

Model Answer: Winter-2017

Subject: Strength of Materials

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	a)	Attempt any <u>SIX</u> of the following:		(12)
	i)	Define ductility and malleability.		
	Ans.	Ductility: It is the property of material due to which it can be drawn into thin wires on application of tensile force.	01	02
		Malleability: It is the property of a material by virtue of which it can be beaten up into thin sheets without cracking when hammered.	01	
	ii)	Define Principal plane and Principal stress.		
	Ans.	Principal plane: A plane which carries only normal stress and no shear stress is called Principal plane.	01	02
		Principal stress: The magnitude of normal stress acting on the principal plane is called Principal stress.	01	
	iii)	Write the equation for M.I. of Hollow shaft section.		
		Hollow Shaft:		
	Ans.	M.I.= $\frac{\pi}{64} (D^4 - d^4)$ Where, D = External Daimeter d = Internal Daimeter	02	02

Model Answer: Winter-2017

Strain -

Ultimate (maximum) load point (E) (vi) Breaking point (F)

-

(ii) Elastic limit (B)

(iv) Lower yield point (D)

Subject: Strength of Materials

Marks

01

01

01

01

01

01

Total

Marks

02

02

Limit of proportionality (A)

Upper yield point (C)

(i)

(iii)

(v)

02

Model Answer: Winter-2017

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	vii)	State relation between Hoop stress and Longitudinal stress, for thin cylinder.		101uIR5
	Ans.	$\sigma_{\rm C} = 2\sigma_{\rm L}$		
		Where,	02	
		Hoop Stress $(\sigma_{\rm C}) = \frac{\rm Pd}{2t}$	02	02
		Longitudinal stress $(\sigma_L) = \frac{Pd}{4t}$		
	viii)	Define core of section. Write its value for a circular section.		
		Core of section:		
	Ans.	For no tension condition the load must lie within the middle third shaded area of eccentricity 2e is called core of section. The stress produced is only compressive stress.	01	02
		For circular section the core of section is		
		$2 e = \frac{D}{4}$	01	
		Where,		
		e = Eccentricity of circular section D = Diameter of circular section		
		D = Diameter of circular section		
	b)	Attempt any <u>TWO</u> of the following:		(08)
	(i)	For a round bar of 50 mm diameter and 2.5 m long of certain material has Young's modulus of $1.1 \times 10^5 \text{ N/mm}^2$ and Modulus of rigidity of 0.45 x 10^5 N/mm^2 . Find the Bulk modulus and the lateral contraction of the bar when stretched by 3 mm.		
	Ans.	Given:		
	Alls.	$d = 50 \text{mm}, \qquad L = 2.5 \text{m}$		
		$E = 1.1 \times 10^{5} N / mm^{2}, G = 0.45 \times 10^{5} N / mm^{2},$ $\delta L = 3 mm$		
		Find : K , δd		
		$\mathbf{E} = 2\mathbf{G}\left(1+\mu\right)$		
		$1.1 \times 10^{5} = 2 \times 0.45 \times 10^{5} (1 + \mu)$		
		$\frac{\mu = 0.22}{\mu = 2K(1 - 2)}$	01	
		$E = 3K(1 - 2\mu)$ 1.1×10 ⁵ = 3×K(1-2×0.22)		
		$K = 65476.190 N / mm^2$		
		$\mathbf{K} = 0.65 \times 10^5 N / mm^2$	01	

Model Answer: Winter-2017

Subject: Strength of Materials

								_	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	b)	$\mu = \frac{\text{Lateral Strain}}{\mu}$	01	04
C	,	$\mu = \frac{1}{\text{linear Strain}}$		
		Lateral Strain = $\mu \times \text{linear Strain}$		
		$\left(\frac{\delta d}{d}\right) = \mu \times \left(\frac{\delta L}{L}\right)$ $\left(\frac{\delta d}{50}\right) = 0.22 \times \left(\frac{3}{2500}\right)$ $\overline{\delta d = 0.0132mm}$	01	
	ii)	A simply supported beam 6 m long is carrying a udl of 20 kN/m over a length of 3 m from the right end. Draw the SFD and BMD for the beam and also calculated the maximum bending moment in the section.		
	Ans.	Step I		
		Calculation of reactions		
		$\sum M_{\rm A} = 0$		
		_		
		$R_{\rm B} \times 6 = 20 \times 3 \times (3+1.5)$	1/2	
		$R_{\rm B} = 45 \text{ kN}$	72	
		$\sum F_y = 0$		
		$R_A + R_B = 20 \times 3$		
		$R_{A} + 45 = 60$		
		$R_{A} = 15 kN$		
		Step II		
		SF Calculations		
		SF at A = +15 kN C_{I} = +15 kN		
		$B_{L} = +15 \text{ kN}$ $B_{L} = +15 - 60 = -45 \text{ kN}$	1/2	
		$B_{L} = +15 + 00 = -45 \text{ kV}$ $B_{R} = -45 + 45 = 0 (:.ok)$		
		$B_{R} = -45 + 45 = 0$ (0k)		

Model Answer: Winter-2017

Subject: Strength of Materials

Sub. Code: 17304

Que.	Sub.		Maular	Total
No.	Que.		wiarks	Marks
Que. No. Q.1		Model Answers Step III BM Calculations BM at A and B = 0 (Supports are simple) BM at C = + 15×3 = + 45 kN-m To calculate B_{max} SF is Zero at B_{max} $\therefore 20x + 45 = 0$ $\therefore x = 2.25m$ from support B $B_{max} = +45 \times 2.25 - 20 \times \frac{(2.25)^2}{2} = +50.625 kN-m$ $B_{max} = 50.625 kN-m$	Marks 01 01	

Model Answer: Winter-2017

Subject: Strength of Materials

Sub. Code: 17304

			m 1
Sub.	Model Answers	Marks	Total Marks
iii)	A cantilever beam of span 6.5 m is having cross section of 400 mm wide and 700 mm deep. If the bending stress is not allowed to exceed 280 N/mm ² , calculate the magnitude of point load which can be applied at the free end of the cantilever beam.		THURKS
		1/2	
	$I = \frac{Bd}{12} = \frac{400 \times 700}{12}$		
	$\boxed{I = 1.143 \times 10^{10} \text{ mm}^4}$	01	
	$y = \frac{d}{2} = \frac{700}{2} = 350$ mm	1/2	04
	$\sigma_{b} = \left(\frac{M}{I}\right) \times y$	01	04
	$280 = \left(\frac{(6.5 \times 10^3) W}{1.143 \times 10^{10}}\right) \times 350$	01	
	W = 1407179.487 N $W = 1407.179 kN$	UI	
	Attempt any <u>FOUR</u> of the following:		(16)
a)	A metal rod, 500 mm long and 20 mm in diameter is subjected to an axial pull of 40 kN. Under this load, elongation of rod is 0.5		
Ans.	·		
	Find: E, μ		
	$A = \frac{\pi}{4}d^2 = \frac{\pi}{4}(20)^2 = 314.16mm^2$		
		01	
	Ans.	Que.A cantilever beam of span 6.5 m is having cross section of 400 mm wide and 700 mm deep. If the bending stress is not allowed to exceed 280 N/mm ² , calculate the magnitude of point load which can be applied at the free end of the cantilever beam.Ans.Given: L = 6.5m, b = 400mm, d = 700mm, $\sigma_b = 280$ N/mm ² Find: W' at free end 	Que:Image: Constraint of the second system of

