MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q 1	a)	Attempt any SIX of the following:		12
	i)	Define elasticity and modulus of elasticity.		
	Ans.	Elasticity: - Elasticity is the property of material by virtue of it can regain its original shape and size after removal of deforming force.	01	02
		Modulus of Elasticity: - It is defined as the ratio of stress to strain within elastic limit.	01	
	ii)	Define angle of 'obliquity'.		
	Ans.	Angle of 'Obliquity' : - The angle that the line of action of the resultant stress makes with the normal to the plane is called the angle of obliquity	02	02
	iii)	State the parallel axis theorem.		
	Ans.	It states that the M. I. of a plane section about any axis parallel to the centroidal axis is equal to the M. I. of the section about the centroidal axis plus the product of the area of the section and the square of the distance between the two axes.	02	02

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	vi) Ans.	Define bulk modulus.	02	02
		Bulk Modulus: -		
		When a body is subjected to three mutually perpendicular like stresses of same intensity then the ratio of direct stress to the corresponding volumetric strain of the body is constant and is called as bulk modulus.		
	vii) Ans.	Define hoop stress. State the formula.	01	02
		Hoop stress the stress which act in the tangential direction to the circumference of the cylinder called as hoop stress or circumfertial stress		
	viii)	Hoop Stress , $\sigma_{\mathrm{c}}=\frac{P d}{2 t}$	01	
		Where,		
		$\begin{aligned} & \sigma_{\mathrm{c}}=\text { Hoop stress Or Circumferential stress } \\ & P=\text { Internal liquid pressure } \\ & \mathrm{d}=\text { Internal daimeter of thin cylinder } \\ & \mathrm{t}=\text { Thickness } \end{aligned}$		
		State middle third rule.	02	02
	Ans.	In rectangular section for no tension condition the load must lie within the middle third shaded area of size $\frac{b}{3}$ and $\frac{d}{3}$. This is known as middle third rule.		

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline 1 \& iii) \& \begin{tabular}{l}
A circular beam of 120 mm diameter is simply supported over a span of 10 m and carries u.d.l of \(1000 \mathrm{~N} / \mathrm{m}\). find the maximum bending stress produced. \\
Given data:
\[
\begin{aligned}
\& d=120 \mathrm{~mm}, \quad L=10 \mathrm{~m}=10000 \mathrm{~mm} \\
\& w=1000 \mathrm{~N} / \mathrm{m} \\
\& w=\frac{1000}{1000} \mathrm{~N} / \mathrm{mm}=1 \mathrm{~N} / \mathrm{mm} \\
\& \sigma_{b}=?
\end{aligned}
\] \\
Max. Bending Moment, (M)
\[
\begin{aligned}
\& M=\frac{w L^{2}}{8}=\frac{1 \times(10000)^{2}}{8} \\
\& M=12.5 \times 10^{6} \mathrm{~N}-\mathrm{mm}
\end{aligned}
\] \\
Moment of Inertia,
\[
\begin{aligned}
\& I=\frac{\pi}{64} d^{4}=\frac{\pi}{64} \times(120)^{4} \\
\& I=10.178 \times 10^{6} \mathrm{~mm}^{4} \\
\& y=\frac{d}{2}=\frac{120}{2}=60 \mathrm{~mm} \\
\& y=y_{c}=y_{t}=60 \mathrm{~mm}
\end{aligned}
\] \\
Max. bending stress,
\[
\begin{aligned}
\sigma_{b} \& =\frac{M}{I} \times y \\
\sigma_{b} \& =\frac{12.5 \times 10^{6}}{10.178 \times 10^{6}} \times 60 \\
\sigma_{b} \& =73.688 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
\] \\
Attempt any FOUR of the following: \\
i) What is meant by modular ratio? \\
ii) State any four assumptions made in Euler's theory. \\
i) Modular Ratio: The ratio of modulus of elasticity of two different materials is called as modular ratio. It is denoted by ' m '.
\[
m=\frac{E_{1}}{E_{2}} \quad \mathrm{E}_{1}>\mathrm{E}_{2}
\]
\end{tabular} \& 01
01
01
01
01
02 \& 04

