MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)
Model Answer: Winter-2018

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	a) i)	Attempt any SIX of the following: Define following properties of material. (1) Elasticity (2) Malleability		
Ans. Elasticity: Elasticity is the property of material by virtue of it can				
regain its original shape and size after removal of deforming force.				
2. Malleability: Malleability is the property of material by virtue of				
which it can deformed in the form of thin sheets under the action of				
load.				
Ans.	State 'Hooke's Law'. Define limit of proportionality. Hooke's Law: It states that, when material is loaded within elastic limit, stress produced is directly proportional to the strain induced. Limit of proportionality: It is the point in stress strain curve up to which stress produced is directly proportional to strain induced obeying Hooke's law. State the relation between principal planes and the planes of maximum shear stress. iianes of maximum shear stress are inclined at 45^{0} to the principal planes.	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{1}$

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	iv) Ans.	Find the radius of gyration of a circle of diameter ${ }^{\text {d }}$ ' ${ }^{\text {. }}$		$2{ }^{2}$
		$I=\frac{\pi}{64} d^{4} \quad \text { and } \quad \mathrm{A}=\frac{\pi}{4} d^{2}$	1	
		$K=\sqrt{\frac{I}{A}}$		
		$K=\sqrt{\frac{\frac{\pi}{64} d}{\frac{\pi}{4} d^{2}}}=\sqrt{\frac{d^{2}}{16}}=\frac{d}{4}$	1	
	v)	Define: (i) Point of Contra-flexure and (ii) O.C. Neutral Axis		
	Ans.	i. Point of Contra-flexure: It is the point in bending moment diagram where bending moment changes its sign from positive to negative and vice versa. At that point bending moment is equal to zero. This point is called as point of contra-flexure. ii. O.C. Neutral Axis: It is the axis shown in cross-section where bending stress is zero called as neutral axis.	1	
		OR The intersection of the neutral layer with any normal cross section of a beam is called as neutral axis.	1	
	vi) Ans.	State middle third rule with neat sketch. According to middle third rule, in rectangular section, for no tension condition, the load must lie within the middle third shaded area of size $\frac{b}{3} \text { and } \frac{d}{3} .$	1	
			1	
	vii) Ans.	What is the "No tension condition"? State. The load acting in the middle third area or core of the section, then the material experiences only compressive stress without producing tensile stress. i.e. Direct stress is equal to bending stress. Minimum stress is zero, such condition is said to be "No tension condition".	2	

$\begin{aligned} & \text { Que. } \\ & \text { No. } \\ & \hline \end{aligned}$	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	Ans. ${ }_{\text {b) }}$ ii)	A square bar 20 mm size is subjected to an axial load. Find out maximum axial load the bar can carry if maximum principal stress is not to exceed $30 \mathrm{~N} / \mathrm{mm}^{2}$ tensile and maximum shear stress is not to exceed $12 \mathrm{~N} / \mathrm{mm}^{2}$. Data: $\mathrm{b}=20 \mathrm{~mm}$ $\mathrm{d}=20 \mathrm{~mm}$ $\sigma_{\mathrm{n}}=30 \mathrm{~N} / \mathrm{mm}^{2}$ $\mathrm{q}_{\max }=12 \mathrm{~N} / \mathrm{mm}^{2}$ $\sigma_{n_{1}}=\frac{\sigma_{x}}{2}+\sqrt{\left(\frac{\sigma_{n}}{2}\right)^{2}+q^{2}}$ $30=\frac{\sigma_{x}}{2}+\sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2}+12^{2}}$ $30-\frac{\sigma_{x}}{2}=\sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2}+144}$ Squaring on both sides. $\begin{aligned} & \left(30-\frac{\sigma_{x}}{2}\right)^{2}=\left(\frac{\sigma_{x}}{2}\right)^{2}+144 \\ & 30^{2}-2 \times 30 \times \frac{\sigma_{x}}{2}+\left(\frac{\sigma_{x}}{2}\right)^{2}=\left(\frac{\sigma_{x}}{2}\right)^{2}+144 \\ & 900-30 \times \sigma_{x}=144 \\ & 900-144=30 \times \sigma_{x} \\ & \sigma_{x}=25.2 \mathrm{~N} / \mathrm{mm}^{2} \\ & P_{\max }=\sigma_{x} \times A \\ & P_{\max }=25.2 \times 20 \times 20 \\ & P_{\max }=10080 \mathrm{~N} \\ & P_{\max }=10.08 \mathrm{kN} \end{aligned}$ A simply supported beam of span 6 m carries two point loads of 8 kN and 10 kN at 2 m and 4 m from the left hand support respectively. Draw SFD and BMD showing all important values. 1. Calculation of support reactions $\begin{aligned} & \sum M_{\mathrm{A}}=0 \\ & 8 \times 2+10 \times 4=6 R_{\mathrm{B}} \\ & R_{\mathrm{B}}=9.33 \mathrm{kN} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	a) Ans.	Attempt any FOUR of the following: Determine the force and elongation of the compound bar shown in Figure No. 1 if the maximum stress induced in it is $100 \mathrm{~N} / \mathrm{mm}^{2}$. Both sections are circular. Take $\mathbf{E}=\mathbf{2 0 0} \mathbf{k N} / \mathrm{mm}^{2}$. Fig. No. 1 Data: $\begin{aligned} & \sigma_{\max }=100 \mathrm{~N} / \mathrm{mm}^{2} \\ & E=200 \mathrm{kN} / \mathrm{mm}^{2} \end{aligned}$ $A_{\min }=\frac{\pi}{4} \times d^{2}=\frac{\pi}{4} \times 10^{2}=78.54 \mathrm{~mm}^{2}$ $\sigma_{\max }=\frac{P}{A_{\min }}$ $P=\sigma_{\max } \times A_{\text {min }}$ $P=100 \times 78.54=7854 \mathrm{~N}$ To find total elongation $\begin{aligned} & \delta_{L}=\left(\delta_{L}\right)_{A B}+\left(\delta_{L}\right)_{A B} \\ & \left(\delta_{L}\right)_{A B}=\left(\frac{P L}{A E}\right)_{A B} \\ & \left(\delta_{L}\right)_{A B}=\left(\frac{7854 \times 80}{\frac{\pi}{4} \times 20^{2} \times 200 \times 10^{3}}\right) \\ & \left(\delta_{L}\right)_{A B}=0.01 \mathrm{~mm} \\ & \left(\delta_{L}\right)_{B C}=\left(\frac{P L}{A E}\right)_{B C} \\ & \left(\delta_{L}\right)_{B C}=\left(\frac{7854 \times 100}{\frac{\pi}{4} \times 10^{2} \times 200 \times 10^{3}}\right) \\ & \left(\delta_{L}\right)_{B C}=0.05 \mathrm{~mm} \\ & \delta_{L}=0.01+0.05=0.06 \mathrm{~mm} \end{aligned}$	1	16

