should be well conditioned.
3) The survey line should lie over the leveled ground.
4) The no of survey line should be as few as practicable.
5) Each triangle should be provided at least one check line.
6) The principle of survey i.e. To work from whole to the part should be strictly observed.
7) Base line should run through the center of the area so as to form the frame work of triangles on it to cover maximum area.
e) Draw the sketch of chain triangulation and label the different lines.


AB :- Base line, DE :- Tie Line, HI -Check Line
f) Explain the principal of optical square with neat sketch.

Principal of optical square :- the angle between the first incident ray and the last reflected ray is twice the angle between the two mirrors

## OR

If there are two plane mirrors whose reflecting surfaces make a given angle with each other and if a ray of light in plane perpendiculars to the plains of both mirrors is reflected successively from both, it undergoes a deviation of twice the angle between the reflecting surfaces.

In the case of optical square the angle between the mirrors is $45^{0}$ while that between the first incident ray and last reflected ray is $90^{\circ}$.

a) Write the obstacles in chaining and explain how you overcome when building comes across the chain line.

## Obstacles in chaining

During chaining operations various operation such as River, Hill, Building, and Woods etc. are met with. All such obstacles are classified in to following categories.

1) Vision free chaining obstructed. 2) Chaining free vision obstruction.
2) Both Chaining and vision obstructed.
3) Both Chaining and vision obstructed: Typical example of this case is building obstructing the chain line. It's therefore required to prolong the line beyond the obstacle and then find out the distance across it. The right angle should be set out accurately.

b) Distinguish between true meridian and magnetic meridian and explain dip of needle.

| True meridian | Magnetic meridian |
| :--- | :--- |
| The line joining the true north and the <br> south pole is called the true meridian. | The direction indicated by freely <br> suspended and properly balanced <br> Magnetic needle unaffected by local <br> attractive force is called magnetic <br> meridian. |
| In geodetic survey true meridian is <br> considered | In Plane survey magnetic meridian is <br> considered. |
| True meridian remains constants at all <br> places | Magnetic meridian varies from place <br> to place |
| Local attraction doesn't affects the true <br> meridian | Magnetic meridian is affected by <br> local attraction |

so after its magnetized on account of the magnetic influence of the earth. But it will be inclined downwards towards the pole. This inclination of the needle with the horizontal is known as deep of the needle.
The amount of deep of needle is not constants but it varies from place to place in northern hemisphere north end of the needle is deflected downwards and southern hemisphere south end of the needle is deflected downwards.
c) Why zero is marked at south end on a prismatic compass.

When the needle is freely suspended on the pivot it must shows north, the reading under prism should be zero.
But since the prism placed exactly opposite the sight vane, the south end will be under the prism.
Obliviously the zero of marked must be placed at the end of the needle.
The bearing is thus obtained from south end in clock wise direction.
d) Draw a labeled sketch of prismatic compass and give example of reading taken on prismatic compass.

$c / s$ of Prismatic Comipass.
*(Fig. 2 mark labeling 1mark)


Q. 4 Attempt any FOUR of the following :
a) Calculate interior angle in a closed traversed PQRST By following observat

| Line | PQ | QR | RS | ST | TP |
| :--- | :---: | :---: | :---: | :---: | :---: |
| F. B. | S $37^{\circ} 30^{\prime} \mathrm{E}$ | $\mathrm{S} 43^{\circ} 15^{\prime} \mathrm{W}$ | $\mathrm{N} 74^{0} 0^{\prime} \mathrm{W}$ | $\mathrm{N} 11^{0} 00^{\prime} \mathrm{E}$ | $\mathrm{N} 57^{0} 45^{\prime} \mathrm{E}$ |