16

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline 2 \& c)

Ans. \& | $\begin{aligned} & \text { Safe load }=\frac{\text { crippling load }}{F . O . S .} \\ & \text { Safe load }=\frac{672.878}{3} \\ & \text { Safe load }=224.292 \mathrm{~N} \end{aligned}$ |
| :--- |
| A steel cube block of 50 mm side is subjected to a force of $6 \mathbf{k N}$ (tensile) along X -direction; $\mathbf{8} \mathbf{k N}$. (compressive) along Y direction and 4 kN (tensile) along Z direction. Determine change in the volume of the block. Take $\mathbf{E}=\mathbf{2 0 0} \mathbf{G P a}$ and $m=\frac{10}{3}$. |
| Given data: $\begin{aligned} & l=b=t=50 \mathrm{~mm} \\ & P x=6 \mathrm{kN}=6000 \mathrm{~N} \\ & P y=8 \mathrm{kN}=8000 \mathrm{~N} \\ & P z=4 \mathrm{kN}=4000 \mathrm{~N} \quad \text { (Tensile) } \quad \text { (Tensile) } \\ & E=200 \mathrm{Gpa}=200 \times 10^{3} \mathrm{~N} / \mathrm{mm}^{2} \\ & m=\frac{10}{3}, \quad \mu=0.3 \end{aligned}$ |
| Find: $\delta v=$? |
| Stress along x direction $\sigma_{x}=\frac{P x}{A}=\frac{6000}{50 \times 50}=2.4 \mathrm{~N} / \mathrm{mm}^{2}$ |
| Stress along y direction $\sigma_{y}=\frac{P y}{A}=\frac{8000}{50 \times 50}=-3.2 \mathrm{~N} / \mathrm{mm}^{2} \quad(\text { compressive })$ |
| Stress along z direction $\begin{gathered} \sigma_{z}=\frac{P z}{A}=\frac{4000}{50 \times 50} \\ \sigma_{z}=1.6 \mathrm{~N} / \mathrm{mm}^{2} \end{gathered}$ |
| original volume (V) $\begin{aligned} & V=L \times b \times t \\ & V=50 \times 50 \times 50 \\ & V=125 \times 10^{3} \mathrm{~mm}^{2} \end{aligned}$ | \& 01 \&

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline 2 \& d)

Ans. \& | For triaxial stress system $\begin{aligned} & e_{v}=\frac{\sigma_{x}+\sigma_{y}+\sigma_{z}}{E}(1-2 \mu) \\ & \frac{\delta v}{V}=\frac{\sigma_{x}+\sigma_{y}+\sigma_{z}}{E}(1-2 \mu) \\ & \frac{\delta v}{125 \times 10^{3}}=\frac{2.4-3.2+1.6}{200 \times 10^{3}}(1-2 \times 0.3) \\ & \frac{\delta v}{125 \times 10^{3}}=1.6 \times 10^{-6} \\ & \delta v=1.6 \times 10^{-6} \times 125 \times 10^{3} \\ & \delta v=0.2 \mathrm{~mm}^{3} \end{aligned}$ |
| :--- |
| Change in volume is $=0.2 \mathrm{~mm}^{3}$ |
| A concrete column $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ is reinforced with 4 bars of 20 mm diameter and carries a compressive load of 400 kN . The modular ratio is 15 . Calculate the stresses in steel and concrete. Also calculate the load shared by each material. |
| Given data: |
| Area of concrete column, $A=300 \times 300 \mathrm{~mm}$ |
| Diameter of steel bar, $d=20 \mathrm{~mm}$ |
| No. of steel bar, $n=4$ |
| Load, $p=400 \mathrm{kN}=400 \times 10^{3} \mathrm{~N}$ $\begin{array}{lll} m=15 & & \\ \sigma_{c}=? & \sigma_{s}=? & P_{c}=? \end{array} \quad P_{s}=?$ |
| Area of steel bar $\left(A_{s}\right)$ $\begin{aligned} A_{s} & =n \times \frac{\pi}{4} d^{2} \\ A_{s} & =4 \times \frac{\pi}{4} 20^{2} \\ A_{s} & =1256.637 \mathrm{~mm}^{2} \end{aligned}$ | \& 01 \& 04

