

Subject: Strength of Materials

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q 1	a)	Attempt any <u>SIX</u> of the following:		12
	i)	Define elasticity and modulus of elasticity.		
	Ans.	Elasticity: - Elasticity is the property of material by virtue of it can regain its original shape and size after removal of deforming force.	01	02
		Modulus of Elasticity: - It is defined as the ratio of stress to strain within elastic limit.	01	
	ii)	Define angle of 'obliquity'.		
	Ans.	Angle of 'Obliquity' : - The angle that the line of action of the resultant stress makes with the normal to the plane is called the angle of obliquity	02	02
	iii)	State the parallel axis theorem.		
	Ans.	It states that the M. I. of a plane section about any axis parallel to the centroidal axis is equal to the M. I. of the section about the centroidal axis plus the product of the area of the section and the square of the distance between the two axes.	02	02
		Area A Area A h h Q		

Que.	Sub.	Model Answers	Marks	Total
No. 1	Que.	MI @ AB	IVIAIKS	Marks
-				
		$I_{AB} = I_G + Ah^2$		
	iv)	What do you mean by eccentric load? Show by simple sketch		
		eccentrically applied load.		
	Ans.	Eccentric load: - The load whose line of action does not coincide	01	
		with the axis of the member is called as eccentric load.	UI	
		(i) Elevation	01	02
		$X \xrightarrow{A} \xrightarrow{Y_{1}} \xrightarrow{B} \xrightarrow{A} \xrightarrow{A} \xrightarrow{G_{1}} \xrightarrow{E} \xrightarrow{E} \xrightarrow{A} \xrightarrow{G_{1}} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} \xrightarrow{E} $		
	v)	State any four assumptions made in the theory of pure torsion.		
	Ans.	Assumptions in the Theory of Pure Torsion.		
	1 1150	1. The material of the shaft is homogenous and isotropic and		
		follows Hook's law.		
		2. The twist along the shaft is uniform.		
		3. The shaft is straight and having uniform circular cross section throughout.	½ mark each	
		 Cross sections of the shaft which are plane before twist remain plane after twist. 	(Any four)	02
		5. Stresses do not exceed the proportional limit.		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	vi)	Define bulk modulus.		THUR O
	Ans.	Bulk Modulus: -		
		When a body is subjected to three mutually perpendicular like stresses		
		of same intensity then the ratio of direct stress to the corresponding	02	02
		volumetric strain of the body is constant and is called as bulk		
		modulus.		
	vii)	Define hoop stress. State the formula.		
	,	Hoop stress the stress which act in the tangential direction to the		
	Ans.	circumference of the cylinder called as hoop stress or circumfertial	01	
		stress		
		Heen Stress		02
		Hoop Stress, Pd		
		$\sigma_{\rm c} = \frac{Pd}{2t}$	01	
		Where,	01	
		$\sigma_{\rm c}$ = Hoop stress Or Circumferential stress		
		P = Internal liquid pressure d = Internal daimeter of thin cylinder		
		t = Thickness		
	viii)	State middle third rule.		
		In rectangular section for no tension condition the load must lie within		
	Ans.	the middle third shaded area of size $\frac{b}{3}$ and $\frac{d}{3}$. This is known as	02	02
		middle third rule.		

Que.	Sub.	Model Answers	Marks	Total
No. Q. 1	Que. b)	Attempt any <u>Two</u> of the following:		Marks 08
Q. I	i)	A metal rod 24 mm diameter and 2 meter long is subjected to an axial pull of 40 kN. If the elongation of the rod is 0.5mm, find the stress induced and the value of Young's modulus.		00
	Ans.	Given: $d = 24mm, L = 2m$ $P = 40kN = 40 \times 10^{3} N$ $\delta l = 0.5mm$		
		$\sigma = ? E = ?$ Area, $A = \frac{\pi}{4}d^{2}$		
		$A = \frac{\pi}{4} (24)^{2}$ $\boxed{A = 452.389 mm^{2}}$ Stress (\sigma), $\sigma = \frac{P}{A}$ 40×10^{3}	01	
		$\sigma = \frac{40 \times 10^{3}}{452.389}$ $\sigma = 88.419 N/mm^{2}$	01	
		Young's mod ulus(E) $E = \frac{PL}{A\delta l}$ $40 \times 10^{3} \times 2000$	01	04
		$E = \frac{40 \times 10^{3} \times 2000}{452.389 \times 0.5}$ E = 353.677 × 10 ³ N / mm ²	01	
	ii) Ans.	A simply supported beam of span 9.75m is carrying full span u.d.l. of 10 kN/m. What is the magnitude and position of maximum bending moment developed? To find the support recation, $\sum Fy = 0$		
		$R_{A} + R_{B} - (10 \times 9.75) = 0$ $R_{A} + R_{B} = 97.5KN \qquad \dots $	01	