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	b) Ans.	A copper tube having 20 mm inside diameter and 4 mm thickness of metal is pressed fit on a steel rod 20 mm diameter. Determine the stress induced in each metal due to temperature rise $60^{\circ} \mathrm{C}$.Take $\alpha_{c}=16 \times 10^{-6} /^{0} \mathrm{C}, \alpha_{s}=11 \times 10^{-6} /^{0} \mathrm{C} . \mathrm{E}_{\mathrm{s}}=200 \mathrm{kN} / \mathrm{mm}^{2} \mathrm{E}_{\mathrm{c}}=160$ $\mathrm{kN} / \mathrm{mm}^{2}$. $\begin{aligned} & A_{c}=\frac{\pi}{4}\left(D^{2}-d^{2}\right) \\ & A_{c}=\frac{\pi}{4}\left(28^{2}-20^{2}\right) \\ & A_{c}=301.59 \mathrm{~mm}^{2} \\ & A_{s}=\frac{\pi}{4} d^{2}=\frac{\pi}{4} \times 20^{2}=314.15 \mathrm{~mm}^{2} \end{aligned}$ Under equilibrium condition $\begin{align*} & \mathrm{P}_{\mathrm{c}}=\mathrm{P}_{\mathrm{s}} \\ & \sigma_{c} \times A_{c}=\sigma_{s} \times A_{s} \\ & \sigma_{c} \times 301.59=\sigma_{s} \times 314.15 \\ & \sigma_{c}=1.0416 \sigma_{s} \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \ldots \ldots \ldots . ~ \tag{i}\\ & \frac{\sigma_{s}}{E_{s}}+\frac{\sigma_{c}}{E_{c}}=\left(\alpha_{c}-\alpha_{s}\right) t \\ & \frac{\sigma_{s}}{200 \times 10^{3}}+\frac{1.0416 \sigma_{s}}{160 \times 10^{3}}=\left(16 \times 10^{-6}-11 \times 10^{-6}\right) \times 60 \\ & \sigma_{s}\left(\frac{1}{200 \times 10^{3}}+\frac{1.0416}{160 \times 10^{3}}\right)=3 \times 10^{-4} \\ & \sigma_{s} \times 1.1506 \times 10^{-5}=3 \times 10^{-4} \\ & \sigma_{s}=\frac{3 \times 10^{-4}}{1.1506 \times 10^{-5}}=26.063 \mathrm{~N} / \mathrm{mm}^{2}(T) \end{align*}$ From equation (i) $\sigma_{c}=1.0416 \times 26.063=27.148 \mathrm{~N} / \mathrm{mm}^{2}(C)$	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	c)	A metal bar of $30 \mathrm{~mm} \times 30 \mathrm{~mm}$ in section is subjected to an axial compressive load of 500 kN . A contraction of 200 mm gauge length is found to be 0.6 mm and the increase in thickness is 0.04 mm . Find the value of Poisson's ration and the three elastic constants. Data: $\begin{aligned} & b=30 \quad \mathrm{t}=30 \\ & L=200 \mathrm{~mm} \\ & P=500 \mathrm{KN}=500 \times 10^{3} \mathrm{~N} \\ & \delta L=0.6 \mathrm{~mm} \\ & \delta t=0.04 \mathrm{~mm} \\ & \delta L=\frac{P L}{A E} \\ & E=\frac{P \times L}{b \times t \times \delta L} \\ & E=\frac{500 \times 10^{3} \times 200}{30 \times 30 \times 0.6} \\ & E=185185.185=1.85 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ $\mu=\frac{\text { Lateral strain }}{\text { Linear strain }}=\frac{e_{L}}{e}=\frac{\left(\frac{\delta t}{t}\right)}{\left(\frac{\delta L}{L}\right)}$ $\mu=\frac{\left(\frac{0.04}{30}\right)}{\left(\frac{0.6}{200}\right)}=0.44$ $E=2 G(1+\mu)$ $185185.185=2 G(1+0.44)$ $G=0.643 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ $E=3 K(1-2 \mu)$ $185185.185=3 K(1-2 \times 0.44)$ $K=5.144 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ State effective length of columns for different end conditions with neat sketches. Effective Length of column for different end conditions: a. When both ends of column are hinged. $L_{e}=L$ b. When one end of column is fixed and other is free. $L_{e}=2 L$ c. When both ends of column are fixed. $L_{e}=L / 2$ d. When one end of column is hinged and other is fixed. $L_{e}=L / \sqrt{ } 2$	$1{ }_{1}$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	d) e) Ans.	Fig. Effective Length of Columns The principal stresses at point in the section of the member are $100 \mathrm{~N} / \mathrm{mm}^{2}$ and $50 \mathrm{~N} / \mathrm{mm}^{2}$ both tensile. Find the normal and tangential stresses across a plane passing through that point inclined at 60^{0} to the plane having $100 \mathrm{~N} / \mathrm{mm}^{2}$ stress. Data: $\begin{aligned} & \sigma_{x}=100 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{y}=50 \mathrm{~N} / \mathrm{mm}^{2} \\ & \theta=60^{0} \\ & \sigma_{n}=\frac{\sigma_{x}+\sigma_{y}}{2}+\frac{\sigma_{x}-\sigma_{y}}{2} \cos 2 \theta \\ & \sigma_{n}=\frac{100+50}{2}+\frac{100-50}{2} \cos \left(2 \times 60^{\circ}\right) \\ & \sigma_{n}=75+25 \cos \left(120^{\circ}\right) \\ & \sigma_{n}=75-12.50 \\ & \sigma_{n}=62.50 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{t}=\frac{\sigma_{x}-\sigma_{y}}{2} \sin 2 \theta \\ & \sigma_{t}=\frac{100-50}{2} \sin \left(2 \times 60^{\circ}\right) \\ & \sigma_{t}=25 \sin \left(120^{\circ}\right) \\ & \sigma_{t}=21.65 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ (Note: If problem solved by Mohr's Circle method, should be considered.)	$2{ }^{2}$	$4{ }^{4}$