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	f)	OR S.F. calculation $\begin{aligned} & S . F \cdot{ }_{A_{L}}=0 \\ & S . F \cdot \cdot_{A_{R}}=50 \mathrm{kN} \\ & S . F \cdot{ }_{B_{L}}=50 \mathrm{kN} \\ & S . F \cdot{ }_{B_{R}}=50-20=30 \mathrm{kN} \\ & S . F \cdot \cdot_{C_{L}}=50-20=30 \mathrm{kN} \\ & S . F \cdot{C_{R}}=50-20-30=0 \end{aligned}$ $B M$ calculation, $\begin{aligned} & B \cdot M_{\cdot C}=0 \\ & B \cdot M_{\cdot B}=-30 \times 4 \\ & B \cdot M_{\cdot B}=-120 \mathrm{kN}-\mathrm{m} \\ & B M_{A}=-30 \times 10-20 \times 6 \\ & B \cdot M_{\cdot A}=-420 \mathrm{kN}-\mathrm{m} \end{aligned}$ A gas cylinder of internal diameter 1.2 m and thickness 24 mm is subjected to a maximum tensile stress of 90 MPa . Find the allowable pressure of gas inside cylinder.	01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	b)	Define point of contra flexure. How is the point of contra flexure located for a beam?		
	Ans.	Point of contra-flexure: -		
		The point at which bending moment diagram changes the sign from positive to negative or vice versa or the point at which BM is zero is called as point of contra-flexure	02	
		Location of point of contra-flexure		
		i) At the point of contra-flexure B.M is zero.	01	04
		iii) The distance (location) of point of contra-flexure will be find from either end of beam.		
		POINTIOF CONTRAFLEXURE	01	
		Point D, B.M. $=0$ \therefore Point D is Point of Contraflexure. Point D is at Z m from A		
	c)	A simply supported beam of 3 m span carries two point loads of 5 kN each at 1 m and 2 m from the left end A. Draw the shear force and bending moment diagram.		
	Ans.			