Subject: Strength of Materials

~	Sub. Que.	Model Answers	Marks	Total Marks
1		Taking moment at A, $\sum M_{A} = 0$ $R_{A} \times 0 + (10 \times 9.75) \times \frac{9.75}{2} - R_{B} \times 9.75 = 0$ $475.312 = 9.75 \times R_{B}$ $R_{B} = \frac{475.312}{9.75}$ $R_{B} = 48.75KN$ Put R_{B} in (1) eq^{n} $R_{A} + R_{B} = 97.5$ $R_{A} + 48.75 = 97.5$ $R_{A} = 48.75KN$ SF calculation,	01	
		$S.F_{A_{k}} = 0$ $S.F_{A_{k}} = 48.75$ $S.F_{B_{k}} = 48.75 - (10 \times 9.75)$ $S.F_{B_{k}} = -48.75$ $S.F_{B_{k}} = 0$ $As S.F. is zero at pt. C$ $To find pt of contra shear$ $S.F_{C} = 0$ $S.F_{C} = 48.75 - (10 \times \chi) = 0$ $10\chi = 48.75$ $\boxed{\chi = 4.875m}$ $B.M Calculation,$ $B.M_{A} = 0$ $B.M_{B} = 0$ $B.M_{C} = 48.75 \times 4.875 - \left(10 \times 4.875 \times \frac{4.875}{2}\right)$ $\boxed{B.M_{C} = 118.828 \ kN - m}$ $B.M at C is the max B.M. as at C$ $S.F. is zero$	BMD 1 Mark	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	iii)	A circular beam of 120mm diameter is simply supported over a span of 10m and carries u.d.l of 1000 N/m. find the maximum bending stress produced.		Iviarks
	Ans.	Given data:		
		d = 120mm, L = 10m = 10000mm		
		w = 1000 N/m		
		$w = \frac{1000}{1000} N/mm = 1 N/mm$		
		$\sigma_b = ?$		
		Max. Bending Moment, (M)		
		$M = \frac{wL^2}{8} = \frac{1 \times (10000)^2}{8}$	01	
		$M = 12.5 \times 10^6 N - mm$ <i>Moment of Inertia</i> ,		
		$I = \frac{\pi}{64}d^4 = \frac{\pi}{64} \times (120)^4$		
			01	
		$I = 10.178 \times 10^6 mm^4$		04
		$y = \frac{d}{2} = \frac{120}{2} = 60mm$	01	04
		$y = y_c = y_t = 60mm$ <i>Max. bending stress</i> ,		
		$\sigma_b = \frac{M}{I} \times y$		
		$\sigma_b = \frac{12.5 \times 10^6}{10.178 \times 10^6} \times 60$		
			01	
		$\sigma_b = 73.688 N/mm^2$	01	
2		Attempt any <u>FOUR</u> of the following:		16
	a)	i) What is meant by modular ratio?		
		ii) State any four assumptions made in Euler's theory.		
	Ans.	i) Modular Ratio: The ratio of modulus of elasticity of two different materials is called as modular ratio. It is denoted by 'm'.	02	
		$m = \frac{E_1}{E_2} \qquad \qquad E_1 > E_2$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2		Following are the assumptions in the Euler's theory.		
		a) The material of the column is perfectly homogenous and isotropic.		
		b) The column is initially perfectly straight and is axially loaded.	¹ /2 marks	04
		c) The cross section of the column is uniform.	each (any	
		d) The length of column is very large compared to the lateral dimensions.	four)	
		e) The self-weight of column is neglected.		
		f) The column will fail by buckling only.		
	b)	A circular steel bar of 10 mm diameter and 1.2m long is subjected to a compressive load in testing machine. Assuming both ends hinged, calculate Euler's crippling load. Also calculate safe load by considering factor of safety as 3. Take $E=2x10^5$ N/mm ² .		
	Ans. $d =$	Given data:		
		d = 10mm, L = 1.2m = 1200mm,		
		$fos = 3, E = 2 \times 10^5 N / mm^2$		
		Pcr = ? $safe load = ?$		
		For column with both ends hinged		
		Le = l = 1200mm	01	
		M.I. for circular section,	01	
		$I = \frac{\pi}{64} d^4$		
		$I = \frac{\pi}{64} (10)^4$		
		$\boxed{I = 490.873 \ mm^4}$ Eulers crippling load,	01	
		$P_{cr} = \frac{\pi^2 EI}{Le^2}$		04
		$P_{cr} = \frac{\pi^2 \times 2 \times 10^5 \times 490.873}{(1200)^2}$		
		$P_{cr} = 672.878N$	01	

Subject: Strength of Materials

Que. No	Sub. Oue	Model Answers	Marks	Total Marks
<u>No.</u> 2	Que. c)	Safe load = $\frac{crippling \ load}{F.O.S.}$ Safe load = $\frac{672.878}{3}$ Safe load = $224.292N$ A steel cube block of 50mm side is subjected to a force of 6 kN (tensile) along X-direction; 8 kN. (compressive) along Y direction and 4 kN (tensile) along Z direction. Determine change in the volume of the block. Take E=200 GPa and $m = \frac{10}{3}$. Given data: l = b = t = 50mm Px = 6kN = 6000N (Tensile) Py = 8kN = 8000N (comprtessive) Pz = 4kN = 4000N (Tensile)	01	Marks
		$E = 200Gpa = 200 \times 10^{3} N / mm^{2}$ $m = \frac{10}{3}, \qquad \mu = 0.3$ Find : $\delta v = ?$ Stress along x direction $\sigma_{x} = \frac{Px}{A} = \frac{6000}{50 \times 50} = 2.4N / mm^{2}$ Stress along y direction	01	
		$\sigma_{y} = \frac{Py}{A} = \frac{8000}{50 \times 50} = -3.2 N / mm^{2} (compressive)$ Stress along z direction $\sigma_{z} = \frac{Pz}{A} = \frac{4000}{50 \times 50}$	01	
		$\sigma_{z} = 1.6N / mm^{2}$ original volume (V) $V = L \times b \times t$ $V = 50 \times 50 \times 50$ $V = 125 \times 10^{3} mm^{2}$	01	