Model Answer: Winter-2017

Subject: Strength of Materials

Sub. Code: 17304

Que.	Sub.	Model Answers	Marks	Total
No. Q.2	Que.			Marks
Q.2		$E = \frac{40 \times 10^{3} \times 500}{314.16 \times 0.5} = 127323.9545 N / mm^{2}$ $\boxed{E = 1.2732 \times 10^{5} \text{ N/mm}^{2}}$ $\mu = \frac{\text{Lateral Strain}}{\text{linear Strain}}$ $\mu = \frac{\left(\frac{\delta d}{d}\right)}{\left(\frac{\delta L}{L}\right)} = \frac{\left(\frac{0.006}{20}\right)}{\left(\frac{0.5}{500}\right)}$ $\boxed{\mu = 0.3}$	01 01 01	04
	b)	A hollow steel tube 200 mm external diameter and 25 mm thick is 4 m long used as a column. If it's one end is fixed and other end is hinged, find the load the column can carry. Use Euler's formula and FOS = 2, Take E = $2x10^5$ N/mm ² .		
	Ans.	Given: D = 200mm, t = 25mm, $L = 4 m, E = 2 \times 10^5 N/mm^2,$ FOS = 2		
		Find: P _{safe} $d = (D - 2t) = (200 - 2 \times 25) = 150 \text{mm}$ $Le = \frac{L}{\sqrt{2}} = \frac{4000}{\sqrt{2}} = 2828.427 \text{mm}$	1/2 1/2	
		$I_{\min} = \frac{\pi}{64} (D^4 - d^4) = \frac{\pi}{64} (200^4 - 150^4)$	01	
		$\frac{I_{min} = 53689327.58 \text{ mm}^4}{P = \frac{\pi^2 E I_{min}}{(Le)^2}}$	01	04
		$P = \frac{\pi^2 \times 2 \times 10^5 \times 53689327.58}{(2828.427)^2}$ $P = 13247310.59 \text{ N}$		
		$P_{Safe} = \frac{P}{FOS} = \frac{13247310.59}{2}$ $P_{Safe} = 6623655.3 N$	01	
		$P_{\text{Safe}} = 6.624 \times 10^3 \text{kN}$		

Subject: Strength of Materials

Sub. Code: 17304

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	c)	A steel tube 40 mm external diameter and 4 mm thick encloses centrally a solid copper bar of 30 mm diameter. The bar and the tube are rigidly connected together at the ends at a temperature of 40°C. Find the stress and its nature in each metal when heated to 180 °C. Take $\alpha_s = 1.08 \times 10^{-5}$ /°C, $\alpha_c = 1.7 \times 10^{-5}$ /°C, Es = 2.1 x 10 ⁵ N/mm ² and Ec = 1.1 x 10 ⁵ N/mm ² .		
	Ans.	Es = 2.1 x 10° N/mm ² and Ec = 1.1 x 10° N/mm ² . Steel tube $d_1 = d_2 =$ $d_2 =$ $d_1 = d_2 =$ $d_2 = 30 \text{ mm}$ $d_1 = d_2 =$ $d_2 = 30 \text{ mm}$ $d_1 = d_2 =$ $d_2 = 30 \text{ mm}$ $d_1 = d_2 =$ $d_2 = 30 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_1 = 4 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_1 = 4 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_1 = 4 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_1 = 4 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_1 = 4 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_1 = 4 \text{ mm}$ $d_2 = 30 \text{ mm}$ $d_3 = 1.08 \times 10^{-5} / ^0 \text{ C}, \alpha_c = 1.7 \times 10^{-5} / ^0 \text{ C}, \alpha_c = 1.7 \times 10^{-5} / ^0 \text{ C}, \alpha_c = 1.1 \times 10^5 \text{ N} / \text{mm}^2$ Find : σ_8, σ_C		
		$t = T_2 - T_1$ t = 180 - 40 $\boxed{t = 140^{\circ}C}$ $A_s = \frac{\pi}{4} (D^2 - d^2)$	1⁄2	
		$A_{s} = \frac{\pi}{4} (40^{2} - 32^{2})$ $\boxed{A_{s} = 452.39 \text{mm}^{2}}$ $A_{c} = \frac{\pi}{4} (d)^{2}$	1⁄2	
		$A_{\rm C} = \frac{\pi}{4} (30)^2$ $A_{\rm C} = 706.86 \rm{mm}^2$	1⁄2	

Subject: Strength of Materials

Que.	Sub.	Model Answers	Marks	Total
No. Q.2	Que.	$P_{\rm S} = P_{\rm C}$	1/2	Marks
2.2		$\sigma_{\rm S} A_{\rm S} = \sigma_{\rm C} A_{\rm C}$, 2	
		$\sigma_{\rm S} = \left(\frac{A_{\rm C}}{A_{\rm S}}\right)\sigma_{\rm C}$		04
		$\sigma_{\rm s} = \left(\frac{1}{{\rm A}_{\rm s}}\right) \sigma_{\rm C}$		
		$\sigma_{\rm s} = \left(\frac{706.86}{452.39}\right) \sigma_{\rm c}$		
			1/2	
		$\sigma_{\rm s} = 1.5625\sigma_{\rm c}$	1/	
		$\frac{\sigma_{\rm s}}{E_{\rm s}} + \frac{\sigma_{\rm c}}{E_{\rm c}} = (\alpha_{\rm c} - \alpha_{\rm s})t$	1/2	
		$\frac{1.5625 \sigma_{\rm C}}{2.1 \times 10^5} + \frac{\sigma_{\rm C}}{1.1 \times 10^5} = (1.7 \times 10^{-5} - 1.08 \times 10^{-5}) \times 140$		
		$\sigma_{\rm C} = 52.51 {\rm N/mm^2(C)}$	1/2	
		$\sigma_{\rm s} = (1.5625)\sigma_{\rm C}$		
		$\sigma_{\rm s} = 1.5625 \times 52.51$	1/2	
		$\sigma_{\rm s} = 82.046 {\rm N/mm^2}({\rm T})$	72	
	d)	A steel tube of 40 mm inside diameter and 4 mm metal thickness is filled with concrete. Determine the stress in each material due to an axial thrust of 60 kN. Take $E_{steel} = 2.1 \times 10^5 \text{ N/mm}^2$ and $E_{con} = 0.14 \times 10^5 \text{ N/mm}^2$		
	Ans.	Given:		
		$P = 60 kN, \qquad d = 40 mm$		
		$t = 4 \text{ mm}, \qquad E_s = 2.1 \times 10^5 \text{ N/mm}^2$		
		$E_{\rm C} = 0.14 \times 10^5 \text{N/mm}^2$ Find: $\sigma_{\rm C}$, $\sigma_{\rm S}$		
		External diameter,		
		$\mathbf{D} = \mathbf{d} + 2 \mathbf{t}$		
		$\underline{\mathbf{D}=40+\left(2\times4\right)}$	1/2	
		D=48mm	72	
		$A_{s} = \frac{\pi}{4} \left(D^{2} - d^{2} \right)$		
		$A_{s} = \frac{\pi}{4} (48^{2} - 40^{2})$		
		$A_{\rm s} = 552.92 {\rm mm}^2$	1/2	

Subject: Strength of Materials

_.