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	f) Ans.	At a point in the web of the girder, bending stress σ_{b} and the shear stress is ${ }^{\tau}$. The principal stresses at a point are 80 MPa tensile and 20MPa compressive. Evaluate the values of σ_{b} and ${ }^{\tau}$. Determine the direction of principal planes. $\begin{aligned} & \sigma_{x}=\sigma_{b} \quad \sigma_{y}=0 \quad \mathrm{q}=\tau \\ & \sigma_{n_{1}}=80 \mathrm{~N} / \mathrm{mm}^{2}(T) \\ & \sigma_{n_{2}}=20 \mathrm{~N} / \mathrm{mm}^{2}(C) \end{aligned}$ Major principal stress $\begin{align*} & \sigma_{n_{1}}=\frac{\sigma_{x}}{2}+\sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2}+q^{2}} \\ & 80=\frac{\sigma_{b}}{2}+\sqrt{\left(\frac{\sigma_{b}}{2}\right)^{2}+\tau^{2} \ldots} \tag{i} \end{align*}$ Minor principal stress $\begin{align*} & \sigma_{n_{2}}=\frac{\sigma_{x}}{2}-\sqrt{\left(\frac{\sigma_{x}}{2}\right)^{2}+q^{2}} \\ & -20=\frac{\sigma_{b}}{2}-\sqrt{\left(\frac{\sigma_{b}}{2}\right)^{2}+\tau^{2} . .} \tag{ii} \end{align*}$ Adding equation (i) and (ii) $\begin{aligned} & 80-20=\frac{\sigma_{b}}{2}+\frac{\sigma_{b}}{2} \\ & 60=\sigma_{b} \end{aligned}$ Bending Stress $\sigma_{\mathrm{b}}=60 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{~T})$ Substituting the Value of σ_{b} in equation (i) $\begin{aligned} & 80=\frac{60}{2}+\sqrt{\left(\frac{60}{2}\right)^{2}+\tau^{2}} \\ & 80=30+\sqrt{900+\tau^{2}} \\ & (80-30)^{2}=900+\tau^{2} \\ & 2500=900+\tau^{2} \\ & \tau^{2}=1600 \quad \therefore \tau=40 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ Shear stress $(\tau)=40 \mathrm{~N} / \mathrm{mm}^{2}$ Direcion of principal planes	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	a) Ans.	Attempt any FOUR of the following :		16
		A simply supported beam of span 7 m carries a udl of 5 kN over 4 m span from left support and a point load of 10 kN at 2 m from the right hand support. Draw SFD and BMD.		
		1. Support Reaction Calculations: Taking moment about A $\begin{aligned} & \sum \mathrm{M}_{\mathrm{A}}=0 \\ & {[(5 \times 4) \times 2]+(10 \times 5)-\mathrm{R}_{\mathrm{B}} \times 7=0} \\ & 40+50-7 \mathrm{R}_{\mathrm{B}}=0 \\ & \mathrm{R}_{\mathrm{B}}=12.857 \mathrm{kN} \end{aligned}$		
		$\begin{aligned} & \Sigma \mathrm{F}_{\mathrm{Y}}=0 \\ & \mathrm{R}_{\mathrm{A}}-(5 \times 4)-10+\mathrm{R}_{\mathrm{B}}=0 \\ & \mathrm{R}_{\mathrm{A}}-20-10+12.857=0 \\ & \mathrm{R}_{\mathrm{A}}=17.143 \mathrm{kN} \end{aligned}$		
		2. Shear Force Calculations: $\begin{aligned} \text { SF at } \mathrm{A} & =0 \mathrm{kN} \\ \mathrm{~A}_{\mathrm{R}} & =+17.143 \mathrm{kN} \\ \mathrm{C}_{\mathrm{L}} & =+17.143-(5 \times 4)=-2.857 \mathrm{kN} \\ \mathrm{C}_{\mathrm{R}} & =-2.857 \mathrm{kN} \\ \mathrm{D}_{\mathrm{L}} & =-2.857 \mathrm{kN} \\ \mathrm{D}_{\mathrm{R}} & =-2.857-10=-12.857 \mathrm{kN} \\ \mathrm{~B}_{\mathrm{L}} & =-12.857 \mathrm{kN} \\ \mathrm{~B} & =-12.857+12.857=0 \mathrm{kN} \quad(\therefore \text { ok }) \end{aligned}$	1/2	
		3. Bending Moment Calculations: At simply supported ends, $\quad \mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}}=0 \mathrm{kN}-\mathrm{m}$ $\begin{aligned} & \mathrm{M}_{\mathrm{C}}=+(17.143 \times 4)-[(5 \times 4) \times 2]=+28.571 \mathrm{kN}-\mathrm{m} \\ & \mathrm{M}_{\mathrm{D}}=+(12.857 \times 2)=+25.714 \mathrm{kN}-\mathrm{m} \end{aligned}$	1/2	4
		4. Maximum Bending Moment Calculations: Maximum Bending Moment will occur at point ' E ' Let ' x ' be the distance of point ' E ' from point ' A ' From the similar triangles in SFD - $\frac{x}{17.143}=\frac{4-x}{2.857}$		
		$\begin{aligned} & x=3.4286 m \\ & \text { OR } \\ & \text { SF at } \mathrm{E}=0 \\ & 17.143=5 \mathrm{x} \\ & x=3.4286 \mathrm{~m} \end{aligned}$	1/2	
		$\begin{aligned} \mathrm{M}_{\max }=\mathrm{M}_{\mathrm{E}} & =+(17.143 \times 3.4286)-\left[(5 \times 3.4286) \times \frac{3.4286}{2}\right] \\ & =+29.388 \mathrm{kN}-\mathrm{m} \end{aligned}$	1/2	