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	Que.	For triaxial stress system $e_{v} = \frac{\sigma_{x} + \sigma_{y} + \sigma_{z}}{E} (1 - 2\mu)$	01	IVIAINS
		$\frac{\delta v}{V} = \frac{\sigma_x + \sigma_y + \sigma_z}{E} (1 - 2\mu)$ $\frac{\delta v}{125 \times 10^3} = \frac{2.4 - 3.2 + 1.6}{200 \times 10^3} (1 - 2 \times 0.3)$ $\frac{\delta v}{125 \times 10^3} = 1.6 \times 10^{-6}$ $\delta v = 1.6 \times 10^{-6} \times 125 \times 10^3$ $\boxed{\delta v = 0.2mm^3}$ Change in volume is = 0.2mm ³	01	04
	d)	A concrete column 300mm X 300mm is reinforced with 4 bars of 20mm diameter and carries a compressive load of 400kN. The modular ratio is 15. Calculate the stresses in steel and concrete. Also calculate the load shared by each material.		
	Ans.	Given data: Area of concrete column, $A = 300 \times 300mm$ Diameter of steel bar,		
		d = 20mm No. of steel bar, $n = 4$ Load, $p = 400kN = 400 \times 10^{3} N$		
		m = 15 $\sigma_c = ? \qquad \sigma_s = ? \qquad P_c = ? \qquad P_s = ?$ Area of steel bar(A _s)		
		$A_{s} = n \times \frac{\pi}{4} d^{2}$ $A_{s} = 4 \times \frac{\pi}{4} 20^{2}$		
		$A_s = 1256.637 mm^2$		

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	Que.	Area of concrete (A_c) ,		WILLING
		$A_{c} = 300 \times 300 - A_{s}$		
		$A_c = 90000 - 1256.637$		
		$A_c = 88743.363 mm^2$	01	
		as,		
		$\sigma_s = m \times \sigma_c$		
		$\sigma_s = 15\sigma_c$		
		also,		
		$P = P_s + P_c$		
		$400 \times 10^3 = \sigma_s A_s + \sigma_c A_c$		
		Put,		
		$\sigma_s = 15\sigma_c$		
		$400 \times 10^{3} = (15 \times 1256.637 \times \sigma_{c}) + (88743.363 \times \sigma_{c})$		
		$400 \times 10^3 = (18849.555 + 88743.363)\sigma_c$		
		$400 \times 10^3 = 107592.918 \times \sigma_c$		
		$\sigma_c = 3.717 N / mm^2$	01	
			UI	
		As,		
		$\sigma_s = 15\sigma_c$		
		$\sigma_s = 15 \times 3.717$		
		$\sigma_s = 55.755 N / mm^2$	01	
		Load shared steel		
		$P_s = \sigma_s A_s$		04
		$P_s = 55.755 \times 1256.637$		
		$P_s = 70063.795N$		
		$P_{s} = 70.0637 kN$	1/2	
		Load shared by econcrete		
		$P_c = \sigma_c A_c$		
		$P_c = 3.717 \times 88743.363$		
		$P_c = 329859.080N$		
		$\frac{c}{P_c = 329.859kN}$	1/2	

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	e)	A cantilever beam of length 10m carries two points load of magnitude 20kN and 30 kN at 4m and free end respectively. Draw the S.F.D and B.M.D.		
	Ans.	Reaction at fixed end $R_A - 20 - 30 = 0$ $R_A = 50kN$ S.F. calculation		
		$S.F{A_L} = 0$ $S.F{A_R} = 50 \ kN$ $S.F{B_L} = 50 \ kN$	01	
		$S.F_{B_{R}} = 50 - 20 = 30 \ kN$ $S.F_{C_{L}} = 50 - 20 = 30 \ kN$ $S.F_{C_{R}} = 50 - 20 - 30 = 0$ BM calculation,	01	
		$B.M_{-c} = 0$ $B.M_{-B} = -30 \times 6$ $B.M_{-B} = -180 \ kN - m$ $BM_{A} = -30 \times 10 - 20 \times 4$ $B.M_{-A} = -380 \ kN - m$		04
		$A = \frac{20 \text{ KN}}{4 \text{ m}} = \frac{30 \text{ KN}}{6 \text{ m}} = c$ $RA = 50$		
		A B SFD C C C SFD	01	
			01	
		380 KN.M BMD		

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
110.	Que.	OR		IVIGINS
	f)	OR S.F. calculation S.F. $_{a_{k}} = 0$ S.F. $_{a_{k}} = 50 \text{ kN}$ S.F. $_{b_{k}} = 50 - 20 = 30 \text{ kN}$ S.F. $_{c_{k}} = 50 - 20 = 30 \text{ kN}$ S.F. $_{c_{k}} = 50 - 20 - 30 = 0$ BM calculation, B.M. $_{c} = 0$ B.M. $_{s} = -30 \times 4$ B.M. $_{s} = -120 \text{ kN} - m$ BM $_{A} = -30 \times 10 - 20 \times 6$ B.M. $_{A} = -420 \text{ kN} - m$ The set of the	01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	Ans.	Internal daimeter d = 1.2 m = 1200mm Thickness, t = 24 mm Tensile stress, $\sigma = 90MPa = 90N / mm^2$ Pr essure of gas, p = ? As tensile stress = Hoop Stress = $\sigma_c = 90N / mm^2$ $\sigma_c = \frac{P.d}{2t}$ $P = \frac{90 \times 2 \times 24}{1200}$ $P = 3.6N / mm^2$	02	04
3	a)	Attempt any <u>FOUR</u> of the following: Draw S.F. and B.M. diagram for simply supported beam of span		16
	Ans.	'L' carrying a central point load 'W'. State the value of maximum shear force and maximum bending moment.		
		$ \begin{array}{c} A \\ $		
		$\begin{array}{c} \frac{W}{2} \\ A \\ \end{array} \\ \begin{array}{c} \oplus \\ & \oplus \\ & & \oplus \\ & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & \oplus \\ & & & \oplus \\ & & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & & \oplus \\ & & & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & & & & \oplus \\ & & & & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & & & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & & & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & & & & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & & & & & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & & & & & & & & \oplus \\ \end{array} \\ \begin{array}{c} \oplus \\ & & & & & & & & & & & & & & & & & &$	01	
		WL H H	01	
		A B B C C C C C C C C C C C C C C C C C	01	04
		$\frac{2}{\text{Max. B.M} = \frac{WL}{2}}$	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	b)	Define point of contra flexure. How is the point of contra flexure located for a beam?		IVIAIKS
	Ans.	Point of contra-flexure: -		
		The point at which bending moment diagram changes the sign from positive to negative or vice versa or the point at which BM is zero is called as point of contra-flexure	02	
		Location of point of contra-flexure		
		i) At the point of contra-flexure B.M is zero.	01	0.4
		ii) Take B.M at the point of contra-flexure and equate with zero.	01	04
		iii) The distance (location) of point of contra-flexure will be find from either end of beam.		
		$A \qquad \qquad$	01	
		Point D, B.M. = 0 \therefore Point D is Point of Contraflexure. Point D is at Z m from A		
	c)	A simply supported beam of 3 m span carries two point loads of 5 kN each at 1 m and 2 m from the left end A. Draw the shear force and bending moment diagram.		
	Ans.			