Sub. Code: 17304

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2		$A_{c} = \frac{\pi}{4} d^{2}$		
		$A_{\rm C} = \frac{\pi}{4} d^2$ $A_{\rm C} = \frac{\pi}{4} (40)^2$		
		$A_{c} = 1256.637 \text{mm}^{2}$	1/2	
		$A_{\rm C} = 1230.03711111$		04
		$\frac{\sigma_{\rm s}}{\rm E_{\rm s}} = \frac{\sigma_{\rm c}}{\rm E_{\rm c}}$	1/2	
		$\sigma_{\rm s} = \left(\frac{E_{\rm s}}{E_{\rm c}}\right) \times \sigma_{\rm c}$		
		$\sigma_{\rm s} = \left(\frac{2.1 \times 10^5}{0.14 \times 10^5}\right) \times \sigma_{\rm C}$	1/2	
		$\frac{\sigma_{\rm s}=15\sigma_{\rm c}}{\rho_{\rm c}=\rho_{\rm c}+\rho_{\rm c}}$		
		$P = P_{s} + P_{c}$ $P = \sigma_{s} A_{s} + \sigma_{c} A_{c}$	1⁄2	
		$60 \times 10^3 = (15\sigma_c) \times 552.92 + \sigma_c \times 1256.637$		
		$\sigma_{\rm C} = 6.28 \text{N/mm}^2$	1/2	
		$\sigma_s = 15\sigma_c$		
		$\frac{\sigma_{\rm s}=15\times6.28}{\sigma_{\rm s}=94.236\rm{N/mm^2}}$	1/2	
	e)	A bar is subjected to a tensile stress of 100 N/mm ² . Determine the normal and tangential stresses on a plane making an angle of 60° with the axis of tensile stress.		
	Ans.	Given:		
		$\sigma_x = 100 \text{N/mm}^2$ $\theta = 90^\circ - 60^\circ = 30^\circ$		
		Find: σ_n, σ_t $\sigma_n = \sigma_x \cos^2 \theta$	01	
		$\sigma_n = 100 \times \cos^2 30$	UI	
		$\sigma_{\rm n} = 75 {\rm N/mm^2}(T)$	01	
		$\sigma_{t} = \frac{\sigma_{x}}{2} \sin 2\theta$		04
		$\sigma_{t} = \frac{100}{2} \times \sin(2 \times 30)$	01	
		-	01	
		$\sigma_t = 43.30 \text{N/mm}^2$		

Model Answer: Winter-2017

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	f)	A cylindrical compressed air drum is 2 m in diameter with plate thickness of 12 mm. If the tensile stress is not to exceed 100 N/mm ² . Find the maximum safe air pressure.		
	Ans.	Given:		
		d = 2m, t = 12 mm,		
		Tensile stress = 100 N/mm ²		
		Find: P _{safe}		
		$\sigma_{\rm C} = \frac{Pd}{2t}$	1 1/2	
		$100 = \frac{P \times 2000}{2 \times 12}$		
		$P = 1.2N / mm^2$		0.4
		$\sigma_{\rm L} = \frac{Pd}{4t}$	1 1⁄2	04
		$100 = \frac{P \times 2000}{4 \times 12}$		
		$P = 2.4N / mm^2$		
		\therefore Maximum safe air pressure is $1.2 N / mm^2$	01	

Model Answer: Winter-2017

Subject: Strength of Materials

Que.	Sub.	Model Answers	Marks	Total Marks
No. Q.3	Que.	Attempt any <u>FOUR</u> of the following:		(16)
	a)	Define shear force and bending moment.		
	Ans.	Shear force: Shear force at any cross section of the beam is the algebraic sum of vertical forces on the beam acting on right side or left side of the section is called as shear force. OR A shear force is the resultant vertical force acting on the either side of a section of a beam.	02	04
		Bending Moment: Bending moment at any section of a beam is the algebraic sum of the moment of all forces acting on the right or left side of section is called as bending moment.	02	
	b)	Draw shear force and bending moment diagram for a simply supported beam of span 'L' carrying a central point load 'W'. State the maximum SF and BM values.		
	Ans.	A = W/2 $(i) Simply supported beam$		
		W/2 + ↑ (II) SFD WL/4	01	
		(III) BMD	01	04
		Maximum SF = $\frac{W}{2}$ Maximum BM = $+\frac{WL}{4}$	01 01	
	c)	4 A cantilever beam of span 4 m carrying two point loads of 10 kN and 30 kN at 1 m and 2.5 m from free end respectively. Draw SFD and BMD.		

Model Answer: Winter-2017

Subject: Strength of Materials

Sub. Code: 17304

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
<u>Q.3</u>	Que. Ans.	Step I Calculate Support reaction $R_A = 30 + 10 = 40 \text{ kN}$ Step II SF Calculations: SF at $A = +40\text{ kN}$ $C_L = +40\text{ kN}$ $C_R = +40 - 30 = 10 \text{ kN}$ $D_L = +10 \text{ kN}$ $D_R = +10 - 10 = 0 \text{ kN}$ B = 0 kN Step III BM Calculations BM at $B = 0$ (Free end) D = 0 kN-m $C = -10 \times 1.5 = -15 \text{ kN-m}$ $A = -10 \times 3 - 30 \times 1.5 = -75 $	01 01 01 01	04
	d)	A simply supported beam of 8 m span carries three point loads of 100 N, 200 N and 400 N at 2 m, 4m and 6 m from left hand support. Draw SF and BM diagrams.		
	Ans.	Step I Calculate support reactions $\Sigma M_A = 0$ $(R_B \times 8) - (100 \times 2) - (200 \times 4) - (400 \times 6) = 0$ $R_B = 425 \text{ N} \uparrow$		

Model Answer: Winter-2017

Subject: Strength of Materials

Sub. Code: 17304

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3		$\begin{split} \Sigma F_{Y} &= 0 \\ R_{A} + R_{B} - 100 - 200 - 400 = 0 \\ R_{A} + 425 - 100 - 200 - 400 = 0 \\ \hline R_{A} &= 275 \text{ N} \uparrow \\ \hline \\ \text{Step II} \\ \text{S. F. Calculations} \\ \text{SF at } A &= + 275 \text{ N} \\ E_{L} &= + 275 \text{ N} \\ E_{R} &= + 275 \text{ N} \\ D_{L} &= + 175 \text{ N} \\ D_{L} &= + 175 \text{ N} \\ D_{R} &= + 175 \text{ - } 200 = - 25\text{ N} \\ C_{L} &= - 25 \text{ N} \\ C_{R} &= - 25 \text{ - } 400 = - 425 \text{ N} \\ B_{L} &= - 425 \text{ N} \\ B &= - 425 \text{ + } 425 = 0 (\therefore \text{ ok}) \end{split}$	01	
		B = -423 + 423 = 0 (:: OK) Step III B. M. Calculations BM at A and B = 0 $(:: Supports \text{ are simple})$ BM at E = 275×2 = + 550 kN-m BM at D = + 275×4 -100×2 = + 900 kN-m BM at C = + 425×2 = + 850 kN-m $M = \frac{100 \text{ N}}{2 \text{ m}} = \frac{200 \text{ N}}{6 \text{ m}} = \frac{400 \text{ N}}{6 \text{ m}} = \frac{425 \text{ N}}{6 \text{ m}}$	01	04
		275 + 175 A	01	
		6 550 + B.M.D in kN-m	01	