\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
\& \text { Que. } \\
\& \text { No. }
\end{aligned}
\] \& Sub. Que. \& Model Answers \& Marks \& \begin{tabular}{l}
Total \\
Marks
\end{tabular} \\
\hline Q. 3 \& a) \& \begin{tabular}{l}
Diagram: \\
LOADING DIAGRAM
\end{tabular} \& 1

1 \&

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	b) Ans.	A cantilever beam of span 2 m carries udl of $400 \mathrm{~N} / \mathrm{m}$ over the entire span. It has also an upward reaction of 200 N at its free end. Find SFD and BMD. Also locate point of zero shear. 1. Support Reaction Calculations: $\begin{aligned} & \Sigma \mathrm{F}_{\mathrm{Y}}=0 \\ & \mathrm{R}_{\mathrm{A}}-(400 \times 2)+200=0 \\ & \mathrm{R}_{\mathrm{A}}=600 \mathrm{~N} \end{aligned}$ 2. Shear Force Calculations: SF at $A=0 \mathrm{~N}$ $\begin{aligned} & A_{R}=+600 \mathrm{~N} \\ & B_{L}=+600-(400 \times 2)=-200 \mathrm{~N} \\ & B=-200+200=0 \mathrm{~N} \quad(\therefore \text { ok }) \end{aligned}$ 3. Bending Moment Calculations: At Free end, $\quad M_{B}=0 N-m$ $\mathrm{M}_{\mathrm{A}}=+(200 \times 2)-[(400 \times 2) \times 1]=-400 \mathrm{~N}-\mathrm{m}$ 4. Calculation of Point of Zero Shear Force i.e. Maximum Bending Moment Point of Zero Shear Force i.e. Maximum Bending Moment will occur at point ' C ' Let ' x ' be the distance of point ' C ' from point ' A ' From the similar triangles in SFD - $\begin{aligned} & \frac{x}{600}=\frac{2-x}{200} \\ & x=1.5 \mathrm{~m} \end{aligned}$ Zero Shear Force point lies at 1.5 m from point ' A ' and 0.5 m from point ' B '. $\begin{aligned} \mathrm{M}_{\max }=\mathrm{M}_{\mathrm{C}} & =+(200 \times 0.5)-\left[(400 \times 0.5) \times \frac{0.5}{2}\right] \\ & =+50 \mathrm{~N}-\mathrm{m} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	b) c) Ans.	Diagram: A simply supported beam 5 m long carries a point load of 10 kN and anticlockwise moment of $5 \mathrm{kN}-\mathrm{m}$ at a distance of 2 m from left hand support. Draw SFD and BMD. 1. Support Reaction Calculations: Taking moment about A $\begin{aligned} & \Sigma \mathrm{M}_{\mathrm{A}}=0 \\ & (10 \times 2)-5-\mathrm{R}_{\mathrm{B}} \times 5=0 \\ & 20-5-5 \mathrm{R}_{\mathrm{B}}=0 \\ & \mathrm{R}_{\mathrm{B}}=3 \mathrm{kN} \\ & \\ & \Sigma \mathrm{~F}_{\mathrm{Y}}=0 \\ & \mathrm{R}_{\mathrm{A}}-10+\mathrm{R}_{\mathrm{B}}=0 \\ & \mathrm{R}_{\mathrm{A}}-10+3=0 \\ & \mathrm{R}_{\mathrm{A}}=7 \mathrm{kN} \end{aligned}$ 2. Shear Force Calculations: SF at $\mathrm{A}=0 \mathrm{~N}$ $\begin{aligned} & \mathrm{A}_{\mathrm{R}}=+7 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{L}}=+7 \mathrm{kN} \\ & \mathrm{C}_{\mathrm{R}}=+7-10=-3 \mathrm{kN} \\ & \mathrm{~B}_{\mathrm{L}}=-3 \mathrm{kN} \\ & \mathrm{~B}=-3+3=0 \mathrm{kN} \quad(\therefore \text { ok }) \end{aligned}$	1	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	c) d) Ans.	3. Bending Moment Calculations: At simply supported ends, $\quad \mathrm{M}_{\mathrm{A}}=\mathrm{M}_{\mathrm{B}}=0 \mathrm{kN}-\mathrm{m}$ BM at $\mathrm{C}_{\mathrm{L}}=+(7 \times 2)=+14 \mathrm{kN}-\mathrm{m}$ $\mathrm{C}_{\mathrm{R}}=+(7 \times 2)-5=+9 \mathrm{kN}-\mathrm{m}$ 4. Diagram A beam of span 7 m is simply supported at A and B. $A B=6 \mathrm{~m}, \mathrm{BC}$ $=1 \mathrm{~m}, \mathrm{BC}$ is overhang portion. Portion AB carries udl of $20 \mathrm{kN} / \mathrm{m}$ and a point load of 50 kN at C. Draw SFD and BMD. 1. Support Reaction Calculations: Taking moment about A $\begin{aligned} & \Sigma \mathrm{M}_{\mathrm{A}}=0 \\ & {[(20 \times 6) \times 3]+(50 \times 7)-\mathrm{R}_{\mathrm{B}} \times 6=0} \\ & 360+350-6 \mathrm{R}_{\mathrm{B}}=0 \\ & \mathrm{R}_{\mathrm{B}}=118.33 \mathrm{kN} \\ & \\ & \Sigma \mathrm{~F}_{\mathrm{Y}}=0 \\ & \mathrm{R}_{\mathrm{A}}-(20 \times 6)-50+\mathrm{R}_{\mathrm{B}}=0 \\ & \mathrm{R}_{\mathrm{A}}-120-50+118.33=0 \\ & \mathrm{R}_{\mathrm{A}}=51.67 \mathrm{kN} \end{aligned}$	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	e)	$\begin{aligned} \mathrm{I}_{\mathrm{P}} & =\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{yy}} \\ & =2.898 \times 10^{6}+2.898 \times 10^{6} \\ & =5.796238 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ 2. Radius of Gyration: $\begin{aligned} \mathrm{K} & =\sqrt{\frac{I}{A}} \\ \mathrm{I} & =2.898 \times 10^{6} \mathrm{~mm}^{4} \\ \mathrm{~A} & =\frac{\pi}{4}\left(D^{2}-d^{2}\right) \\ & =\frac{\pi}{4}\left(100^{2}-80^{2}\right) \\ & =2827.433 \mathrm{~mm}^{2} \\ \mathrm{~K} & =\sqrt{\frac{2.898 \times 10^{6}}{2826}} \\ \mathrm{~K} & =32.015 \mathrm{~mm} \end{aligned}$ OR $\begin{aligned} & K=\sqrt{\frac{D^{2}+d^{2}}{16}} \\ & K=\sqrt{\frac{100^{2}+80^{2}}{16}} \\ & K=\sqrt{1025}=32.015 \mathrm{~mm} \end{aligned}$ Find moment of inertia of a 'Tee' section $200 \mathrm{~mm} \times 200 \mathrm{~mm} \times 20$ mm about the centroidal horizontal axis.	1 1 1 OR 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	f)	$\begin{aligned} & a_{1}=200 \times 20=4000 \mathrm{~mm}^{2} \\ & y_{1}=200-\frac{20}{2}=190 \mathrm{~mm} \\ & a_{2}=180 \times 20=3600 \mathrm{~mm}^{2} \\ & y_{1}=\frac{180}{2}=90 \mathrm{~mm} \\ & \bar{y}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}} \\ & \bar{y}=\frac{4000 \times 190+3600 \times 190}{7600} \\ & \bar{y}=142.63 \mathrm{~mm} \text { from the base } \\ & \mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{xx}} \\ & \mathrm{I}_{\mathrm{xx}}=\left(I G_{1}+a_{1} h_{1}^{2}\right)+\left(I G_{2}+a_{2} h_{2}^{2}\right) \\ & h_{1}=y_{1}-\bar{y}=190-142.63=47.37 \mathrm{~mm} \\ & h_{2}=\bar{y}-y_{2}=142.63-90=52.63 \mathrm{~mm} \\ & I G_{1}=\frac{200 \times 20^{3}}{12}=133333.33 \mathrm{~mm}^{4} \\ & I G_{2}=\frac{20 \times 180^{3}}{12}=9720000 \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx}}=\left(133333.33+4000 \times 47.37^{2}\right)=9109000.93 \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx}} \\ & =\left(9720000+3600 \times 52.63^{2}\right)=19691700.84 \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx}}=9109000.93+19691700.84=28.8 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	$1 / 2$ $1 / 2$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4.	a)	Attempt any FOUR of the following: Find the M.I. of a triangular section having base 80 mm and height 200 mm about the horizontal axis parallel to the base. Also calculate the M.I. about the base and about an axis passing through its vertex and parallel to the base. Data: $\mathrm{b}=80 \mathrm{~mm}, \mathrm{~h}=200 \mathrm{~mm}$ Find: $\mathrm{I}_{\mathrm{xx}}, \mathrm{I}_{\text {base }}$ and $\mathrm{I}_{\text {apex }}$ (1) Moment of Inertia of triangular section about the horizontal axis parallel to the base i.e. about $\mathrm{X}-\mathrm{X}$ axis $\mathrm{I}_{\mathrm{xx}}=\frac{b h^{3}}{36}=\frac{80 \times 200^{3}}{36}=17.78 \times 10^{6} \mathrm{~mm}^{4}$ (2) Moment of Inertia of triangular section about the base $\mathrm{I}_{\text {base }}=\frac{b h^{3}}{12}=\frac{80 \times 200^{3}}{12}=53.33 \times 10^{6} \mathrm{~mm}^{4}$ (3) Moment of Inertia of triangular section about the vertex i.e. apex $\mathrm{I}_{\text {apex }}=\frac{b h^{3}}{4}=\frac{80 \times 200^{3}}{4}=160 \times 10^{6} \mathrm{~mm}^{4}$	1	16