## Bearing

| Line | Fore Bearing <br> (R.B.) | Fore Bearing <br> (W.C.B.) | Back Bearing <br> (W.C.B.) |
| :---: | :---: | :---: | :---: |
| PQ | $\mathrm{S} 37^{0} 30^{\prime} \mathrm{E}$ | $142^{0} 30^{\prime}$ | $322^{\circ} 30$, |
| QR | $\mathrm{S} 43^{0} 15^{\prime} \mathrm{W}$ | $223^{0} 15^{\prime}$ | $43^{0} 15^{\prime}$ |
| RS | $\mathrm{N} 74^{0} 0^{\prime} \mathrm{W}$ | $286^{0} 00^{\prime}$ | $106^{0} 00$ |
| ST | $\mathrm{N} 11^{0} 00^{\prime} \mathrm{E}$ | $11^{0} 00^{\prime}$ | $191^{0} 00$ |
| TP | $\mathrm{N} 57^{0} 45^{\prime} \mathrm{E}$ | $57^{0} 45^{\prime}$ | $237^{0} 45^{\prime}$ |

## Calculations :

Included angle $=$ Fore bearing of next line - B.B of previous line $=$ Difference $\left(\right.$ if less than $180^{\circ}$ then $=$ interior angle
(if greater than $180^{\circ}$ than = Exterior angle)
And interior angle $=360^{\circ}-$ Exterior angle
Included angle $P=237^{0} 45^{\prime}-142^{\circ} 30^{\prime}=\mathbf{9 5}^{\mathbf{0}} \mathbf{1 5}$,
Included angle $\mathrm{Q}=322^{\circ} 30^{\prime}-223^{\circ} 15^{\prime}=\mathbf{9 9}^{\circ} \mathbf{1 5}$,
Included angle $\mathrm{R}=\left(286^{\circ} 00^{\prime}-43^{0} 15^{\prime}\right)=242^{\circ} 45^{\prime}>180^{\circ}$ (i.e. exterior angle)

$$
\begin{aligned}
\text { Interior angle } & =\left(360^{0} 00^{\prime}-\text { Exterior angle }\right) \\
& =\left(360^{\mathbf{0}} 00^{\prime}-242^{\circ} 45^{\prime}\right) \\
& =\mathbf{1 1 7}^{\mathbf{0} \mathbf{1 5}}
\end{aligned}
$$

Included angle $S=106^{\mathbf{0}} 00^{\prime}-11^{\mathbf{0}} 00^{\prime}=\mathbf{9 5}^{\mathbf{0}} \mathbf{0 0}$,
Included angle $\mathrm{T}=191^{\mathbf{0}} 00^{\prime}-57^{\mathbf{0}} 45^{\prime}=\mathbf{1 3 3}^{\mathbf{0}} \mathbf{1 5}$,
Total $(<\mathbf{P}+<\mathbf{Q}+<\mathbf{R}+<\mathbf{S}+<\mathbf{T})=\mathbf{5 4 0}{ }^{\mathbf{0}} \mathbf{0 0}{ }^{\prime}$

## *(one mark each any four correct included angle)

| b) State different accessories of plane table survey and their use. |  |
| :---: | :---: |
| i ) The plane table: It is used for fixing a drawing sheet over it. To locate the position of the objects on the sheet by drawing rays and plotting to suitable scale. <br> ii) The Alidade (plain Alidade, Telescopic Alidade):It is used to sight the objects. To draw rays along the fiducial edge <br> iii) The spirit level: It is used for leveling the plane table <br> iv) The compass: (Trough Compass, Circular compass): It is used for marking the North direction on the map. To orient the plane table <br> v) U-Fork or Plumbing fork with plumb bob: It is used for centering the table over the station. <br> * (Any four 1/2mark for name of accessories and $1 / 2$ for use.) | * |
| c) Write any two advantages and disadvantages of plane table survey. |  |
| Ans.: Advantages: <br> 1 Comparison of plotted work and actual work is possible in the field, if required can be corrected easily. <br> 2 No possibility of omission of the necessary measurement. <br> 3 Its most rapid method <br> 4 Field book is not necessary <br> 5 Less costlier than thedolite survey <br> 6 No grate skill is required to prepare a satisfactory map <br> Disadvantages: <br> 1) It is not suitable for work in wet climate <br> 2) Several accessories are required to be carried hence possibility lost. <br> 3) Repotting of survey work to different scale is difficult in absence of field notes. <br> 4) It is heavy and difficult to carry. | 01 mark (any two) 01 mark (any two) |
| D) Explain traversing method of plane table surveying. |  |
|  | 01 |