Model Answer: Winter-2017

Subject: Strength of Materials

Sub. Code: 17304

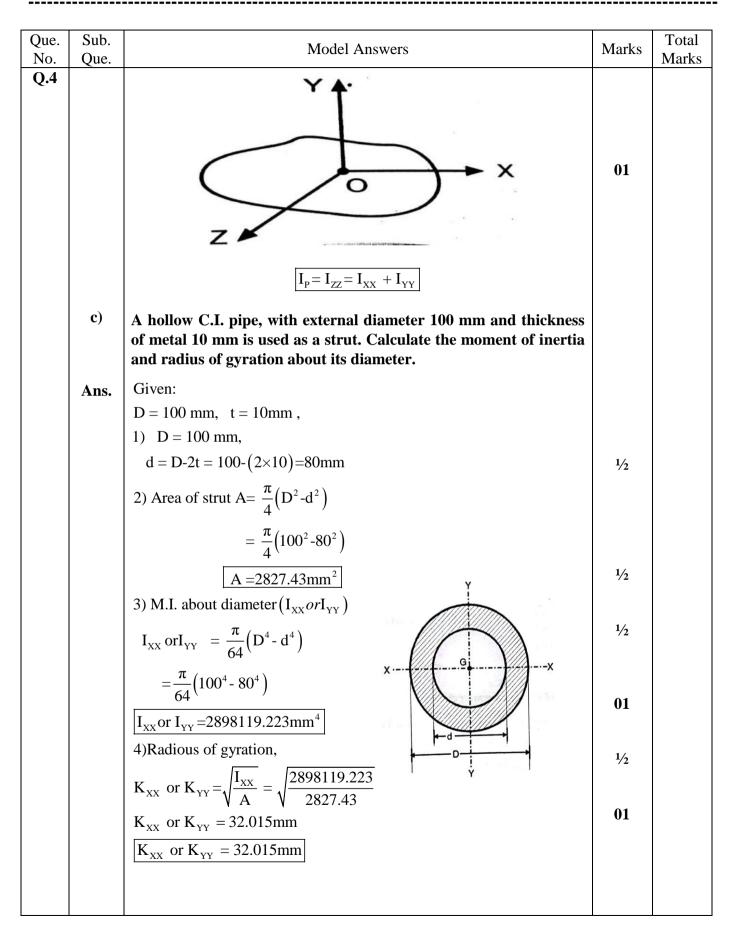
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	e)	A simply supported beam having equal overhangs on both sides and carrying point loads is shown in Fig. No. 1. Draw SF and BM diagrams.		IVIAINS
		e A B D e $1m$ $2m$ $2m$ $2m$ $1m$ $1m$		
		Fig. No. 1		
	Ans.	Step I		
		Calculate support reactions,		
		Due to symmetrical loading, $R_A = R_B$		
		$R_{A} = R_{B} = \left(\frac{10 + 20 + 10}{2}\right) = 20 \ kN$		
		Or $\Sigma M_A = 0$		
		$(R_{B} \times 4) + (10 \times 1) = (20 \times 2) + (10 \times 5)$		
		$R_{\rm B} = 20 \text{ kN}$		
		$\Sigma F_{\rm Y} = 0$		
		$R_A + R_B = 40$		
		$R_{A} + 20 = 40$		
		$R_{A} = 20 \text{ kN}$		
		Step II		
		S. F. Calculations		
		SF at $C_R = -10$ kN		
		$A_{L} = -10 \text{ kN}$		
		$A_{R} = +10 + 20 = +10 \text{ kN}$		
		$E_{L} = +10 \text{ kN}$	01	
		$E_{\rm R} = +10 - 20 = -10 \rm kN$		
		$B_{L} = -10 \text{ kN}$		
		$B_R = -10+20 = +10 \text{ kN}$		
		$D_{\rm L} = +10 \text{ kN}$ $D_{\rm R} = -10 - 10 = 0$ (:.ok)		
		$D_{\rm R} = -10 - 10 - 0$ (0k)		

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3	Que.	Step III B. M. Calculations BM at C and D = 0 (\because free end) BM at A = -10×1 = -10 kN-m BM at E = -10×3+20×2 = +10 kN-m BM at B = -10×1 = -10 kN-m 10^{KN} 20^{KN} 10^{KN} BEAM 10^{KN} $RA = 20^{KN}$ $RB = 20^{KN}$ BEAM $RA = 20^{KN}$ $RB = 20^{KN}$ $SFD (KN)$ C = A $B = A$ B B $B = A$ B B $B = A$ B	01 01 01 01	04
	f)	Calculate M.I. for a triangle of height 100 mm about axis passing through vertex and parallel to base. If M.I. about the base of same triangle is 10 ⁷ mm ⁴ .		
	Ans.	Given: $I_{base} = 10^{7} \text{ mm}^{4},$ Height of Triangle (h) = 100 mm Find: I_{vertex} Step I Calculate base width (b) of Triangle $I_{base} = \frac{bh^{3}}{12}$ $10^{7} = \frac{b \times 100^{3}}{12}$ $b = \frac{10^{7} \times 12}{100^{3}} = 120 \text{ mm}$ $\boxed{b = 120 \text{ mm}}$ Step II : Calculate I_{vertex} $I_{vertex} = \frac{bh^{3}}{4} = \frac{120 \times 100^{3}}{4} = 3 \times 10^{7} \text{ mm}^{4}$ $\boxed{I_{vertex}} = 3 \times 10^{7} \text{ mm}^{4}$	01 01 01 01	04

Model Answer: Winter-2017

Subject: Strength of Materials



Que.	Sub.	Model Answers	Marks	Total
No. Q.4	Que.	Attempt any <u>FOUR</u> of the following:		Marks (16)
c	a) Ans.	A rectangular beam section has width 200 mm depth of 300 mm. Using parallel axis theorem. Calculate M.I. about its base. M.I. of rectangle about its base (I _{AB}) Using parallel axis theorem,		
		$I_{AB} = I_{G} + Ah^{2}$ $= I_{XX} + Ah^{2}$ $= \frac{bd^{3}}{12} + bd \times \left(\frac{d}{2}\right)^{2}$ $= \frac{200 \times 300^{3}}{12} + \left(200 \times 300 \times (150)^{2}\right)$ $A = \frac{200}{12} + \left(\frac{200}{12} + \frac{200}{12}\right)^{2}$	02	04
	b) Ans.	Image:		
		It states that the M. I. of a plane section about any axis parallel to the centroidal axis is equal to the M. I. of the section about the centroidal axis plus the product of the area of the section and square of the distance between the two axes.	01	
		Area A Area A h p	01	04
		 I_{PQ} = I_G+Ah² b) Perpendicular axis theorem: It state, if I_{XX} and I_{YY} are the moments inertia of a plane section about the two mutually perpendicular axes meeting at O, then the moment of inertia about the third axis Z-Z i.e. I_{ZZ} is equal to addition of moment of inertia about X-X and Y-Y axes. 	01	