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3		Step i) To find support reactions, $\because \quad$ ading is symmetical $\mathrm{R}_{\mathrm{A}}=\mathrm{R}_{D}=5 k N$ Step ii) SF calculations $\begin{aligned} & S . F \cdot \cdot_{\cdot A}=5 \mathrm{kN} \\ & S . F \cdot \cdot_{B_{\mathrm{L}}}=5 \mathrm{kN} \\ & S . F \cdot \cdot_{\mathrm{R}_{\mathrm{R}}}=+5-5=0 \mathrm{kN} \\ & S . F \cdot C_{\mathrm{L}_{\mathrm{L}}}=0 \mathrm{kN} \\ & S . F \cdot C_{C_{\mathrm{R}}}=-5 \mathrm{kN} \\ & S . F \cdot \cdot_{D_{\mathrm{L}}}=-5 \mathrm{kN} \\ & S . F \cdot{ }_{\cdot D}=0 \mathrm{kN} \end{aligned}$ Step iii) B.M. Calculation, $\because \quad \text { te supports are simple }$ $\mathrm{B}_{\mathrm{B}}^{\mathrm{M}_{\mathrm{A}}}=0$ $\text { B.M. } \cdot_{D}=0$ $B . M_{\cdot B}=5 \times 1=+5 \mathrm{kN}-\mathrm{m}$ $B . M_{\cdot C}=5 \times 1=+5 \mathrm{kN}-\mathrm{m}$	$1 / 2$ $1 / 2$ 01	
			01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	d) Ans.	A beam 6 m long rests on two supports 5 m apart. The right end is overhang by 1 m . the beam carries a u.d.l. of $5 \mathrm{kN} / \mathrm{m}$ over the entire length of the beam. Draw S.F. and B. M. diagram. To find support reactions, $\begin{align*} & \sum \mathrm{F}_{\mathrm{Y}}= \\ & \quad \mathrm{R}_{\mathrm{A}}-(5 \times 6)+R_{B}=0 \\ & \mathrm{R}_{\mathrm{A}}+R_{B}=30 \quad \ldots \tag{i} \end{align*}$ Taking moment at A $\begin{gathered} \left(\mathrm{R}_{\mathrm{A}} \times 0\right)+\left(5 \times 6 \times \frac{6}{2}\right)-R_{B} \times 5=0 \\ \mathrm{R}_{B} \times 5=90 \\ \mathrm{R}_{B}=18 \mathrm{kN} \end{gathered}$ Put R_{B} in equation (i) $\begin{aligned} & \mathrm{R}_{\mathrm{A}}+R_{B}=30 \\ & \mathrm{R}_{\mathrm{A}}+18=30 \\ & \mathrm{R}_{\mathrm{A}}=12 \mathrm{kN} \end{aligned}$ S.F. Calculation, $\begin{aligned} & S . F \cdot A_{A_{\mathrm{L}}}=0 \\ & S . F \cdot A_{A_{\mathrm{R}}}=12 \mathrm{kN} \\ & S . F_{\cdot B_{\mathrm{L}}}=12-(5 \times 5)=-13 \mathrm{kN} \\ & S . F_{\cdot B_{\mathrm{R}}}=12-(5 \times 5)+18=5 \mathrm{kN} \\ & S . F_{\cdot C_{\mathrm{L}}}=12-(5 \times 6)+18=0 \\ & S . F \cdot C_{C_{\mathrm{R}}}=0 \end{aligned}$ Shear force is zero at pt. D and the pt. D is at ' x ' m from A $\begin{aligned} & S \cdot F_{\cdot{ }_{D}}=0 \\ & S \cdot F_{\cdot D}=12-5 \times \mathrm{x}=0 \\ & \therefore 5 \times \mathrm{x}=12 \\ & \quad \mathrm{x}=2.4 \mathrm{~m} \end{aligned}$ B.M. Calculation, B. . $_{\text {. }}=0$ B.M. ${ }_{\cdot D}=(12 \times 2.4)-\left(5 \times 2.4 \times \frac{2.4}{2}\right)$ $\text { B. } \mathrm{M}_{\cdot \mathrm{D}}=5 \mathrm{kN}-\mathrm{m}$	SF cal. 01 SFD and BMD (1 mark each)	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	e) Ans.	