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3		Step i) To find support reactions, \therefore adding is symmetical $R_A = R_D = 5kN$ Step ii) SF calculations $S.F_{\cdot_A} = 5 \text{ kN}$	1/2	
		$S.F_{\cdot B_{L}} = 5 \text{ kN}$ $S.F_{\cdot B_{R}} = +5 - 5 = 0 \text{ kN}$ $S.F_{\cdot C_{L}} = 0 \text{ kN}$ $S.F_{\cdot C_{R}} = -5 \text{ kN}$	1/2	
		$S.F_{\cdot D_{L}} = -5 \text{ kN}$ $S.F_{\cdot D} = 0 \text{ kN}$ $Step \text{ iii) } B.M. \text{ Calculation,}$ $\therefore \text{ is supports are simple}$ $B.M_{\cdot A} = 0$ $B.M_{\cdot D} = 0$ $B.M_{\cdot B} = 5 \times 1 = +5 \text{ kN-m}$ $B.M_{\cdot C} = 5 \times 1 = +5 \text{ kN-m}$	01	
		$A = \frac{5 \text{KN}}{1 \text{ m}} \frac{5 \text{KN}}{2 \text{ m}} \frac{5 \text{KN}}{2 \text{ m}} \frac{5 \text{KN}}{2 \text{ m}} R_D$ $R_A = \frac{3 \text{ m}}{3 \text{ m}} R_D$ $S = \frac{5}{5} \frac{5}{4 \text{ m}} \frac{1}{4 \text{ m}} R_D$ $S = \frac{5}{5 \text{ m}} \frac{5}{5 \text{ m}} \frac{1}{5 $	01	04
		A B BMD C D	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	d)	A beam 6 m long rests on two supports 5 m apart. The right end is overhang by 1 m. the beam carries a u.d.l. of 5 kN/m over the entire length of the beam. Draw S.F. and B. M. diagram.		
	Ans.	To find support reactions, $\sum F_{Y} = 0$ $R_{A} - (5 \times 6) + R_{B} = 0$ $R_{A} + R_{B} = 30 \dots \dots (i)$ Taking moment at A $(R_{A} \times 0) + \left(5 \times 6 \times \frac{6}{2}\right) - R_{B} \times 5 = 0$ $R_{B} \times 5 = 90$ $\boxed{R_{B} = 18 \ kN}$ Put R _B in equation (i) $R_{A} + R_{B} = 30$ $R_{A} + 18 = 30$ $\boxed{R_{A} = 12 \ kN}$ S.F. Calculation,		
		$S.F_{\cdot A_{L}} = 0$ $S.F_{\cdot A_{R}} = 12 \text{ kN}$ $S.F_{\cdot B_{L}} = 12 - (5 \times 5) = -13 \text{ kN}$ $S.F_{\cdot B_{R}} = 12 - (5 \times 5) + 18 = 5 \text{ kN}$ $S.F_{\cdot C_{L}} = 12 - (5 \times 6) + 18 = 0$ $S.F_{\cdot C_{R}} = 0$ Shear force is zero at pt. D and the pt. D is at 'x' m from A $S.F_{\cdot D} = 0$ $S.F_{\cdot D} = 12 - 5 \times x = 0$ $S.F_{\cdot D} = 12 - 5 \times x = 0$	SF cal. 01 SFD and BMD (1 mark each)	04
		$\therefore 5 \times x = 12$ $x = 2.4 \text{ m}$ $B.M. \text{ Calculation,}$ $B.M_{\text{-A}} = 0$ $B.M_{\text{-D}} = (12 \times 2.4) - \left(5 \times 2.4 \times \frac{2.4}{2}\right)$ $B.M_{\text{-D}} = 5 \text{ kN} - m$	BM cal. 01	

Subject: Strength of Materials

Que.	Sub.	Model Answers	Marks	Total
No. 3	Que.	$B.M_{.D} = 14.4 \text{ kN-m}$		Marks
		_		
		$B.M_{\cdot_B} = (12 \times 5) \cdot \left(5 \times 5 \times \frac{5}{2}\right)$		
		$B.M_{.B} = -2.5 \ kN - m$		
		$B.M{C} = 0$		
		<i>B.M.</i> is zero at pt. E		
		Pt. E is at Y m from A		
		$B.M_{\cdot E} = (12 \times Y) - \left(5 \times Y \times \frac{Y}{2}\right) = 0$		
		$(12 \times Y) - (2.5Y^2) = 0$		
		Y = 4.8 m from A		
	e)	A point in a strained material stresses are subjected to two		
		mutually perpendicular tensile stresses of 200 Mpa and 100 Mpa. Determine the intensities of normal, shear a resultant stresses on a		
		plane inclined at 30° with the axis of minor tensile stress.		
	Ans.	Given data:		
		$\sigma_{\rm x} = 200 MPa, \qquad \sigma_{\rm x} = 200 MPa$		
		$ heta = 90^{\circ} - 30^{\circ} = 60^{\circ}$ $ au = 0$		
		1) Analytical Method		
		$\sigma_{\rm n} = ?$ $\sigma_{\rm t} = ?$ $\sigma_{\rm R} = ?$		
		$\sigma_{\rm n} = \frac{\sigma_{\rm x} + \sigma_{\rm y}}{2} + \frac{\sigma_{\rm x} - \sigma_{\rm y}}{2} \cos 2\theta + \tau \sin 2\theta$	01	
		$\sigma_{\rm n} = \frac{200 + 100}{2} + \left(\frac{200 - 100}{2}\right) \cos(2 \times 30) + 0$		
		$\sigma_{\rm n} = 125 \text{ N/mm}^2$		
		$\sigma_{t} = \frac{\sigma_{x} - \sigma_{y}}{2} \sin 2\theta + \tau \cos 2\theta$	01	
		$\sigma_{\rm t} = \left(\frac{200 - 100}{2}\right) \sin\left(2 \times 30\right) + 0$		
		$\sigma_{\rm t} = 43.301 {\rm N/mm^2}$	01	