Model Answer: Winter-2017

Subject: Strength of Materials

Model Answer: Winter-2017

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	d) Ans.	Find the M.I. of an I-section having equal flanges 120 mm x 40 mm and web 120 mm x 40 mm about XX- axis overall depth 200 mm.		
		$\mathbf{M} \mathbf{L} \text{ at } \mathbf{u} \text{ u avis}$	02	04
		M.1. at x-x axis, $I_{XX} = \frac{BD^{3}}{12} - \frac{bd^{3}}{12}$ $= \frac{120 \times 200^{3}}{12} - \frac{80 \times 120^{3}}{12}$	02	04
		$I_{XX} = 68.48 \times 10^6 mm^4$ OR	01	
		Due to symmetry of section , $\bar{x} = \frac{120}{2} = 60mm$, 200	01	OR
		$\bar{y} = \frac{200}{2} = 100mm,$ M.I. at x-x axis $I_{xx} = I_{xx_1} + I_{xx_2} + I_{xx_3}$		
		$I_{xx} = \left(I_{G_1} + A_1 h_1^2\right) + \left(I_{G_2} + A_2 h_2^2\right) + \left(I_{G_3} + A_3 h_3^2\right)$ $I_{G_1} = \frac{b_1 d_1^3}{12} = \frac{120 \times 40^3}{12} = 640000 mm^4$		04
		$I_{G_2} = \frac{b_2 d_2^{-3}}{12} = \frac{40 \times 120^3}{12} = 5760000 mm^4$		
		$I_{G_3} = \frac{b_3 d_3^3}{12} = \frac{120 \times 40^3}{12} = 640000 mm^4$ $A_1 = 120 \times 40 = 4800 mm^2$		
		$A_{2}=40 \times 120 = 4800 mm^{2}$ $A_{3}=120 \times 40 = 4800 mm^{2}$ $h_{1} = y - y_{1} = 100 - 20 = 80 mm$	01	
		$ \begin{array}{l} h_1 = y - y_1 = 100 - 20 = 30mm \\ h_2 = \overline{y} - y_2 = 100 - 100 = 0 \\ h_3 = y_3 - \overline{y} = 180 - 100 = 80mm \end{array} $	01	
		$ I_{xx} = (I_{G_1} + A_1 h_1^2) + (I_{G_2} + A_2 h_2^2) + (I_{G_3} + A_3 h_3^2) $ $ I_{xx} = (640000 + 4800 \times 80^2) + (5760000 + 4800 \times 0^2) + (640000 + 4800 \times 80^2) $		
		$I_{xx} = 68.48 \times 10^6 mm^4$		

Model Answer: Winter-2017

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Tota Mark
Q.4	e) Ans.	Explain the meaning of moment of resistance and neutral axis in the theory of simple bending. Moment of resistance: Moment of resistance of the beam is the moment of couple formed by the total compressive force acting at the Centre of gravity of the compressive stress diagram and the total tensile force acting at the Centre of gravity of the tensile stress diagram. Moment of couple = C x Z or T x Z. This moment is called the moment of resistance of the beam and is denoted by M_r .	01	
		y_{c} y_{c} y_{c} $Neutral$ $Axis$ $Lever arm = Z$ y_{t} $\frac{y_{t}}{y_{t}}$ $\frac{y_{t}}{y_{t}}$	01	04
		Neutral Axis: The fibers in the lower part of the beam undergo elongation while those in the upper part are shortened. These changes in the lengths of the fibers set up tensile and compressive stresses in the fibers. The fibers in the centroidal layer are neither shortened nor elongated. These centroidal layers which do not undergo any extension or compression is called neutral layer or neutral surface. When the beam is subjected to pure bending there will always be one layer which will not be subjected to either compression or tension. This layer is called as neutral layer and axis of this layer is called Neutral Axis.	01	
		Tension zone Compression zone	01	