$\begin{aligned} & B \cdot M \cdot_{D}=14.4 \mathrm{kN}-\mathrm{m} \\ & B \cdot M \cdot_{B}=(12 \times 5)-\left(5 \times 5 \times \frac{5}{2}\right) \\ & B \cdot M_{\cdot B}=-2.5 \mathrm{kN}-\mathrm{m} \\ & B \cdot M_{\cdot}=0 \end{aligned}$ $B . M$. is zero at pt. E Pt. E is at Y m from A $\begin{gathered} B \cdot M_{\cdot E}=(12 \times Y)-\left(5 \times Y \times \frac{Y}{2}\right)=0 \\ (12 \times Y)-\left(2.5 Y^{2}\right)=0 \\ \mathrm{Y}=4.8 \mathrm{~m} \text { from A } \end{gathered}$ A point in a strained material stresses are subjected to two mutually perpendicular tensile stresses of 200 Mpa and 100 Mpa . Determine the intensities of normal, shear a resultant stresses on a plane inclined at $30^{\mathbf{0}}$ with the axis of minor tensile stress. Given data: $\begin{array}{ll} \sigma_{\mathrm{x}}=200 M P a, & \sigma_{\mathrm{x}}=200 \mathrm{MPa} \\ \theta=90^{\circ}-30^{\circ}=60^{\circ} & \tau=0 \end{array}$ 1) Analytical Method $\begin{aligned} & \sigma_{\mathrm{n}}=? \quad \sigma_{\mathrm{t}}=? \quad \sigma_{\mathrm{R}}=? \\ & \sigma_{\mathrm{n}}=\frac{\sigma_{\mathrm{x}}+\sigma_{\mathrm{y}}}{2}+\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2} \cos 2 \theta+\tau \sin 2 \theta \\ & \sigma_{\mathrm{n}}=\frac{200+100}{2}+\left(\frac{200-100}{2}\right) \cos (2 \times 30)+0 \\ & \sigma_{\mathrm{n}}=125 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\mathrm{t}}=\frac{\sigma_{\mathrm{x}}-\sigma_{\mathrm{y}}}{2} \sin 2 \theta+\tau \cos 2 \theta \\ & \sigma_{\mathrm{t}}=\left(\frac{200-100}{2}\right) \sin (2 \times 30)+0 \\ & \sigma_{\mathrm{t}}=43.301 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	01 01 01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	f) Ans.	Resultant Stress, $\begin{aligned} & \sigma_{\mathrm{R}}=\sqrt{\sigma_{\mathrm{n}}^{2}+\sigma_{\mathrm{t}}^{2}} \\ & \sigma_{\mathrm{R}}=\sqrt{(125)^{2}+(43.301)^{2}} \\ & \sigma_{\mathrm{R}}=132.287 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ OR 2) Mohr's Circle method (Graphical) Find the M.I. of a ' T ' section having top flange $200 \mathrm{~mm} \times 20 \mathrm{~mm}$ and web $200 \mathrm{~mm} \times 20 \mathrm{~mm}$ about the centroidal axis $X-X$ and $Y-Y$. Given data: $\begin{aligned} & b_{1}=20 \mathrm{~mm}, \quad d_{1}=200 \mathrm{~mm} \\ & b_{2}=200 \mathrm{~mm}, \quad d_{2}=20 \mathrm{~mm} \\ & A_{1}=b_{1} \times d_{1}=20 \times 200=4000 \mathrm{~mm}^{2} \\ & A_{2}=b_{2} \times d_{2}=200 \times 20=4000 \mathrm{~mm}^{2} \end{aligned}$ as the $T-\sec$ tion is symmetrical about y-axis $\bar{X}=\frac{200}{2}=100 \mathrm{~mm}$ To find \bar{Y} $y_{1}=\frac{d_{1}}{2}=\frac{200}{2}=100 \mathrm{~mm}$	01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3		$\begin{aligned} y_{2}=\frac{d_{2}}{2} & +200=\frac{20}{2}+200=210 \mathrm{~mm} \\ \bar{Y} & =\frac{\left(A_{1} Y_{1}\right)+\left(A_{2} Y_{2}\right)}{A_{1}+A_{2}} \\ \bar{Y} & =\frac{(4000 \times 100)+(4000 \times 210)}{(4000+4000)} \\ \bar{Y} & =155 \mathrm{~mm} \end{aligned}$ To find M.I. about $X-X$ $\begin{gathered} I_{x x}=I_{x_{1}}+I_{x_{2}} \\ I_{x_{1}}=\frac{b_{1} d_{1}^{3}}{12}+a_{1} h_{1}^{2} \\ h_{1}=155-100=55 \mathrm{~mm} \\ I_{x_{1}}=\frac{\left(20 \times 200^{3}\right)}{12}+\left(4000 \times 55^{2}\right) \\ I_{x_{1}}=25.433 \times 10^{6} \mathrm{~mm}^{4} \\ I_{x_{2}}=\frac{b_{2} d_{2}^{3}}{12}+a_{2} h_{2}^{2} \\ h_{2}=210-155=55 \mathrm{~mm} \\ I_{x_{2}}=\frac{\left(200 \times 20^{3}\right)}{12}+\left(4000 \times 55^{2}\right) \\ I_{x_{2}}=12.233 \times 10^{6} \mathrm{~mm}^{4} \\ I_{X X}=I_{X_{1}}+I_{X_{2}} \\ =25.433 \times 10^{6}+12.233 \times 10^{6} \\ I_{X X}=37.666 \times 10^{6} \mathrm{~mm}^{4} \end{gathered}$ To find M.I. at $\mathrm{Y}-\mathrm{Y}$ axis $\begin{aligned} & \mathrm{I}_{\mathrm{YY}}=I_{Y_{1}}+I_{Y_{2}} \\ & I_{Y Y}=\left[\frac{d_{1} b_{1}^{3}}{12}+a_{1} h_{1}^{2}\right]+\left[\frac{d_{2} b_{2}^{3}}{12}+a_{2} h_{2}^{2}\right] \\ & h_{1}=h_{2}=0 \text { as symmetrical at Y axis } \\ & I_{Y Y}=\left[\frac{200 \times 20^{3}}{12}\right]+\left[\frac{20 \times 200^{3}}{12}\right] \\ & I_{Y Y}=13.4633 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	f) Ans.	A beam 100 mm wide and 250 mm deep is subjected to a shear force of 40 KN at a certain section find the maximum shear stress and draw the shear stress variation diagram. $\begin{gathered} q_{a v}=\frac{S}{A}=\frac{S}{b d}=\frac{40 \times 10^{3}}{250 \times 100} \\ q_{a v}=1.6 \mathrm{~N} / \mathrm{mm}^{2} \\ q_{\max }=1.5 \times q_{a v}=1.5 \times 1.6 \\ q_{\max }=2.4 \mathrm{~N} / \mathrm{mm}^{2} \end{gathered}$	01 01 01	
			01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	c) Ans.	for circular sec tion, $\begin{aligned} & I=\frac{\pi}{64} d^{4} \\ & y=\frac{d}{2} \\ & Z=\frac{I}{y}=\frac{\frac{\pi}{64} d^{4}}{\frac{d}{2}}=\frac{\pi}{32} d^{3} \end{aligned}$ for no tension condition, $\begin{aligned} & \sigma_{0}=\sigma_{b} \\ & \frac{P}{A}=\frac{M}{Z} \\ & \frac{P}{A}=\frac{P \times e}{Z} \\ & \frac{1}{A}=\frac{e}{Z} \\ & e=\frac{Z}{A}=\frac{\frac{\pi}{32} d^{3}}{\frac{\pi}{4} d^{2}} \\ & e=\frac{d}{8} \end{aligned}$ The core of a section is circle of radius $\mathrm{e}=\frac{\mathrm{d}}{8}$ or diameter $\frac{\mathrm{d}}{4}$ A rectangular column 150 mm wide and 100 mm thick carries a load of 150 kN at an eccentricity of 50 mm in the plane bisecting the thickness. Find the maximum and minimum intensities of stress. Also draw stress distribution diagram. Given data: $\begin{aligned} & \mathrm{b}=150 \mathrm{~mm}, \quad \mathrm{~d}=100 \mathrm{~mm} \\ & \mathrm{P}=150 \mathrm{kN}, \quad \mathrm{e}=50 \mathrm{~mm} \\ & \sigma_{\max }=? \quad \sigma_{\min }=? \end{aligned}$ Area of section, $\mathrm{A}=\mathrm{b} \times \mathrm{d}=150 \times 100=15 \times 10^{3} \mathrm{~mm}^{2}$	01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	d) Ans.	