Subject: Strength of Materials

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3		$y_{2} = \frac{d_{2}}{2} + 200 = \frac{20}{2} + 200 = 210 mm$ $\overline{Y} = \frac{(A_{1}Y_{1}) + (A_{2}Y_{2})}{A_{1} + A_{2}}$ $\overline{Y} = \frac{(4000 \times 100) + (4000 \times 210)}{(4000 + 4000)}$ $\overline{\overline{Y} = 155mm}$ To find M.I. about X - X $I_{xx} = I_{x_{1}} + I_{x_{2}}$ $I_{x_{1}} = \frac{b_{1}d_{1}^{3}}{12} + a_{1}h_{1}^{2}$	01	
		$h_{1} = 155 - 100 = 55mm$ $I_{x_{1}} = \frac{(20 \times 200^{3})}{12} + (4000 \times 55^{2})$ $\boxed{I_{x_{1}} = 25.433 \times 10^{6} mm^{4}}$ $I_{x_{2}} = \frac{b_{2}d_{2}^{3}}{12} + a_{2}h_{2}^{2}$ $h_{2} = 210 - 155 = 55mm$ $I_{x_{2}} = \frac{(200 \times 20^{3})}{12} + (4000 \times 55^{2})$ $\boxed{I_{x_{2}} = 12.233 \times 10^{6}mm^{4}}$		04
		$I_{XX} = I_{X_1} + I_{X_2}$ = 25.433 × 10 ⁶ + 12.233 × 10 ⁶ $\boxed{I_{XX} = 37.666 \times 10^6 mm^4}$ To find M.I. at Y-Y axis $I_{YY} = I_{Y_1} + I_{Y_2}$ $I_{YY} = \left[\frac{d_1 b_1^3}{12} + a_1 h_1^2\right] + \left[\frac{d_2 b_2^3}{12} + a_2 h_2^2\right]$ h = h = 0 as symmetrical at Y axis	02	
		$h_{1} = h_{2} = 0 \text{ as symmetrical at Y axis}$ $I_{YY} = \left[\frac{200 \times 20^{3}}{12}\right] + \left[\frac{20 \times 200^{3}}{12}\right]$ $\boxed{I_{YY} = 13.4633 \times 10^{6} mm^{4}}$	01	

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	Que.	Attempt any <u>FOUR</u> of the following:		16
	a)	Find the moment of inertia of a square of side 'a' about its outer edge.		
	Ans.	i) For a square of side 'a'	01	
		$I_{xx} = \frac{a \cdot a^3}{12} = \frac{a^4}{12}$	01	
		ii) Area of section,		
		$\mathbf{A} = \mathbf{a} \times a = a^2$		
		<i>iii</i>) The outer edge is		
		paralle to XX axis		
		Distance between XX axis		
		and Outer edge is	01	04
		$h = \frac{a}{2}$	U1	
		<i>iv</i>) Using the parallel axis theorom,		
		M.I. about parallel axis =		
		M.I. about centroidal axis $+ Ah^2$		
		$I = I_{xx} + Ah^2$		
		$=\frac{a^4}{12}+a^2\times\left(\frac{a}{2}\right)^2$		
		$= \frac{a^4}{12} + \frac{a^4}{4}$		
			02	
		$I = \frac{a^4}{3}$		
	b)	A channel section 100cm × 100cm × 30cm thick. Find the moment of inertia about centroidal axis X-X and Y-Y.		
	Ans.	$\overline{X} = \frac{a_1 x_1 + a_2 x_2 + a_3 x_3}{a_1 + a_2 + a_3}$	01	
		$- (1000 \times 300) \times 500 + (1000 \times 300) \times 500 + (400 \times 300) \times 150$	VI	
		$(1000 \times 300) + (1000 \times 300) + (400 \times 300)$		
		$\overline{X} = 441.667mm$		
		$I_{XX} = \frac{BD^3}{12} - \frac{bd^3}{12}$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4		$I_{XX} = \frac{1}{12} \Big[\Big(1000 \times 1000^3 \Big) - \Big(700 \times 400^3 \Big) \Big]$ $I_{XX} = 7.96 \times 10^{10} mm^4$ $I_{YY} = I_{Y_1Y_1} + I_{Y_2Y_2} + I_{Y_3Y_3}$ $I_{Y_1Y_1} = I_{Y_3Y_3} = \frac{1}{12} \Big(bd^3 \Big) + Ah^2$ $I_{Y_1Y_1} = I_{Y_3Y_3} = \frac{1}{12} \times \Big(300 \times 1000^3 \Big) + \Big(1000 \times 300 \Big) \times 58.333^2$	01	04
	c)	$\begin{split} \overline{I_{Y_1Y_1} = I_{Y_3Y_3} = 2.602 \times 10^{10} mm^4} \\ I_{Y_2Y_2} &= \frac{1}{12} (bd^3) + Ah^2 \\ &= \frac{1}{12} \times (400 \times 300^3) + (400 \times 300) \times 291.667^2 \\ &= 5.308 \times 10^9 mm^4 \\ I_{YY} &= 2.602 \times 10^{10} + 5.308 \times 10^9 + 2.602 \times 10^{10} \\ \hline \overline{I_{YY}} &= 5.7348 \times 10^{10} mm^4 \end{split}$ An isosceles triangular section ABC has base width 80 mm and height 60 mm. Determine the M.I. of the section about the C. G. of	02	
	Ans.	the section and the base BC. I _{base} = $\frac{bh^3}{12} = \frac{80 \times 60^3}{12}$	01	
		$\begin{bmatrix} I_{base} = 1440000 mm^4 \end{bmatrix}$	01	04
		$I_{xx} = \frac{bh^{3}}{36} = \frac{80 \times 60^{3}}{36}$ $\boxed{I_{xx} = 480000mm^{4}}$	01 01	
	d)	A hole of 100 mm diameter cut from a rectangular plate 600 mm wide and 400 mm deep. The center of hole is at 160 mm from the edge on an axis bisecting shorter side. Find M.I. of remaining plate about X-X and Y-Y axis.		
	Ans.	$\overline{X} = \frac{a_1 x_1 - a_2 x_2}{a_1 - a_2} = \frac{(600 \times 400) \times 300 - \left(\frac{\pi}{4} \times 100^2\right) \times 160}{(600 \times 400) - \left(\frac{\pi}{4} \times 100^2\right)}$	01	
		$\overline{\overline{X}} = 304.736mm$		