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	b) Ans.	Find $I_{x x}$ for an unequal angle section of size $120 \mathrm{~mm} \times 80 \mathrm{~mm} \times$ 10 mm thick. (1) Location of CG: $\begin{aligned} & \mathrm{a}_{1}=10 \mathrm{x} 110=1100 \mathrm{~mm}^{2} \\ & \mathrm{x}_{1}=\frac{10}{2}=5 \mathrm{~mm} \\ & \mathrm{y}_{1}=\frac{110}{2}+10=65 \mathrm{~mm} \\ & \mathrm{a}_{2}=80 \times 10=800 \mathrm{~mm}^{2} \\ & \mathrm{x}_{2}=\frac{80}{2}=40 \mathrm{~mm} \\ & \mathrm{y}_{2}=\frac{10}{2}=5 \mathrm{~mm} \\ & \bar{X}=\frac{a_{1} x_{1}+a_{2} x_{2}}{a_{1}+a_{2}}=\frac{(1100 \times 5)+(800 \times 40)}{1100+800}=19.736 \mathrm{~mm} \\ & \bar{Y}=\frac{a_{1} y_{1}+a_{2} y_{2}}{a_{1}+a_{2}}=\frac{(1100 \times 65)+(800 \times 5)}{1100+800}=39.736 \mathrm{~mm} \end{aligned}$ (2) Moment of inertia of the given section about $X-X$ is given by - $\begin{aligned} & \mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{xx} 1}+\mathrm{I}_{\mathrm{xx} 2} \\ & \mathrm{I}_{\mathrm{xx}}=\left(\mathrm{I}_{\mathrm{G} 1}+\mathrm{a}_{1} \mathrm{~h}_{1}^{2}\right)+\left(\mathrm{I}_{\mathrm{G} 2}+\mathrm{a}_{2} \mathrm{~h}_{2}{ }^{2}\right) \\ & \mathrm{I}_{\mathrm{G} 1}=\frac{b d^{3}}{12}=\frac{10 \times 110^{3}}{12}=1.109 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	b) c) Ans.	$\begin{aligned} & \mathrm{I}_{\mathrm{G} 2}=\frac{b d^{3}}{12}=\frac{80 \times 10^{3}}{12}=6.67 \times 10^{3} \mathrm{~mm}^{4} \\ & \mathrm{~h}_{1}=\left\|\bar{Y}-y_{1}\right\|=\|39.736-65\|=\|-25.26\|=25.26 \mathrm{~mm} \\ & \mathrm{~h}_{2}=\left\|\bar{Y}-y_{2}\right\|=\|39.736-5\|=\|34.74\|=34.74 \mathrm{~mm} \\ & \mathrm{I}_{\mathrm{x} \times 1}=\left(1.109 \times 10^{6}+1100 \times 25.26^{2}\right)=1.81 \times 10^{6} \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{x} \times 2}=\left(6.67 \times 10^{3}+800 \times 34.74^{2}\right)=0.97 \times 10^{6} \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx}}=1.81 \times 10^{6}+0.97 \times 10^{6} \\ & \mathrm{I}_{\mathrm{xx}}=2.78 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ Find moment of inertia about $X-X$ axis for the section shown in Figure No. 2. Figure No. 2. (1) Location of CG point: As the given section is symmetric about $\mathrm{Y}-\mathrm{Y}$ axis $\begin{aligned} & \therefore \bar{X}=x_{1}=x_{2}=\frac{150}{2}=75 \mathrm{~mm} \\ & \mathrm{a}_{1}=150 \times 300=45000 \mathrm{~mm}^{2} \\ & \mathrm{y}_{1}=\frac{300}{2}=150 \mathrm{~mm} \\ & \mathrm{a}_{2}=50 \times 50=2500 \mathrm{~mm}^{2} \end{aligned}$	$1 / 2$ $1 / 2$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	c)	$\begin{aligned} & \mathrm{y}_{2}=\frac{50}{2}+50=75 \mathrm{~mm} \\ & \bar{Y}=\frac{a_{1} y_{1}-a_{2} y_{2}}{a_{1}-a_{2}}=\frac{(45000 \times 150)-(2500 \times 75)}{45000-2500}=154.41 \mathrm{~mm} \end{aligned}$ (2) Moment of inertia of the given section about $\mathrm{X}-\mathrm{X}$: $\begin{aligned} & \mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{xx} 1}-\mathrm{I}_{\mathrm{xx} 2} \\ & \mathrm{I}_{\mathrm{xx}}=\left(\mathrm{I}_{\mathrm{G} 1}+\mathrm{a}_{1} \mathrm{~h}_{1}{ }^{2}\right)-\left(\mathrm{I}_{\mathrm{G} 2}+\mathrm{a}_{2} \mathrm{~h}^{2}\right) \\ & \mathrm{I}_{\mathrm{G} 1}=\frac{b d^{3}}{12}=\frac{150 \times 300^{3}}{12}=337.5 \times 10^{6} \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{G} 2}=\frac{b d^{3}}{12}=\frac{50 \times 50^{3}}{12}=520.83 \times 10^{3} \mathrm{~mm}^{4} \\ & \mathrm{~h}_{1}=\left\|\bar{Y}-y_{1}\right\|=\|154.41-150\|=\|4.41\|=4.41 \mathrm{~mm} \\ & \mathrm{~h}_{2}=\left\|\bar{Y}-y_{2}\right\|=\|154.41-75\|=\|79.41\|=79.41 \mathrm{~mm} \\ & \mathrm{I}_{\mathrm{x} 1}=\left(\mathrm{I}_{\mathrm{G} 1}+\mathrm{a}_{1} \mathrm{~h}_{1}^{2}\right)\left(337.5 \times 10^{6}+45000 \times 4.41^{2}\right)=338.38 \times 10^{6} \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{x} 2}=\left(\left(\mathrm{I}_{\mathrm{G} 2}+\mathrm{a}_{2} \mathrm{~h}_{2}{ }^{2}\right)=\left(520.83 \times 10^{3}+2500 \times 79.41^{2}\right)=16.29 \times 10^{6} \mathrm{~mm}^{4}\right. \\ & \mathrm{I}_{\mathrm{xx}}=338.38 \times 10^{6}-16.29 \times 10^{6} \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx}}=322.06 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ A built up column section is made of an I-section $150 \times 80 \times 10$ mm with one flange plate $80 \mathrm{~mm} \times 10 \mathrm{~mm}$ riveted to each of the flanges. Find the minimum radius of gyration of the section.	