Model Answer: Winter-2017

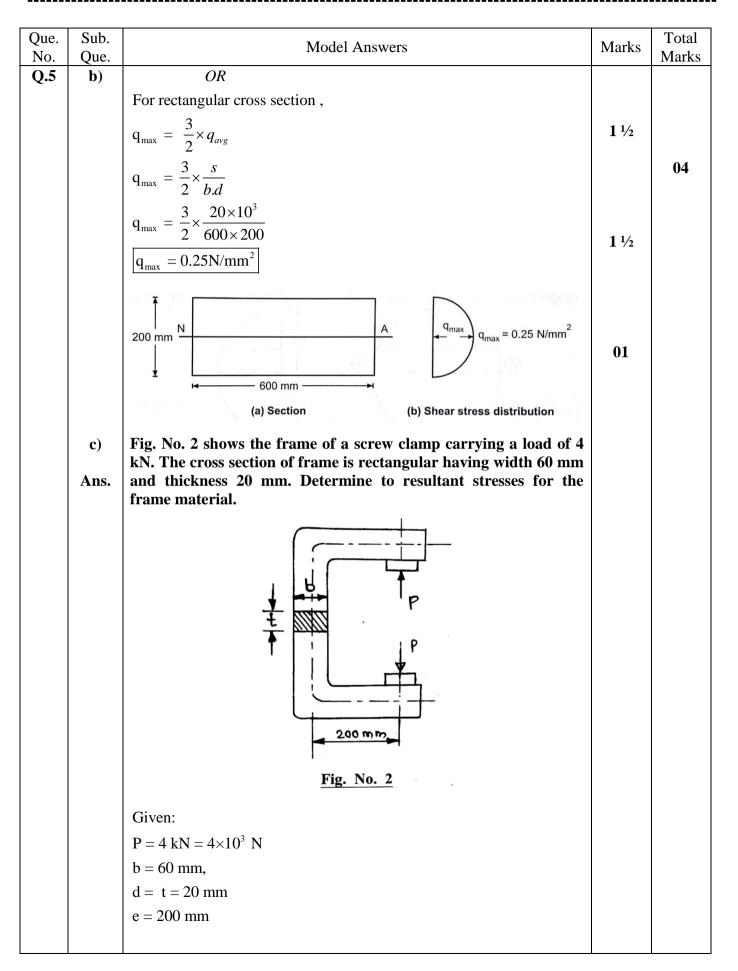
Subject: Strength of Materials _____

_

Sub. Code: 17304

	~ 1			
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.4	f)	The cross section of beam is symmetrical I- section having flange		IVIAIKS
	Ans.	width 100 mm, overall depth 180 mm and thickness 10 mm. If the permissible bending stress is 120 N/mm ² , find the moment of resistance of the beam section. Given:		
		$\sigma_b = 120 N/mm^2$		
		$Find: \mathbf{M}_{r}$	1/2	
		$I = \left[\frac{BD^3}{12} - \frac{bd^3}{12}\right]$	72	
		$I = \left[\frac{100 \times 180^3}{12} - \frac{90 \times 160^3}{12}\right]$		
		$\boxed{I = 17.88 \times 10^6 mm^4}$ 180	01	
		$y = \frac{180}{2} = 90mm$ Using flexural formula,	1/2	
		$\frac{M}{I} = \frac{\sigma_b}{v}$		
		I y Momoent of resistance,	01	04
		$\mathbf{M}_{\mathrm{r}} = \left(\frac{\boldsymbol{\sigma}_{b}}{\boldsymbol{y}}\right) \times \boldsymbol{I}$		
		$=\left(\frac{120}{90}\right) \times 17.88 \times 10^{6}$	01	
		$M_{\rm r} = 23.84 \times 10^6 N - mm$		
Q.5		Attempt any <u>FOUR</u> of the following:		(16)
	a)	A rectangular strut is 120 mm x 80 mm thick. It carries a load of 100 kN at an eccentricity of 10 mm in a plane bisecting the thickness. Find the maximum and minimum intensities of stress in the strut section.		
	Ans.	Given:		
		b = 120mm, d = 80mm, e = 10mm		
		$P = 100kN = 100 \times 10^3 N$		
		Find: σ_{max} , σ_{min}		
		Direct Stress,		
		$\sigma_{o} = \frac{P}{A}$		
		$\tau = 100 \times 10^3$		
		$\sigma_{o} = \frac{100 \times 10^{3}}{120 \times 80}$		
		$\sigma_0 = 10.417 \text{ N/mm}^2$	01	

Model Answer: Winter-2017


Subject: Strength of Materials

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
Q.5	a)	Bending Stress, $\sigma_{b} = \frac{P.e}{I} \times Y$ $\sigma_{b} = \frac{P.e}{\left(\frac{db^{3}}{12}\right)} \times \frac{b}{2}$ $\sigma_{b} = \frac{100 \times 10^{3} \times 10}{\left(\frac{80 \times 120^{3}}{12}\right)} \times \frac{120}{2}$ $\overline{\sigma_{b}} = 5.208 \text{ N/mm}^{2}$ Maximum stress, $\sigma_{max} = \sigma_{o} + \sigma_{b}$ 10.415 × 5.200	01	04
	b)	$\sigma_{max} = 10.417 + 5.208$ $\sigma_{max} = 15.625 \text{ N/mm}^2(\text{C})$ Minimum stress, $\sigma_{min} = \sigma_o - \sigma_b$ $\sigma_{max} = 10.417 - 5.208$ $\sigma_{min} = 5.209 \text{ N/mm}^2 \text{ (C)}$ Sketch the shear stress distribution diagram for a rectangular beam of 600 mm x 200 mm deep subjected to shear force of 20 kN.	1/2	
	Ans.	Given: $b = 600 \text{mm}, \ d = 200 \text{mm},$ $S.F.=S = 20 \text{kN} = 20 \times 10^3 \text{N}$ Find: q_{max} $I_{xx} = \frac{bd^3}{12} = \frac{600 \times 200^3}{12} = 4 \times 10^8 \text{mm}^4$	01	
		$y = \frac{d}{4} = \frac{200}{4} = 50$ mm Area under consideration	1/2 1/2	04
		$A = b \times \frac{d}{2} = 600 \times \frac{200}{2} = 6 \times 10^{4} \text{mm}^{2}$ $q_{\text{max}} = \frac{SAY}{bI} = \frac{20 \times 10^{3} \times 6 \times 10^{4} \times 50}{600 \times 4 \times 10^{8}}$ $\boxed{q_{\text{max}} = 0.25N / mm^{2}}$	01	

Subject: Strength of Materials

Model Answer: Winter-2017

Subject: Strength of Materials

Que.	Sub.	Model Answers	Marks	Total
No.	Que.		Warks	Marks
Q.5	c)	$\sigma_{o} = \frac{P}{A}$ $\sigma_{o} = \frac{4 \times 10^{3}}{60 \times 20}$ $\boxed{\sigma_{o} = 3.334 N / mm^{2}}$ Bending stress, $\sigma_{b} = \frac{M}{1} \times Y$ $\sigma_{b} = \frac{P.e}{\frac{db^{3}}{12}} \times \frac{b}{2}$ $\sigma_{b} = \frac{4 \times 10^{3} \times 200}{20 \times 60^{3}} \times \frac{60}{2}$ $\boxed{\sigma_{b} = 66.667 N / mm^{2}}$ Maximum stress, $\sigma_{max} = \sigma_{o} + \sigma_{b}$ $\sigma_{max} = 3.334 + 66.667$ $\boxed{\sigma_{max} = 70.001 N / mm^{2}(T)}$ Minimum stress, $\sigma_{min} = \sigma_{o} - \sigma_{b}$ $\sigma_{min} = 3.334 - 66.667$	01 01 01 1/2	04
	d)	$\sigma_{min} = 63.333 \text{ N/mm}^2 \text{ (C)}$ A M.S. link as shown in Fig. No. 3 transmits a pull of 80 kN. Find the cross sectional dimensions (band t) if b = 3t. Assume the	1/2	
		permissible tensile stress as 70 MPa.		
	Ans.	Given:		
		$\mathbf{P} = 80\mathbf{kN} = 80 \times 10^3 \mathbf{N}$		
		$\sigma = 70 MPa = 70 N/mm^2$		
		$e = \frac{b}{2}, \qquad b = 3t$		
		Find: b, t		
		$\sigma = \sigma_o + \sigma_b$		
		$\sigma = \frac{P}{A} + \frac{P.e}{I} \times Y$		

Subject: Strength of Materials

_.

Sub. Code: 17304

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5	<u> </u>	$\sigma = \frac{P}{A} + \frac{P.e}{\left(\frac{t \times b^3}{12}\right)} \times \frac{b}{2}$	01	Winns
		$70 = \frac{80 \times 10^3}{b \times t} + \frac{80 \times 10^3 \times \frac{b}{2} \times b \times 6}{t \times b^3}$ Put b = 3t		
		$70 = \frac{80 \times 10^{3}}{3t \times t} + \frac{80 \times 10^{3} \times \frac{3t}{2} \times 3t \times 6}{t \times 3t}$	01	04
		$t^{2} = \frac{320 \times 10^{3}}{70 \times 3}$ $\boxed{t = 39.036 \text{ mm}}$ $b = 3 \times 39.036$	01	
		$b = 3 \times 39.036$ b=117.108 mm	01	
	e)	A circular section of diameter 'd' is subjected to load 'P' eccentric to the axis-YY. The eccentricity of loads is 'e'. Obtain the limit of eccentricity such that no tension is induced at the section.		
	Ans.	$A = \frac{\pi}{4}d^2, I = \frac{\pi}{64}d^4, Y = \frac{d}{2}$	01	
		For no tension condition, $\sigma_0 = \sigma_b$ $\frac{P}{A} = \frac{M}{Z}$ $\frac{P}{A} = \frac{P \times e}{Z}$	01	
		$\frac{P}{A} = \frac{P \times e}{\left(\frac{I}{Y}\right)}$ $e = \left(\frac{1}{A}\right) \times \left(\frac{I}{Y}\right) = \left(\frac{1}{\frac{\pi}{4}d^2}\right) \times \left(\frac{\frac{\pi}{64}d^4}{\frac{d}{2}}\right)$	01	04
		$e = \frac{d}{8}$ $2e = \frac{d}{4}$ Limit of eccentricity $2e = \frac{d}{4}$	01	

Model Answer: Winter-2017

Subject: Strength of Materials

_.