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	$I_{XX} = \left(\frac{BD^{3}}{12}\right) - \left(\frac{\pi}{64}d^{4}\right)$ $I_{XX} = \left(\frac{600 \times 400^{3}}{12}\right) - \left(\frac{\pi}{64} \times (100)^{4}\right)$ $\boxed{I_{XX} = 3195091261mm^{4}}$ $I_{YY} = \left(\frac{DB^{3}}{12} + Ah^{2}\right) - \left(\frac{\pi}{64}d^{4} + Ah^{2}\right)$	01 01	04
	e)	$I_{YY} = \left(\frac{400 \times 600^{3}}{12} + (600 \times 400) \times 4.736^{2}\right) - \left(\frac{\pi}{64}(100)^{4} + \frac{\pi}{4}(100)^{2} \times 144.736^{2}\right)$ $I_{YY} = 7035945178mm^{4}$ State any four assumptions made in the theory of simple bending. Assumptions	01	
	Ans.	 Assumptions The material of the beam is homogeneous and isotropic and follows the Hooke's Law. The transverse section of the beam which is plane before bending will remain plane after bending. Young's modulus for the material is same for tension and compression Each layer is free to expand or contract independently. The beam in initially straight and of constant cross section. 	1 mark each (any four)	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	Que.	Attempt any <u>FOUR of the following:</u>		16
	a) Ans.	A timber beam has a cross section 120 mm X 200 mm. It is simply supported over a span of 4 m and carries a u.d.l. of 1 kN/m over the entire span. Calculate the maximum bending stress induced in beam and the radius of curvature to which the beam will bend at the section.		
	Ans.	$\frac{M}{I} = \frac{\sigma}{v} = \frac{E}{R}$	01	
		$M = \frac{wL}{8} = \frac{1 \times 4^2}{8} = 2 \times 10^6 N - mm$	1/2	
		$I = \frac{1}{12}bd^{3} = \frac{1}{12} \times 120 \times 200^{3} = 80 \times 10^{6} mm^{4}$ $Y = \frac{d}{2} = \frac{200}{2} = 100 mm$	1/2	
		$\sigma_b = \left(\frac{M}{I}\right)Y = \frac{2 \times 10^6}{80 \times 10^6} 100 = 2.5N / mm^2$	01	04
		$\begin{vmatrix} \frac{M}{I} = \frac{\sigma}{y} & OR & \frac{\sigma}{y} = \frac{E}{R} \\ R = \frac{E}{M} \times I & OR & R = \frac{E}{\sigma} \times Y \end{vmatrix}$		
		$R = \frac{E}{(2 \times 10^6)} \times (80 \times 10^6) \qquad OR \qquad R = \frac{E}{2.5} \times 100$ $\boxed{R = 40E} \qquad OR \qquad \boxed{R = 40E}$	01	
		Note: - If suitable value of E is assume should be consider		
	b)	A circular section of diameter 'd' is subjected to load 'P' eccentric to the axis the eccentricity of load is 'e' obtain the limit of eccentricity such that no tension is induced at the section.		
	Ans.	To find : e=? Direct stress, $\sigma_0 = \frac{P}{A}$	01	
		Bending stress, $\sigma_{\rm b} = \frac{M}{Z}$		

Subject: Strength of Materials

Oue	Sub			Total
No.	Que.	Model Answers	Marks	Marks
Que. No. 5	Sub. Que.	Model Answers for circular section, $I = \frac{\pi}{64} d^4$ $y = \frac{d}{2}$ $Z = \frac{I}{y} = \frac{\frac{\pi}{64} d^4}{\frac{d}{2}} = \frac{\pi}{32} d^3$ for no tension condition, $\sigma_0 = \sigma_b$ $\frac{P}{A} = \frac{M}{Z}$ $\frac{P}{A} = \frac{P \times e}{Z}$ $\frac{1}{A} = \frac{e}{Z}$ $e = \frac{Z}{A} = \frac{\frac{\pi}{32} d^3}{\frac{\pi}{4} d^2}$ $\boxed{e = \frac{d}{8}}$ The core of a section is	01 01 01	Total Marks 04
	c)	circle of radius $e = \frac{d}{8}$ or diameter $\frac{d}{4}$ A rectangular column 150mm wide and 100mm thick carries a load of 150 kN at an eccentricity of 50mm in the plane bisecting the thickness. Find the maximum and minimum intensities of stress. Also draw stress distribution diagram.		
	Ans.	Given data: b = 150 mm, d = 100 mm P = 150 kN, e = 50 mm $\sigma_{\text{max}} = ? \sigma_{\text{min}} = ?$ Area of section, $A=b \times d=150 \times 100=15 \times 10^3 \text{ mm}^2$		