| Procedure: Let plot the traverse ABCD <br> 1) Set up the plane table at station $A$. <br> 2) Select the suitable point a on the sheet. <br> 3) Carry out all temporary adjustment i.e. Centering, Levelling, and Mark north direction. <br> 4) With Alidade Touching at point a Bisect Station B, Draw the ray, Measure distance $A B$ and plot point $b$ on the ray $A B$ with suitable scale <br> 5) Shift the table to the station B, Carry out all temporary adjustment and orientation by back sighting clamp the table. <br> 6) Similarly repeat the above steps at successive station at $\mathrm{C}, \mathrm{D}$,. <br> 7) At the end traverse A, B, C, D is obtained. <br> 8) Checks lines may run to check the traverse. <br> 9) If any error is then may be adjusted. <br> 10) It is as shown in fig. | 03 |
| :---: | :---: |
| E) Explain with neat sketch method of orientation by back sighting of plane table survey |  |
| Orientation: The method of setting up the plane table at each of the successive stations parallel to the position it occupied at the starting station is known as orientation. <br> Orientation by back sighting: Procedure- Ref Fig. bellow <br> i) Suppose A and B are two stations. The plane table is set up over A. the table is leveled by spirit level and centered by U-fork so that point ' $a$ ' is just over station A. The north line is marked on the right hand top corner of the sheet by trough compass. <br> ii) With the alidade touching ' $a$ ', the ranging rod at $B$ is bisected and a ray is drawn. The distance AB is measured and plotted to any suitable scale. So the point ' $b$ ' represents station B. <br> iii) The table is shifted and set up over B. It is leveled and centered so that ' $b$ ' just over B. Now the alidade is placed along the line 'ba' , and the ranging rod at A is bisected by turning the table clockwise or anticlockwise. When the centering, leveling and bisection of the ranging rod at A are perfect, then the orientation is said to be perfect. | 02 |

\begin{tabular}{|c|c|}
\hline F) Define line of collimation and axis of bubble tube. \& \\
\hline \begin{tabular}{l}
Line of collimation: The line joining the intersection of cross hairs on diaphragm to the optical center of object glass and its continuation up to the object is known as line of collimation. \\
Axis of bubble tube: It is an imaginary line tangential to the longitudinal curve of the tube at its middle point.
\end{tabular} \& 02
02 \\
\hline Q5) Attempt any FOUR of the following. \& 16 \\
\hline a) Describe the advantages of Auto level. \& \\
\hline \begin{tabular}{l}
Following are the advantages of auto level: \\
1) Operational Comfort: Use of Auto level is free of fatigue, does not cause strain on eyes, nerves etc. \\
2) High precision : Precision of auto level is about \(\pm 0.5 \mathrm{~mm}\) to 0.8 mm for one km \\
3) High speed Time required for leveling is about half of that required with ordinary level. \\
4) Freedom from errors: Bubble usually remain in center and image of staff is erect, easy to read \\
5) Freedom from external influences: No influence of cloud, rain, magnetic field, vibrations, etc. on the leveling work with Auto level. \\
6) Range of application: Auto can be used for medium and large size project. To establish bench marks accurately. \\
* Any four one mark each.
\end{tabular} \& * \\
\hline b) Explain with neat sketch reciprocal leveling \& \\
\hline \begin{tabular}{l}
Reciprocal leveling is adopted i) to find the difference in level accurately Between the two points considerably apart. ii) When it is not possible to set up the level in between the two points due to river or pond etc. In this error due to curvature and refraction, collimation errors, error in instrument adjustment are eliminated. \\
Procedure: Let A and B be the two points on opposite banks of the river. Let it is required to find out the level difference between A and B \\
Step 1) Case I:Set up the level very near to A and with bubble in centre take the readings on the staff held at A and B Let these reading are aland b1 \\
2) Case II: Shift the level and set up very near to \(B\) and with bubble in center take the readings on the staff held at A and B , these reading are a 2 and b
\end{tabular} \& 01