Sub. Code: 17304

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5	f)	A short MS column of external diameter 200 mm and internal diameter 150 mm carries an eccentric load. Find the greatest eccentricity which the load can have without producing tension in the section of a column.		
	Ans.	Given: External Diameter, $D = 200 \text{ mm}$ Internal Diameter, $d = 150 \text{ mm}$ Find: P, e		
		For no tension condition, $\sigma_0 = \sigma_b$ $\frac{P}{A} = \frac{M}{Z}$	01	
		$\frac{P}{A} = \frac{P.e.Y}{I}$	01	
		$e = \frac{I}{A.Y}$ $e = \frac{\left(\frac{\pi}{64} \times (D^4 - d^4)\right)}{\left(\frac{\pi}{4} \times (D^2 - d^2) \times \frac{D}{2}\right)} = \frac{\left(\frac{\pi}{64} \times (200^4 - 150^4)\right)}{\left(\frac{\pi}{4} \times (200^2 - 150^2) \times \frac{200}{2}\right)}$	01	04
Q.6		e = 39.0625 mm Greatest eccentricity e = 39.0625 mm Attempt any <u>FOUR</u> of the following:	01	(16)
	a)	State assumptions in theory of pure torsion.		
	Ans.	 Assumptions: The shaft is straight having uniform circular cross section. The shaft is homogeneous and isotropic. Circular section remains circular even after twisting. Plain section before twisting remains plain after twisting and do not twist or wrap. A diameter in the section before deformation remains a diameter or straight line after deformation. Stresses do not exceed the proportional limit. Shaft is loaded by twisting couples in the planes that are perpendicular to the axis of the shaft. Twist along the shaft is uniform. 	¹ ⁄2 mark each	04

Model Answer: Winter-2017

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	<u>(ue.</u> b)	Find the torque that can be applied to a shaft of 100 mm in		IVIAI K
		diameter, if the permissible angle of twist is 2.75° in a length of a		
	A m a	6 m. Take C = 80 kN/mm ² .		
	Ans.	Given data:		
		$\theta = 2.75^{\circ} = 2.75 \times \frac{\pi}{180} = 0.048 \text{ rad.}$	1/2	
		d =100 mm		
		L = 6 m = 6000 mm		
		$C = G = 80 \text{ kN/mm}^2 = 80 \times 10^3 \text{ N/mm}^2$		
		Find: T		
		From rigidity eqution,		
		$\frac{T}{J} = \frac{G.\theta}{L}$	1⁄2	
		$T = \frac{G.\theta}{G.\theta}$		
		$\frac{T}{\frac{\pi}{32} \times d^4} = \frac{G.\theta}{L}$	01	
		$T = \frac{\pi \times d^4 \times G \times \theta}{32 \times L}$		04
		$T = \frac{\pi \times 100^4 \times 80 \times 10^3 \times 0.048}{32 \times 6000}$		
		T = 6282734.283 N-mm	02	
		T = 6.282 kN-m		
	c)	Find the power transmitted by a solid shaft of diameter 60 mm running at 220 rpm; if the permissible shear stress is 68 MPa. The maximum torque is likely to exceed the mean torque by 25%.		
	Ans.	Given:		
		d = 60mm, N = 220rpm, $\tau = 68N / mm^2$		
		$T_{\max} = 1.25T_{mean}$		
		Find: P = ?		
		$\frac{T_{max}}{J} = \frac{\tau}{R}$		
		$T_{\text{max}} = \left(\frac{\tau}{R}\right)J = \left(\frac{\tau}{\frac{d}{2}}\right)\frac{\pi}{32}d^4$	01	

Subject: Strength of Materials

Sub. Code: 17304

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6		$T_{max} = \frac{\pi}{16} \times \tau \times d^3 = \frac{\pi}{16} \times 68 \times 60^3$	01	
			01	
		$T_{max} = 2883.982 \times 10^3 \text{N-mm}$		
		$T_{max} = 1.25 T_{mean}$		04
		$T_{mean} = \frac{T_{max}}{1.25}$		
		$T_{mean} = \frac{2883.982 \times 10^3}{1.25} = 2307.1856 \times 10^3 \text{ N-mm}$		
		T _{mean} =2307.1856N-m		
		Power transmitted by shaft	01	
		$P = \frac{2\pi NT_{mean}}{60} = \frac{2\pi \times 220 \times 2307.1856}{60}$		
		$P=53.153\times10^{3}W$	01	
		P=53.153kW	U1	
	d)	Calculate the suitable diameter of the solid shaft to transmit 220 kW power at 150 rpm; if the permissible shear stress is 68 MPa.		
	Ans.	Given:		
		Power = $220 \text{ kW} = 220 \times 10^3 \text{ W}$		
		Speed $N = 150 \text{ rpm}$		
		Shear stress,		
		$f_s = 68 \text{ MPa} = 68 \text{ N/mm}^2$		
		Find: D		
		i) Using the relation,	01	
		$P = \frac{2\pi NT}{60} \text{ watts}$	01	
		$220 \times 10^3 = \frac{2 \times \pi \times 150 \times T}{60}$		
		$\begin{array}{c} 60 \\ T = 14005.63499 \text{ N.m} \end{array}$		
		· · · · · · · · · · · · · · · · · · ·	01	
		$\frac{ T = 14005.63499 \times 10^{3} \text{ N-mm} }{\text{ii})\text{Using the relation,}}$		04
		$T = \frac{\pi}{16} \times f_{s} \times D^{3}$	01	
			UI	
		$14005.63499 \times 10^3 = \frac{\pi}{16} \times 68 \times D^3$		
		D = 101.604 mm		
		Diameter of Shaft = 101.604 mm	01	