Subject: Strength of Materials

Subject: Strength of Materials

Que.	Sub.	Model Answers	Marks	Total Marks
No. 5	Que.	$\sigma_b = \left(\frac{M}{I}\right)Y$ $\sigma_b = \left(\frac{(30 \times 10^3)e}{675 \times 10^6}\right) \times 150 = (6.67 \times 10^{-3})e$	02	04
		For no tension condition, $\sigma_0 = \sigma_b$ $2.55 = (6.67 \times 10^{-3})e$ $\boxed{e = 382.5mm}$	01	
	e)	A square pillar is 600mm X 600mm in section. At what eccentricity a point load of 6000 kN is placed on one of the centroidal axis of the section so as to produce no tension in the section.		
	Ans.	For no tension condition, $\sigma_0 = \sigma_b$	01	
		$\frac{P}{A} = \frac{M}{Z}$ $\frac{P}{A} = \frac{P.e.Y}{I}$	01	
		$\overline{A} = \overline{I}$ $e = \frac{I}{A.Y}$ $= \frac{\left(\frac{600^4}{12}\right)}{(600 \times 600) \times 300}$	01	04
		e = 100 mm	01	
	f)	A mild steel flat 50mm wide and 5mm thick is subjected to load 'P' acting in the plane bisecting the thickness at a point 10mm away of the centroid of the section. If the tensile stress is not to exceed 150 MPa, calculate the magnitude of 'P'.		
	Ans.	Given data: b = 50mm, $d = 5mm$, e = 10mm, $\sigma_{max} = 150MPa = 150 N/mm^2$ (tensile) P = ?		

Subject: Strength of Materials

Que.	Sub.		Maulaa	Total
No.	Que.	Model Answers	Marks	Marks
5		$\sigma_{0} = \frac{P}{A} = \frac{P}{250}$ $\sigma_{b} = \frac{M}{Z_{yy}} = \frac{P \times e}{d b^{2}/6} = \frac{6 \times P \times e}{db^{2}}$ $6 \times P \times 10$	01 01	
		$=\frac{6 \times P \times 10}{5 \times 50^2} = 0.0048P$ $\sigma_{\text{max}} = \sigma_0 + \sigma_b$ $150 = \frac{P}{250} + 0.0048P$	01	04
		$150 = 0.0088P$ $P = \frac{150}{0.0048} = 17045.45N$ $\boxed{P = 17.045kN}$	01	
6		Attempt any <u>FOUR</u> of the following:		16
	a)	A hollow shaft is of the same external diameter as that of the solid shaft. The inside diameter of the hollow shaft being half the external diameter. Both the shafts have the same material and length. Then show that the ratio of torque transmitted by hollow shaft to the torque transmitted by solid shaft is 0.9375.		
	Ans.	$\overline{J} - \overline{L}$ $T_{\text{Hollow}} = \left(\frac{G.\theta}{L}\right) J_{\text{Hollow}}$ $T_{\text{Solid}} = \left(\frac{G.\theta}{L}\right) J_{\text{Solid}}$	01	
		$\frac{T_{\text{Hollow}}}{T_{\text{Solid}}} = \frac{\left(\frac{G.\theta}{L}\right) J_{\text{Hollow}}}{\left(\frac{G.\theta}{L}\right) J_{\text{Solid}}}$ $\frac{T_{\text{Hollow}}}{T_{\text{Solid}}} = \frac{J_{\text{Hollow}}}{J_{\text{Solid}}}$ But	01	
		But, $J_{\text{Hollow}} = \frac{\pi}{32} \left(D^4 - d^4 \right)$ $J_{\text{Hollow}} = \frac{\pi}{32} \left(D^4 - \frac{D^4}{2} \right)$	01	04