$*$ <br>
\hline
\end{tabular}


3) Let $d=$ true difference of level between $A$ and $B$

Let $\mathrm{e}=$ Total error ( error due to curvature and refraction , imperfect adjustment)
In Case I, The correct reading on $\mathrm{B}=\mathrm{b} 1-\mathrm{e}$
In case II, the correct reading on $\mathrm{A}=\mathrm{a} 2-\mathrm{e}$
From A, the true difference of level between A and B, d=(b1-e)-a1
Or d= (b1-a1)-e equation 1
From B, the true difference of level between A and B , d= b2-(a2-e)
$=(\mathrm{b} 2-\mathrm{a} 2)+\mathrm{e}$ equation 2
To eliminate total error e adding equation 1 and 2
$2 \mathrm{~d}=(\mathrm{b} 1-\mathrm{a} 1)-\mathrm{e}+(\mathrm{b} 2-\mathrm{a} 2)+\mathrm{e}$
$\mathrm{d}=((\mathrm{b} 1-\mathrm{a} 1)+(\mathrm{b} 2-\mathrm{a} 2)) / 2$
The error is eliminated and the true difference is equal to the mean of the two apparent differences of level between A and B
*(Procedure 02 mark and sketch 01 mark)
c) Distinguish between the following
i) Back sight and Foresight

| Back sight | Fore sight |
| :--- | :--- |
| It is a staff reading taken on a <br> point of known elevation <br> i.e. B.M. or C.P. | It is a staff reading taken on a point whose <br> elevation is to be determined. <br> i.e. C.P |
| It is the first riding taken after the level is <br> set up and levelled. | It is the last staff reading denoting the <br> shifting of the instrument or closing of <br> leveling work. |

It is the last staff reading denoting the
ii) Simple leveling and differential leveling

| Simple leveling | Differential leveling |
| :--- | :--- |
| In this difference in elevation between two <br> point is determined, when two points are <br> visible, small distance apart, small <br> difference in elevation between two points. | In this difference in elevation between two <br> point is determined if the points are too far <br> apart, elevation between two point is more <br> or any obstacle in between them., |

d) Define fly leveling and explain the situation when fly leveling is required.

Fly leveling: The process of leveling to determine the elevation of the points which are some distance apart by usually taking only B.S. and F.S. without any distance measurement is known as fly leveling. It is form of differential leveling. Situations for adopting fly level:

1) To connect a bench mark to the starting point of the alignment of any project. 2) to check the accuracy of the leveling work by connecting B.M. to any intermediate point of the alignment

e) Enlist the sources of errors in leveling and explain any one source in detail.

The sources of error in levelling are as bellow

1) Instrumental errors: Error due to imperfect adjustment, Sluggish bubble, Faulty
2) Personal errors: Errors of manipulation, Imperfect sighting ,Errors due to settlement of staff and level stand
3) Errors due to natural sources
4) Instrumental errors:
i) Error due to imperfect adjustment: Line of sight is inclined upward or downwards. Axis of the bubble tube not being perpendicular to the vertical axis, line of collimation not being parallel to the bubble axis. Instrument should be get tested and adjusted before use, equalize the fore sight and back sight distance to minimize this error.
ii)Sluggish bubble: when bubble is sluggish then it does not show correct horizontal

Line of sight. To get good work replace it by good bubble tube.
iii)Faulty focusing tube : Due to this object does not move in horizontal plane during focusing
iv)Erroneous leveling staff: Division on the leveling staff are faulty. Replace it by correct staff.
2) Personal Errors:
i) Errors of manipulation: Careless leveling, Bubble not in center, Resting hands on tripod, Staff not being held exactly vertical.
ii) Imperfect sighting : Poor focusing, Parallax error not removed,
iii)Error due to settlement of staff and level: set up the instrument, and hold the staff on firm ground, proper selection of C.P. and instrument station location.