Model Answer: Winter-2017

Subject: Strength of Materials

No. Que. Find the torsional moment of resistance for a hollow circular shaft of 225 mm external diameter and 220 mm internal diameter, if the permissible shear is 60 MPa. Ans. Given: External Diameter D = 225 mm Internal Diameter d = 220 mm Ternal Diameter d = 220 mm Ternal Ternal Diameter d = 220 mm $\tau = 60$ MPa, Find: Torsional Moment or Resistance. T T $T_R = \left(\frac{\tau}{R}\right)J = \left(\frac{\tau}{\frac{d}{2}}\right)\frac{\pi}{32}(D^4 - d^4)$ Of Of $T_R = \left(\frac{60}{225}\right)\frac{\pi}{32}(225^4 - 220^4)$ T T R = 11.536 \times 10^6 N-mm Of f) (i) Define - Section modulus. (ii) Define - Torsional stiffness. Ans. Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral Axis. Z=L/Y			<u> </u>
Q.6.c)Find the torsional moment of resistance for a hollow circular shaft of 225 mm external diameter and 220 mm internal diameter, if the permissible shear is 60 MPa.Ans.Given: External Diameter D = 225 mm Internal Diameter d = 220 mm $\tau = 60$ MPa , Find: Torsional Moment or Resistance. $\overline{T}_{\pi} = 60$ MPa , Find: Torsional Moment or Resistance. $\frac{T}{J} = \frac{\tau}{R}$ $T_{R} = \left(\frac{\tau}{R}\right)J = \left(\frac{\tau}{\frac{d}{2}}\right)\frac{\pi}{32}(D^4 \cdot d^4)$ 02 $T_{R} = \left(\frac{60}{\frac{225}{2}}\right)\frac{\pi}{32}(225^4 \cdot 220^4)$ $T_{R} = 11.536 \times 10^6$ N-mm02f)(i) Define - Section modulus.(ii) Define - Torsional stiffness.02Ans.Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. $Z = I/Y$ Torsional Stiffness: It is defined as the torque required per unit angle of twist.02	ks Total Marks	Marks	
Ans.Given: External Diameter D = 225 mm Internal Diameter d = 220 mm $\tau = 60$ MPa, 			
External Diameter D = 225 mm Internal Diameter d = 220 mm $\tau = 60 \text{ MPa}$, Find: Torsional Moment or Resistance. $\frac{T}{J} = \frac{\tau}{R}$ $T_R = \left(\frac{\tau}{R}\right)J = \left(\frac{\tau}{\frac{d}{2}}\right)\frac{\pi}{32}(D^4 - d^4)$ $T_R = \left(\frac{60}{225}\right)\frac{\pi}{32}(225^4 - 220^4)$ $T_R = 11.536 \times 10^6 \text{ N-mm}$ f) f			
$r = 60 \text{ MPa}$, Find: Torsional Moment or Resistance. $\frac{T}{J} = \frac{\tau}{R}$ 02 $T_R = \left(\frac{\tau}{R}\right)J = \left(\frac{\tau}{\frac{d}{2}}\right)\frac{\pi}{32}\left(D^4 - d^4\right)$ 02 $T_R = \left(\frac{60}{225}\right)\frac{\pi}{32}\left(225^4 - 220^4\right)$ 02 $T_R = 11.536 \times 10^6 \text{ N-mm}$ 02 $\left(\frac{T_R = 11.536 \times 10^6 \text{ N-mm}}{(1) \text{ Define - Section modulus.}}\right)$ 02(i) Define - Section modulus.03(ii) Define - Torsional stiffness.04Ans.Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis.02Z=J/YTorsional Stiffness: It is defined as the torque required per unit angle of twist.			A
Find: Torsional Moment or Resistance. $\frac{T}{J} = \frac{\tau}{R}$ $T_{R} = \left(\frac{\tau}{R}\right)J = \left(\frac{\tau}{\frac{d}{2}}\right)\frac{\pi}{32}(D^{4} - d^{4})$ $T_{R} = \left(\frac{60}{\frac{225}{2}}\right)\frac{\pi}{32}(225^{4} - 220^{4})$ $T_{R} = 11.536 \times 10^{6} \text{ N-mm}$ (i) Define - Section modulus. (ii) Define - Torsional stiffness. Ans. Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. Z = I/Y Torsional Stiffness: It is defined as the torque required per unit angle of twist.			
$\mathbf{f} = \begin{bmatrix} \frac{\tau}{J} = \frac{\tau}{R} \\ T_{R} = \left(\frac{\tau}{R}\right)J = \left(\frac{\tau}{\frac{d}{2}}\right)\frac{\pi}{32}(D^{4} - d^{4}) \\ T_{R} = \left(\frac{60}{\frac{225}{2}}\right)\frac{\pi}{32}(225^{4} - 220^{4}) \\ T_{R} = 11.536 \times 10^{6} \text{N-mm} \\ \hline T_{R} = 11.536 \times 10^{6} \text{N-mm} \\ \hline T_{R} = 11.536 \times 10^{3} \text{N-m} \end{bmatrix} $ (i) Define - Section modulus. (ii) Define - Section modulus. (ii) Define - Torsional stiffness. Ans. Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. Z = I/Y Torsional Stiffness: It is defined as the torque required per unit angle of twist.			
$\mathbf{T}_{R} = \left(\frac{\tau}{R}\right) \mathbf{J} = \left(\frac{\tau}{\frac{d}{2}}\right) \frac{\pi}{32} \left(D^{4} \cdot d^{4}\right)$ $\mathbf{T}_{R} = \left(\frac{60}{\frac{225}{2}}\right) \frac{\pi}{32} \left(225^{4} \cdot 220^{4}\right)$ $\mathbf{T}_{R} = 11.536 \times 10^{6} \text{N-mm}$ $\mathbf{T}_{R} = 11.536 \times 10^{3} \text{N-m}$ (i) Define - Section modulus. (ii) Define - Section modulus. (ii) Define - Torsional stiffness. Ans. Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. Z = I/Y Torsional Stiffness: It is defined as the torque required per unit angle of twist.			
$\mathbf{T}_{R} = \left(\frac{\tau}{R}\right) \mathbf{J} = \left(\frac{\tau}{\frac{d}{2}}\right) \frac{\pi}{32} \left(D^{4} \cdot d^{4}\right)$ $\mathbf{T}_{R} = \left(\frac{60}{\frac{225}{2}}\right) \frac{\pi}{32} \left(225^{4} \cdot 220^{4}\right)$ $\mathbf{T}_{R} = 11.536 \times 10^{6} \text{N-mm}$ $\mathbf{T}_{R} = 11.536 \times 10^{3} \text{N-m}$ (i) Define - Section modulus. (ii) Define - Section modulus. (ii) Define - Torsional stiffness. Ans. Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. Z = I/Y Torsional Stiffness: It is defined as the torque required per unit angle of twist.			
f) $T_R = 11.536 \times 10^6 \text{N-mm}$ 02f)(i) Define - Section modulus. (ii) Define - Torsional stiffness.02Ans.Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis.02Z=I/YTorsional Stiffness: It is defined as the torque required per unit angle of twist.		02	
f) $[T_R = 11.536 \times 10^3 \text{N-m}]$ (i) Define - Section modulus. (ii) Define - Torsional stiffness.Ans.Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. $Z=I/Y$ Torsional Stiffness: It is defined as the torque required per unit angle of twist.	04		
f)(i) Define - Section modulus. (ii) Define - Torsional stiffness.Ans.Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. $Z=I/Y$ Torsional Stiffness: It is defined as the torque required per unit angle of twist.		02	
1) (ii) Define – Torsional stiffness. Ans. Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. 02 Z=I/Y Torsional Stiffness: It is defined as the torque required per unit angle of twist. 02			
Ans.Section Modulus(Z): Section modulus is the ratio of M.I of the section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. $Z=I/Y$ Torsional Stiffness: It is defined as the torque required per unit angle of twist.			
section about the Neutral Axis and the distance of the most extreme fiber from the Neutral axis. 02 Z=I/Y Z=I/Y Torsional Stiffness: It is defined as the torque required per unit angle of twist. 02			
Torsional Stiffness: It is defined as the torque required per unit angle 02 of twist.		02	A
Torsional Stiffness: It is defined as the torque required per unit angle of twist.	04		
Torsional Stiffness=T/θ		02	