$1 / 2$ $1 / 2$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	d) Ans. e)	(1) Minimum Radius of Gyration: $\mathrm{K}_{\min }=\sqrt{\frac{I_{\min }}{A}}$ Given section is symmetric about both the cetroidal axes. Moment of inertia of the given section about the horizontal centroidal axis: $\begin{aligned} \mathrm{I}_{\mathrm{xx}} & =\frac{B D^{3}}{12}-\frac{b d^{3}}{12} \\ & =\frac{80 \times 170^{3}}{12}-\frac{70 \times 130^{3}}{12} \\ & =32.75 \times 10^{6}-12.82 \times 10^{6} \\ & =19.93 \times 10^{6} \mathrm{~mm}^{4} \\ \mathrm{I}_{\mathrm{yy}} & =2(\text { Combined MI of one plate and flange })+(\text { MI of web }) \\ & =2\left(\frac{20 \times 80^{3}}{12}\right)+\left(\frac{130 \times 10^{3}}{12}\right) \\ & =1.71 \times 10^{6}+10.83 \times 10^{3} \\ & =1.72 \times 10^{6} \mathrm{~mm}^{4} \\ \mathrm{I}_{\min } & =\mathrm{I}_{\mathrm{yy}}=1.72 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$ Area of the section $\begin{aligned} & \mathrm{A}=2(80 \times 20)+(10 \times 130) \\ & =4500 \mathrm{~mm}^{2} \\ & \begin{aligned} \therefore \mathrm{K}_{\min } & =\sqrt{\frac{I_{y y}}{A}} \\ & =\sqrt{\frac{1.72 \times 10^{6}}{4500}} \\ & =19.55 \mathrm{~mm} \end{aligned} \end{aligned}$ A timber beam having rectangular section $80 \mathrm{~mm} \times 240 \mathrm{~mm}$. This beam is cantilever of length 2 m and subjected to udl. of $5 \mathrm{kN} / \mathrm{m}$ over entire length. Find extreme fiber stress at the section where bending moment is maximum.	1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	b) c) Ans.	$\begin{aligned} & q_{\text {max. }}=\frac{S A \bar{Y}}{b I} \\ & q_{\text {max. }}=\frac{2.5 \times 10^{3} \times(100 \times 100) \times 50}{100 \times \frac{1}{12} \times 100 \times 200^{3}} \\ & q_{\text {max. }}=0.1875 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ A short column of external diameter 200 mm and internal diameter 150 mm carries an eccentric load. Find the eccentricity which the load can have without producing tension in the section of column. Data: $\mathrm{D}=200 \mathrm{~mm}, \mathrm{~d}=150 \mathrm{~mm}$ Find: $\mathrm{e}=$? $\begin{aligned} & A=\frac{\pi}{4}\left(D^{2}-d^{2}\right) \\ & A=\frac{\pi}{4}\left(200^{2}-150^{2}\right) \\ & A=13744.467 \mathrm{~mm}^{4} \\ & y=\frac{D}{2}=\frac{200}{2}=100 \mathrm{~mm} \\ & I=\frac{\pi}{64}\left(D^{4}-d^{4}\right) \\ & I=\frac{\pi}{64}\left(200^{4}-150^{4}\right) \\ & I=53689327.58 \mathrm{~mm}^{4} \\ & Z=\frac{I}{Y}=\frac{53689327.58}{100}=536893.27 \mathrm{~mm}^{3} \end{aligned}$ For no tension condition $\sigma_{0}=\sigma_{\mathrm{b}}$ $\begin{aligned} & \therefore e \leq \frac{Z}{A} \\ & e=\frac{536893.27}{13744.467}=39.0625 \mathrm{~mm} \end{aligned}$	1 1 1 1 1 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	e)	A C-clamp as shown in figure No. 3 carries a load of 30 kN . The cross section of the clamp at $\mathrm{X}-\mathrm{X}$ is rectangular, having width equal to twice the thickness. Assuming that the C - clamp is made of steel causing with allowable stress of $120 \mathrm{~N} / \mathrm{mm}^{2}$. Find its dimensions. Fig. No. 3 (Note: In above figure eccentricity is not shown clearly). Take eccentricity (\mathbf{e}) $=\mathbf{1 5 0} \mathbf{~ m m}$. Data: $\mathrm{D}=2 \mathrm{t}, \sigma=120 \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{e}=150 \mathrm{~mm}, \mathrm{P}=30 \mathrm{kN}=30 \times 10^{3} \mathrm{~N}$ Find: D and t $\begin{aligned} & A=D \times t=(2 t) \times t=2 t^{2} \mathrm{~mm}^{2} \\ & I_{y y}=\frac{D^{3} \times t}{12}=\frac{(2 t)^{3} \times t}{12}=0.67 t^{4} \mathrm{~mm}^{4} \\ & Y=\frac{D}{2}=\frac{2 t}{2}=t \mathrm{~mm} \\ & Z_{y y}=\frac{I_{y y}}{Y}=\frac{0.67 t^{4}}{t}=0.67 t^{3} \mathrm{~mm}^{3} \end{aligned}$ $M=P \times e=30 \times 10^{3} \times 150=45 \times 10^{5} \mathrm{~N}-\mathrm{mm}$ $\sigma_{0}=\frac{P}{A}=\frac{30 \times 10^{3}}{2 t^{2}}=\frac{15000}{t^{2}} \mathrm{~N} / \mathrm{mm}^{2}$ $\sigma_{b}= \pm \frac{M}{Z}= \pm \frac{45 \times 10^{5}}{0.67 t^{3}}= \pm \frac{67.5 \times 10^{5}}{t^{3}} \mathrm{~N} / \mathrm{mm}^{2}$ $\sigma_{\max }=\sigma_{0}+\sigma_{b}$ $120=\frac{15000}{t^{2}}+\frac{67.5 \times 10^{5}}{t^{3}}$ $120 t^{3}=15000 t+67.5 \times 10^{5}$ $t^{3}-125 t-56250=0$ By trial and error method $\mathrm{t}=83.05 \mathrm{~mm}$ $\mathrm{D}=2 \mathrm{t}=2 \times 83.05 \mathrm{~mm}=166.10 \mathrm{~mm}$	$1 / 2$ $1 / 2$	4

