Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	(A)	Attempt any Six of the following. (a) Define elasticity and plasticity. Elasticity: - It is property of a material by virtue of which it regains its original size and shape after deformation, when the loads causing deformation are removed. Plasticity: - Lack of elasticity is called plasticity. The plasticity of a material is the ability to change without destruction under the action of external loads and to regain the shape given to it's the forces are removed. (b) Define principal plane and principal stress. Arincipal Plane: - A plane which carry only normal stress and no shear stress is called a principal plane. Principal Stress: - The magnitude of normal stress acting on the principal plane is called principal stress. Define moment of inertia. Moment of inertia of a body about any axis is defined as the second moment of all elementary areas about that axis	$\mathbf{0 1}$	$\mathbf{0 1}$
(c)	$\mathbf{0 2}$	$\mathbf{0 2}$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	(d)	What is core section?		
	Ans.	The centrally located portion of a within which the load must act so as to produce only compressive stress is called a Core OR Kernel section.	02	02
	(e)	State the torsion equation along with meaning of each term in it.		
		Torsion Equation: -		
	Ans.	$\frac{T}{I_{P}}=\frac{\mathrm{C} \theta}{L}=\frac{f_{s}}{R}$ Where,	01	
		$\begin{aligned} & T=\text { Torque Or Turning moment }(\mathrm{Nmm}) \\ & I_{P}=\text { Polar momet of inetia of the shaft section } \\ &=\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{yy}} \\ & \mathrm{C} \end{aligned}$		02
		material ($\mathrm{N} / \mathrm{mm}^{2}$) $\theta=$ Angle through which the shaft is twisted due to torque i.e. angle of twist (radians) $L=$ Lenght of the shaft (mm) $f_{s}=$ Maximumshear stress induced at the outermost layer of the shaft $\left(\mathrm{Nmm}^{2}\right)$ $R=$ Redius of the shaft (mm)	01	
	(f)	State the relationship between Young's Modulus, Modulus of Rigidity and Bulk Modulus.		
		$E=\frac{9 \mathrm{KG}}{\mathrm{G}+3 \mathrm{~K}}$		
		OR	02	02
		$\begin{aligned} & \mathrm{E}=2 \mathrm{G}(1+\mu) \\ & \mathrm{E}=3 \mathrm{~K}(1-2 \mu) \end{aligned}$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	(b) Ans. (c)	$P_{R}=\frac{\sigma_{\mathrm{C}} A}{1+a\left(\frac{L_{b}}{K}\right)^{2}}$ Where, $\mathrm{P}_{\mathrm{R}}=$ Rankine's Cippling load $\sigma_{\mathrm{c}}=$ Ultimate crushing stress for the colum material A=Area of c/s $\mathrm{L}_{e}=$ Effective lenght or effective height of the colum which depends upon the columend conditions $\mathrm{K}=$ MnimumRadious gyations $\mathrm{a}=$ Rankine Constant A steel rod 3 m long and 40 mm diameter is used a column with one end is fixed and other end is free. Find the bucking load by Euler's formula ($\mathrm{E}=210 \mathrm{nkN} / \mathrm{mm}^{2}$) Given data:- $\mathrm{D}=40 \mathrm{~mm}, \mathrm{~L}=3 \mathrm{~m}, \mathrm{E}=210 \mathrm{kN} \mathrm{~mm}^{2}=210 \times 10^{3} \mathrm{Nmm}^{2}$ Condition one end fixed, other is Free $\mathrm{L}_{\mathrm{e}}=2 L=3 \times 2=6 \mathrm{~m}=6000 \mathrm{~mm}$ For a solidcircular section, $\mathrm{I}=\frac{\pi}{64} D^{4}=\frac{\pi}{64}(40)^{4}=125663.71 \mathrm{~mm}^{2}$ $U \sin g$ Euler's formula, $\begin{aligned} & \mathrm{P}=\frac{\pi^{2} E I}{\left(L_{e}\right)^{2}}=\frac{\pi^{2} \times\left(210 \times 10^{3}\right) \times 125663.71}{(6000)^{2}} \\ & \mathrm{P}=7234.79 \mathrm{~N}=7.23 \mathrm{kN} \end{aligned}$ A rod has a length of 10 m at $10{ }^{\circ} \mathrm{C}$ and its temperature is raised to $70{ }^{0} \mathrm{C}$. If the free expansion is prevented, find the magnitude and nature of stress produced. Take $E=210 \mathrm{k} \mathrm{N} / \mathrm{mm}^{2}$ and $\alpha=$ $12 \times 10^{-6} /{ }^{0} \mathrm{C}$	01 01 01 01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	Ans.	