OR

## 3) Errors due to natural causes:

i) Curvature of earth ii)Refraction iii)Effect of wind iv) effect of sun In ordinary leveling the curvature and refraction error are not consider as they are very less 0.003 m for 300 m length. Use umbrella to shelter the instrument, use sun shade, avoid leveling work during wind.
*(three marks for any one type of error)

| f) Explain the precautionary measures in leveling |  |
| :---: | :---: |
| ```Precautionary measures in leveling work are as follow 1) Do not take sighting distance too large (less than 100m) depending upon range of instrument 2) Held the staff exactly vertical 3) Do the adjustment of instrument properly and carry out tests of instruments 4) See that bubble must be in center always 5) Leveling must be carried out in favorable conditions only. 6) Balance the B.S. and F.S. distances to avoid the errors. 7) Use good quality and correct leveling staff. 8) Check the leveling work at the end of every day. 9) Read the staff correctly``` | 01 <br> mark <br> (any <br> four) |
| Q6) Attempt any TWO of the following: | 16 |
| a) i) Find the area of the plot ABCD from the data collected in the chain and cross staff survey (Refer Figure No.1) |  |
|  | 1/2 |

17310

(Note also consider area calculation of each fig. separately.

* ( $1 / 2$ mark for each area and $1 / 2$ mark for total Area )
ii) Q and R are two points on the opposite banks of a river along a chain line PQR which crosses the river at right angles to the bank. From a point A which is 96.2 m from Q along the bank, the bearing of R is $305030^{\prime}$ and the bearing of P is 2150 $30^{\prime}$. If the length of $P Q$ is 150 m . Find the width of river.

Solution.


Using Principle of similar Triangle

$$
\frac{Q A}{Q R}=\frac{Q P}{Q \cdot A}
$$

17310

$$
\angle R A P=305^{\circ} 30^{\prime}-215^{\circ} 30^{\prime}=90^{\circ}
$$

In Right angle Triangle $R A P, \triangle A Q R \& \triangle P Q A$.

$$
\begin{gathered}
\frac{A Q}{Q R}=\frac{P Q}{Q A} . \\
\text { Given } \Rightarrow P Q=150.0 \mathrm{~m}, A Q=96.20 \mathrm{~m} . \\
\text { f } Q Q R=\text { Width of River. } \\
\therefore \frac{96.20}{Q R}=\frac{150.0}{96.20} \\
\therefore Q R=61.69 \mathrm{~m} . \text { Ans }=\text { Width of River. } \\
O R: \text { In } \triangle Q A P, \angle A=\tan ^{-1}\left(\frac{150.00}{96.20}\right)=57.32^{\circ} \\
\& \text { In } \triangle Q A R \quad \angle A=90^{\circ}-57.32=32.67^{\circ} \\
\therefore \text { In } \triangle Q A R, \tan 32.67=\frac{Q R}{96+20} \\
\therefore Q R=61.96 \mathrm{~m}=\text { Width of River. Ans. }
\end{gathered}
$$

Calculations-

1) Included angles-
$\angle P=130^{\circ} 15^{\prime}-80^{\circ} 10^{\prime}=50^{\circ} \circ 5^{\prime}$
$\angle Q=259^{\circ} 40^{\prime}-120^{\circ} 20^{\prime}=138^{\circ} 40^{\prime}$
$\angle R=301^{\circ} 50^{\prime}-120^{\circ} 50^{\prime}=131^{\circ} 00^{\prime}$
$L S=350^{\circ} 50^{\prime}-230^{\circ} 10^{\prime}=+20^{\circ} 40^{\prime}$
$L T=310^{\circ} 20^{\prime}-49^{\circ} 30^{\prime}=99^{\circ} 10^{\prime}$
observed, sumy $=539{ }^{\circ} 35^{\prime}$.
Theoretical sum of all included $=(2 n-4) 90$

$$
=(2 \times 5.4) 9^{\circ}=540^{\circ} 00^{\prime} .
$$

observed sum $=539^{\circ} 35^{\prime}$. therefore. correction is required. Assuming equal precautions at all station, equal correction at each station. $25 / 5=05$. corrected angle as above.
II] corrected bearing.
consider the line RS; FB, and B.B. diff. $=180^{\circ}$,
$B$-B-of line $R S=350^{\circ} 50^{\prime}$
$\begin{aligned} F \cdot B \cdot \frac{\bar{L}}{} L_{5} & =12045 \\ & =230^{\circ} 05^{\prime}\end{aligned}$