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline Q. 5 \& f)

Ans. \& \begin{tabular}{l}
A M.S. link as shown in figure No. 4 by full lines, transmits a pull of 80 kN . Find dimensions b and t if $b=3$. Assume the permissible tensile stress as 75 MPa .

Fig. No. 4

Data:
$$
\begin{aligned}
& \mathrm{P}=80 \mathrm{kN}, \mathrm{~b}=3 \mathrm{t}, \sigma_{\mathrm{t}}=75 \mathrm{MPa} . \\
& A=b \times t=(3 t) \times t=3 t^{2} \\
& I_{x x}=\frac{b^{3} \times t}{12}=\frac{(3 t)^{3} \times t}{12}=2.25 t^{4} \mathrm{~mm}^{4} \\
& Y=\frac{b}{2}=\frac{3 t}{2}=1.5 t \mathrm{~mm} \\
& Z_{x x}=\frac{I_{x x}}{Y}=\frac{2.25 t^{4}}{1.5 t}=1.5 t^{3} \mathrm{~mm}^{3} \\
& e=\frac{b}{2}=\frac{3 t}{2}=1.5 \mathrm{t} \mathrm{~mm} \\
& M=P \times e=80 \times 10^{3} \times 1.5 t=\left(12 \times 10^{4}\right) t \mathrm{~N}-\mathrm{mm} \\
& \sigma_{0}=\frac{P}{A}=\frac{80 \times 10^{3}}{b \times t}=\frac{80 \times 10^{3}}{3 t^{2}}=\frac{26666.67}{t^{2}} \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{b}= \pm \frac{M}{Z}= \pm \frac{\left(12 \times 10^{4}\right) t}{1.5 t^{3}}=\frac{8 \times 10^{4}}{t^{2}} \mathrm{~N} / \mathrm{mm}^{2} \\
& \sigma_{\max }=\sigma_{0}+\sigma_{b} \\
& 75=\frac{26666.67}{t^{2}}+\frac{8 \times 10^{4}}{t^{2}} \\
& 75 t^{2}=26666.67+8 \times 10^{4} \\
& t^{2}=1422.22 \\
& t=37.71 \mathrm{~mm} \\
& b=3 t=3 \times 37.71=113.137 \mathrm{~mm}
\end{aligned}
$$

 \&

$1 / 2$

$1 / 2$
\end{tabular} \& 4

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline Q. 6 \& \begin{tabular}{l}
a) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
Attempt any FOUR of the following: \\
Calculate limit of eccentricity of a rectangular cross section of size \(1200 \mathrm{~mm} \times 2400 \mathrm{~mm}\) and sketch it. \\
Data: \(b=1200 \mathrm{~mm} \mathrm{~d}=2400 \mathrm{~mm}\) Find: \(\mathrm{e}_{\mathrm{x}}\) and \(\mathrm{e}_{\mathrm{y}}\) \\
i. Eccentricity about X - axis
\[
\begin{aligned}
\& e_{x} \leq \frac{Z_{X X}}{A} \\
\& e_{x} \leq \frac{\left(\frac{b d^{2}}{6}\right)}{b \times d} \\
\& e_{x} \leq \frac{d}{6} \\
\& e_{x}=\frac{2400}{6}=400 \mathrm{~mm}
\end{aligned}
\] \\
ii. Eccentricity about Y - axis
\[
\begin{aligned}
\& e_{y} \leq \frac{Z_{y y}}{A} \\
\& e_{y} \leq \frac{\left(\frac{d b^{2}}{6}\right)}{b \times d} \\
\& e_{y} \leq \frac{b}{6} \\
\& e_{y}=\frac{1200}{6}=200 \mathrm{~mm}
\end{aligned}
\]

\end{tabular} \& \(1 / 2\)

1
1
$1 / 2$
1
1
1 \& 16

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	f. Ans.	Find the maximum stress in propeller shaft 400 mm external diameter and 200 mm internal diameter when subjected to a twisting moment of $4.65 \times 10^{8} \mathrm{~N}-\mathrm{mm}$. If the modulus of rigidity is $0.82 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. How much will be the twist in a length of 20 times the external diameter. Data: $\mathrm{D}=400 \mathrm{~mm}, \mathrm{~d}=200 \mathrm{~mm}, \mathrm{~T}=4.65 \times 10^{8} \mathrm{~N} . \mathrm{mm}$, $\mathrm{G}=0.82 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \quad \mathrm{~L}=20 \mathrm{D}$. Find: $q_{\max }$ and $\theta=$? $\begin{aligned} & \mathrm{L}=20 \mathrm{D}=20 \times 400=8 \times 10^{3} \mathrm{~mm} \\ & T_{\max }=\frac{\pi}{16} \times q_{\max }\left(\frac{D^{4}-d^{4}}{D}\right) \\ & q_{\max }=\frac{T_{\max } \times 16}{\pi \times\left(\frac{D^{4}-d^{4}}{D}\right)} \\ & q_{\text {max }}=\frac{4.65 \times 10^{8} \times 16}{\pi \times\left(\frac{400^{4}-200^{4}}{400}\right)} \\ & q_{\max }=39.47 \mathrm{~N} / \mathrm{mm}^{2} \\ & \frac{T}{J}=\frac{G \theta}{L} \\ & \theta=\frac{T \times L}{J \times G} \\ & \theta=\frac{4.65 \times 10^{8} \times 8 \times 10^{3}}{\pi}\left(400^{4}-200^{4}\right) \times 0.82 \times 10^{5} \\ & \theta=0.01925 \mathrm{rad} \\ & \theta=0.01925 \times \frac{180}{\pi} \\ & \theta=1.103^{0} \end{aligned}$	1	4