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	b)	$J_{\text{Solid}} = \frac{\pi}{32} D^4$ $\frac{T_{\text{Hollow}}}{T_{\text{Solid}}} = \frac{\frac{\pi}{32} \left(D^4 - \frac{D^4}{2} \right)}{\frac{\pi}{32} D^4}$ $= \frac{16D^4 - D^4}{16D^4}$ $\frac{T_{\text{Hollow}}}{T_{\text{Solid}}} = 0.9375$ A shaft is transmitting 150 kW at 200 RPM. If allowable shear stress is 80N/mm ² and allowable twist is 1.5 ⁰ per 4m, find the diameter of shaft. Take C = 0.8 X 10 ⁵ N/mm ²	01	
	Ans.	Power P=150 kW=150×10 ³ W Speed N=200rpm Shear stress $f_s=80N/mm^2$ $\theta=1.5^{0}=\frac{1.5\times\pi}{180}$ rad Length L=4 m=4000mm C=0.8×10 ⁵ N/mm ² Find D=? Case i) $P=\frac{2\pi NT}{60}$ watts	01	
		$150 \times 10^{3} = \frac{2 \times \pi \times 200 \times T_{mean}}{60}$ $T_{mean} = 7161.97 \text{ N.m}$ $\boxed{T_{mean} = 7161.97 \times 10^{3} \text{ N.mm}}$ Case ii) Diameter based on shear stress: $T_{mean} = T_{max}$ Using relation, $T_{max} = \frac{\pi}{16} \times f_{\text{S}} \times D^{3}$ $7161.97 \times 10^{3} = \frac{\pi}{16} \times 80 \times D^{3}$		04
		$\boxed{D = 76.96 \text{ mm}}$	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6		Case iii) Diameter based on angle of twist		
		Using relation,		
		$\frac{T_{max}}{I_p} = \frac{C\theta}{L}$	01	
		$\frac{7161.97 \times 10^{3}}{\frac{\pi}{32} \times D^{4}} = \frac{0.8 \times 10^{5} \times 1.5 \times \frac{\pi}{180}}{4000}$		
		$\frac{\pi}{-\pi} \times D^4 = \frac{100}{4000}$		
			01	
		D=108.64 mm		
		Note: - Adopt higher value of Diameter i.e. 108.64 mm because it will satisfy both shear stress and angle of twist.		
	c)	Calculate the suitable diameter of the solid shaft to transmit 220 kW at 150 rpm if the permissible shear stress is 68 MPa.		
		Given data:		
	Ans.	Power = $220 \text{ kW} = 220 \times 10^3 \text{ W}$		
		Speed $N = 150 \text{ rpm}$		
		Shear stress,		
		$f_s = 68 \text{ MPa} = 68 \text{ N/mm}^2$		
		find : D		
	i) Using the relation, $P = \frac{2\pi NT}{60} \text{ watts}$ $220 \times 10^{3} = \frac{2 \times \pi \times 150 \times T}{1000}$		01	
		$P = \frac{2\pi N I}{60}$ watts		
		$220\times10^3 = \frac{2\times\pi\times150\times\mathrm{T}}{2}$		
		60	01	
		T = 14005.6349 N.m	UI	
		$\frac{ T = 14005.6349 \times 10^3 \text{ N-mm} }{\text{W}}$		04
		ii)Using the relation, π	01	
		$T = \frac{\pi}{16} \times f_{\rm S} \times D^3$		
		$14005.6349 \times 10^3 = \frac{\pi}{16} \times 68 \times D^3$	01	
		D = 101.6 mm	01	

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	d)	Select a suitable diameter for a solid shaft to transmit 200 HP at 180 rpm. The allowable shear stress is 80 N/mm ²		
	Ans.	180 rpm. The allowable shear stress is 80 N/mm². Given data: Power P=200HP Speed N=180rpm Shear stress f_s =80N/mm ² $\theta=1^0=\frac{\pi}{180}$ rad Length L=3m=3000mm C=0.82×10 ⁵ N/mm ² Find D=? If the power is given in terms of HP then $P=\frac{2\pi NT}{HP}$ HP	01	
		$P = \frac{2\pi (N_{1})}{4500} HP$ $200 = \frac{2\pi \times 180 \times T}{4500}$ $T = 795.774 \text{kg.m}$ $T = 795.774 \times 9.81 = 7806.549 \text{N.m}$ $T = 7806.549 \times 10^{3} \text{N.mm}$ Diameter based on shear stress Using relation,	01	04
		$T = \frac{\pi}{16} \times f_{s} \times D^{3}$ $7806.5499 \times 10^{3} = \frac{\pi}{16} \times 80 \times D^{3}$ $\boxed{D = 79.21 \text{ mm}}$	01 01	
		Note: - If suitable value modulus of rigidity assumed to calculate diameter of solid shaft should be consider.		

Subject: Strength of Materials

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	e)	A hollow shaft is of external diameter and internal diameter 400mm and 200mm respectively. Find the maximum torque is can transmit, if the angle of twist is not to exceed 1.5° in a length of 10m. take C = $0.8X10^{5}$ N/mm ²		
	Ans.	Given data: External diameter, D = 400mm Internal diameter, d=200mm $\theta = 1.5^{\circ} = 1.5 \times \frac{\pi}{180} = 0.026 \text{ rad}$ Length L=10m=10×10 ³ mm C=0.8×10 ⁵ N/mm ² Find T=? By using torsional relation $\frac{T}{I_{p}} = \frac{C\theta}{L}$ $T = I_{p} \times \frac{C\theta}{L} = \frac{\pi}{32} (D^{4} - d^{4}) \times \frac{C\theta}{L}$ $T = \frac{\pi}{32} (400^{4} - 200^{4}) \times \frac{0.8 \times 10^{5} \times 0.026}{10 \times 10^{3}}$ $T = \frac{\pi}{32} \times 2.4 \times 10^{10} \times 0.208$ $\overline{T = 493480220.1 \text{ N.mm}}$	01 01 01 01	04
	f)	 (i) Difference between pure bending and ordinary bending (ii) Write the equation of torque transmitted by the O.C. shaft giving meaning and unit of each term. 		

Que. No.	Sub. Que.	Model A	Answers	Marks	Total Marks
6	Ans.	(i) Difference pure bending a	nd ordinary bending		
		Pure Bending	Ordinary Bending		
		a) In pure bending the beam deflects into an arc of circle.	a) In ordinary bending beam dose not deflects into an arc of circle.	02	
		b) A beam is subjected to normal (bending)stresses of tensile or compressive in nature	b) A beam is subjected to normal and shear stresses in it		
		(ii) The equation of torque tra	unsmitted by the O.C. shaft		04
		a) Based on angle Twist:			
		$\frac{T}{I_{p}} = \frac{G.\theta}{L}$ $T = \frac{G.\theta}{L} I_{p}$			
			01		
		$\frac{T}{I_{\rm P}} = \frac{q}{R}$			
		$T = \frac{q}{R} I_{p}$ <i>Where</i> ,			
		T = Torque acting on shaft (N-mm))		
		R = Radius of curvature shaft (mm))		
		G = Modulus of rigidity (N/mm2) L = Length of shaft (mm)		01	
		I_p = Polar M.I. of shaft section (mm	1 ⁴)		
		θ = Angle of twist in radians			
		q = Max. shear stress at outer most	fibre of shaft (N/mm ²)		