Direct stress, $\begin{aligned} & \sigma_{0}=\frac{\mathrm{P}}{\mathrm{~A}} \\ & \sigma_{0}=\frac{150 \times 10^{3}}{15 \times 10^{3}} \\ & \sigma_{0}=10 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned} \text { (C) }$ Bending Stress, $\begin{aligned} & \sigma_{\mathrm{b}}=\frac{\mathrm{M}}{\mathrm{Z}_{\mathrm{yy}}} \\ & \sigma_{\mathrm{b}}=\frac{\mathrm{P} \times \mathrm{e}}{\frac{\mathrm{db}}{}{ }^{2}} \\ & \sigma_{\mathrm{b}}=\frac{6 \times \mathrm{P} \times \mathrm{e}}{\mathrm{db}} \\ & \sigma_{\mathrm{b}}=\frac{6 \times 150 \times 10^{3} \times 50}{100 \times 150^{2}} \\ & \sigma_{\mathrm{b}}=20 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\max }=\sigma_{0}+\sigma_{\mathrm{b}}=10+20 \\ & \sigma_{\max }=30 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\min }=\sigma_{0}-\sigma_{\mathrm{b}}=10-20 \\ & \sigma_{\min }=10 \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{C}) \end{aligned}$ A square column $300 \mathrm{~mm} \times 300 \mathrm{~mm}$ carries an axial load of $\mathbf{2 0 0}$ kN . Find the position of 30 kN load acting along the axis bisecting the width of the cross section so that the stress developed at the other extreme of the column will be zero. $\begin{aligned} & \sigma_{0}=\frac{P_{1}}{A}+\frac{P_{2}}{A}=\frac{P_{1}+P_{2}}{A}=\frac{(200+30) \times 10^{3}}{300 \times 300} \\ & \sigma_{0}=2.55 \mathrm{~N} / \mathrm{mm}^{2} \\ & M=\left(30 \times 10^{3}\right) e \\ & Y=\frac{b}{2}=\frac{300}{2}=150 \mathrm{~mm} \\ & I=\frac{b^{4}}{12}=\frac{300^{4}}{12}=675 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	$1 / 2$ Diag. $1 / 2$ 02 $1 / 2$ $1 / 2$	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	b) Ans.	$\begin{aligned} & \mathrm{J}_{\text {Solid }}=\frac{\pi}{32} \mathrm{D}^{4} \\ & \begin{aligned} & \frac{\mathrm{T}_{\text {Hollow }}}{\mathrm{T}_{\text {Solid }}}=\frac{\frac{\pi}{32}\left(\mathrm{D}^{4}-\frac{\mathrm{D}^{4}}{2}\right)}{\frac{\pi}{32} \mathrm{D}^{4}} \\ & \quad=\frac{16 \mathrm{D}^{4}-\mathrm{D}^{4}}{16 \mathrm{D}^{4}} \\ & \frac{\mathrm{~T}_{\text {Hollow }}}{\mathrm{T}_{\text {Solid }}}=0.9375 \end{aligned} \end{aligned}$ A shaft is transmitting 150 kW at 200 RPM. If allowable shear stress is $80 \mathrm{~N} / \mathrm{mm}^{2}$ and allowable twist is 1.5^{0} per 4 m , find the diameter of shaft. Take $\mathrm{C}=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ Power $\mathrm{P}=150 \mathrm{~kW}=150 \times 10^{3} \mathrm{~W}$ Speed N=200rpm Shear stress $f_{S}=80 \mathrm{~N} / \mathrm{mm}^{2}$ $\theta=1.5^{0}=\frac{1.5 \times \pi}{180} \mathrm{rad}$ Length $\mathrm{L}=4 \mathrm{~m}=4000 \mathrm{~mm}$ $\mathrm{C}=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ Find $\mathrm{D}=$? Case i) $\begin{gathered} \mathrm{P}=\frac{2 \pi \mathrm{NT}}{60} \text { watts } \\ 150 \times 10^{3}=\frac{2 \times \pi \times 200 \times \mathrm{T}_{\text {mean }}}{60} \\ \mathrm{~T}_{\text {mean }}=7161.97 \mathrm{~N} . \mathrm{m} \\ \mathrm{~T}_{\text {mean }}=7161.97 \times 10^{3} \mathrm{~N} . \mathrm{mm} \end{gathered}$ Case ii) Diameter based on shear stress: $\mathrm{T}_{\text {mean }}=\mathrm{T}_{\max }$ Using relation, $\begin{aligned} & \mathrm{T}_{\max }=\frac{\pi}{16} \times \mathrm{f}_{\mathrm{s}} \times \mathrm{D}^{3} \\ & 7161.97 \times 10^{3}=\frac{\pi}{16} \times 80 \times \mathrm{D}^{3} \\ & \mathrm{D}=76.96 \mathrm{~mm} \end{aligned}$	01	04