FB. of line $S T=230^{\circ} 05^{\prime}$
$\begin{array}{cc}\text { B- of tine } 5 T & 50^{\circ} 05 \\ -\angle 1 & -9915+360^{\circ} 0^{\prime}\end{array}$

| F. of line T.P | $310^{\circ} 50^{\circ}$ |
| :--- | ---: |
| $B B$ of line T.P. $-180^{\circ} 00$ |  |
| $130^{\circ} 50^{\prime}$ |  |

$R .1-1 P$ 50 $10^{\circ}$
T.B of line PQ. $80^{\circ} 40^{\circ}$
$\begin{array}{r}F \cdot B-\text { of line } G R+121^{\circ} 55 \\ B B \text { of lone } G R+18000 \\ \hline 0.55^{\circ},\end{array}$
$-\angle R \quad 131^{\circ} 05^{\prime}$
F.B of Kine RS $170^{\circ} 50^{\circ}$
$+18000$
$B \cdot B \cdot$ of line $R S \quad 350^{\circ} 50^{\prime}=\Delta b_{s} \cdot B \cdot B \cdot$ d line R-S.
o.k. cheek. is varified.

All. Calculated values are shawn in table,
c) The following page of old level book having few staff reading missing find out the missing reading and rewrite the page. Apply usual checks.

| Stn | Staff reading |  |  | H.I. | R.L. |  |
| :---: | :---: | :---: | :---: | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
|  | BS | IS | FS |  |  |  |
| 1 | 2.650 |  |  |  | 100.000 | B.M. |
| 2 |  | X |  |  | 98.910 |  |
| 3 |  | 3.830 |  |  | 98.820 |  |
| 4 | 4.640 |  |  |  | 98.380 | CP1 |
| 5 |  | 0.380 |  |  |  |  |
| 6 | 1.640 |  |  | 103.700 | 102.060 | CP2 |
| 7 |  | 2.840 |  |  | 100.860 |  |
| 8 |  | 3.480 |  | 104.900 | 100.220 | CP3 |
| 9 |  |  |  |  | 102.700 | End Stn |

## Solution :

| Stn | Staff reading |  |  | H.I. | R.L. | Remark |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | BS | IS | FS |  |  |  |
| 1 | 2.650 |  |  | $\mathbf{1 0 2 . 6 5 0}$ | 100.000 | B.M. |
| 2 |  | $\mathbf{3 . 7 4 0}$ |  |  | 98.910 |  |
| 3 |  | 3.830 |  |  | 98.820 |  |
| 4 | 4.640 |  | $\mathbf{4 . 2 7 0}$ | $\mathbf{1 0 3 . 0 2 0}$ | 98.380 | CP1 |
| 5 |  | 0.380 |  |  | $\mathbf{1 0 2 . 6 4 0}$ |  |
| 6 | 1.640 |  | $\mathbf{0 . 9 6 0}$ | 103.700 | 102.060 | CP2 |
| 7 |  | 2.840 |  |  | 100.860 |  |
| 8 | $\mathbf{4 . 6 8 0}$ |  | 3.480 | 104.900 | 100.220 | CP3 |
| 9 |  |  | $\mathbf{2 . 2 0 0}$ |  | 102.700 | End Stn |
|  | $\mathbf{\Sigma = \mathbf { 1 3 . 6 1 0 }}$ |  | $\mathbf{\Sigma = \mathbf { 1 0 . 9 1 0 }}$ |  |  |  |

Calculation:

1) $100.000+2.650=102.650$
2) $102.650-98.910=3.740$
3) $102.650-98.380=4.270$
4) $98.38+4.640=103.020$
5) $103.020-0.380=102.640$
6) $103.020-102.060=0.960$
7) $104.900-100.220=4.680$
8) $104.900-102.700=2.200$

Check $\quad \mathbf{\Sigma}$ BS $-\mathbf{\Sigma F S}=$ Last R.L. - First R.L 13.610-10.910 = 102.700-100.000

$$
2.700=2.700
$$

O.K Check is verified.
*(correct missing reading 04 marks rewriting the page of field book 2 mark, 02 marks for check)