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline 6 \& c)

Ans. \& \begin{tabular}{l}
Case iii) Diameter based on angle of twist

Using relation,
$$
\begin{aligned}
& \frac{\mathrm{T}_{\max }}{\mathrm{I}_{\mathrm{P}}}=\frac{\mathrm{C} \theta}{\mathrm{~L}} \\
& \frac{7161.97 \times 10^{3}}{\frac{\pi}{32} \times \mathrm{D}^{4}}=\frac{0.8 \times 10^{5} \times 1.5 \times \frac{\pi}{180}}{4000} \\
& \mathrm{D}=108.64 \mathrm{~mm}
\end{aligned}
$$

Note: - Adopt higher value of Diameter i.e. 108.64 mm because it will satisfy both shear stress and angle of twist.

Calculate the suitable diameter of the solid shaft to transmit 220 kW at $\mathbf{1 5 0} \mathbf{~ r p m}$ if the permissible shear stress is 68 MPa .

Given data:

Power $=220 \mathrm{~kW}=220 \times 10^{3} \mathrm{~W}$

Speed N = 150 rpm

Shear stress,
$$
\mathrm{f}_{\mathrm{s}}=68 \mathrm{MPa}=68 \mathrm{~N} / \mathrm{mm}^{2}
$$

find: D

i) Using the relation,
$$
\begin{gathered}
\mathrm{P}=\frac{2 \pi \mathrm{NT}}{60} \text { watts } \\
220 \times 10^{3}=\frac{2 \times \pi \times 150 \times \mathrm{T}}{60} \\
\mathrm{~T}=14005.6349 \mathrm{~N} . \mathrm{m} \\
\mathrm{~T}=14005.6349 \times 10^{3} \mathrm{~N}-\mathrm{mm}
\end{gathered}
$$

ii)Using the relation,
$$
\begin{aligned}
& \mathrm{T}=\frac{\pi}{16} \times \mathrm{f}_{\mathrm{s}} \times \mathrm{D}^{3} \\
& 14005.6349 \times 10^{3}=\frac{\pi}{16} \times 68 \times \mathrm{D}^{3} \\
& \quad \mathrm{D}=101.6 \mathrm{~mm}
\end{aligned}
$$

 \&

01

01

01

01

01

01
\end{tabular} \& 04

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	e) Ans.	A hollow shaft is of external diameter and internal diameter 400 mm and 200 mm respectively. Find the maximum torque is can transmit, if the angle of twist is not to exceed 1.5^{0} in a length of 10 m . take $\mathrm{C}=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ Given data: External diameter, $\mathrm{D}=400 \mathrm{~mm}$ Internal diameter, $\mathrm{d}=200 \mathrm{~mm}$ $\theta=1.5^{0}=1.5 \times \frac{\pi}{180}=0.026 \mathrm{rad}$ Length $\mathrm{L}=10 \mathrm{~m}=10 \times 10^{3} \mathrm{~mm}$ $\mathrm{C}=0.8 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ Find $\mathrm{T}=$? By using torsional relation $\begin{aligned} & \frac{T}{I_{P}}=\frac{C \theta}{L} \\ & T=I_{P} \times \frac{C \theta}{L}=\frac{\pi}{32}\left(D^{4}-d^{4}\right) \times \frac{C \theta}{L} \\ & T=\frac{\pi}{32}\left(400^{4}-200^{4}\right) \times \frac{0.8 \times 10^{5} \times 0.026}{10 \times 10^{3}} \\ & T=\frac{\pi}{32} \times 2.4 \times 10^{10} \times 0.208 \\ & T=493480220.1 \mathrm{~N} . \mathrm{mm} \\ & T=493.48 \mathrm{kN.m} \end{aligned}$ (i) Difference between pure bending and ordinary bending (ii) Write the equation of torque transmitted by the O.C. shaft giving meaning and unit of each term.	01 01 01 01	04