$\begin{aligned} & \text { Givendata:- } \\ & \quad \mathrm{L}=10 \mathrm{~m}=10 \times 10^{3} \mathrm{~mm} \mathrm{t}_{1}=10^{\circ} \mathrm{C}, \mathrm{t}_{2}=70^{\circ} \mathrm{C} \\ & \mathrm{E}=2.1 \times 10^{5} \mathrm{~N} \mathrm{~mm}^{2}, \alpha=12 \times 10^{-6} / 0^{\circ} \mathrm{C} \end{aligned}$		[
		i) Rise in temperature, $\mathrm{t}=\mathrm{t}_{2}-\mathrm{t}_{1}=70-10=60^{\circ} \mathrm{C}$	01	
		$\text { ii) Free expansion of the rod, } \begin{aligned} \partial_{\mathrm{L}} & =\alpha L L=\left(12 \times 10^{6}\right) \times 60 \times\left(10 \times 10^{3}\right) \\ & =7.2 \mathrm{~mm} \end{aligned}$	01	
		If this expansion is prevented, compressive stress will be induced in the rod. $\begin{aligned} \text { Compressive Stress, } & \sigma=\alpha \mathrm{E}=\left(12 \times 10^{6}\right) \times 60 \times\left(2.1 \times 10^{5}\right) \\ & =151.2 \mathrm{Nmm}^{2} \end{aligned}$	01	
		i) $\sigma=151.2 \mathrm{Nmm}^{2}$ ii) Nature of σ : Compressive	01	
	(d)	A steel tube of $\mathbf{4 0} \mathbf{~ m m}$ inside diameter and $\mathbf{4 m m}$ thickness is filled with concrete. Determine the stress in each material due to an axial thrust of 60 kN . (E steel $=2.1 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and E concrete $=$ $0.14 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$).		
	Ans.	Given data: Inside diameter of steel tube, $\mathrm{d}=40 \mathrm{~mm}$,		
			1/2	
		Area of steel, $\quad \mathrm{A}_{\mathrm{S}}=\frac{\pi}{4}\left(D^{2}-d^{2}\right)=\frac{\pi}{4}\left(48^{2}-40^{2}\right)=552.92 \mathrm{~mm}^{2}$ Area of Concrete, $\mathrm{A}_{\mathrm{C}}=\frac{\pi}{4}\left(d^{2}\right)=\frac{\pi}{4}\left(40^{2}\right)=1256.64 \mathrm{~mm}^{2}$ Axial thrust, $\quad \mathrm{P}=60 \mathrm{kN}=60 \times 10^{3} \mathrm{~N}$	1/2	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	(e) Ans.	$\begin{align*} & P=\sigma_{1} A_{1}+\sigma_{2} A_{2} \\ & P=\sigma_{S} A_{S}+\sigma_{C} A_{c} \\ & \therefore 60 \times 10^{3}=\sigma_{S} \times 552.92+\sigma_{C} \times 1256.64 . \tag{i}\\ & \sigma_{1}=\frac{E_{1}}{E_{2}} \sigma_{2} \\ & \sigma_{s}=\frac{E_{s}}{E_{c}} \sigma_{c}=\frac{2.1 \times 10^{5}}{0.14 \times 10^{5}} \sigma_{c} \\ & \sigma_{s}=15 \times \sigma_{C} \tag{ii} \end{align*} .$ Substituting this value in equetion (i), $\begin{aligned} 60 \times 10^{3} & =15 \times \sigma_{C} \times 552.92+\sigma_{C} \times 1256.64 \\ \sigma_{C} & =\frac{60 \times 10^{3}}{9550.44}=6.28 \mathrm{~N} / \mathrm{mm}^{2} \\ \sigma_{c} & =6.28 \mathrm{~N} / \mathrm{mm}^{2} \\ \sigma_{s} & =94.2 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$ A tension member is subjected to axial stress $10 \mathrm{~N} / \mathrm{mm}^{2}$ and the plane of oblique is $30^{\boldsymbol{0}}$ to the axis of stress. Compute the normal and shear stress on oblique section. Given data Axial Stress, $\sigma_{1}=10 \mathrm{Nmm}^{2}, \theta=90^{\circ}-30^{\circ}=60^{\circ}$ Here the oblique plane BEis inclined at 30° to the axis of σ_{x} i.e. with the horizontal. $\therefore \theta=$ angle made by oblique plane BE with vertical $=90^{\circ}-30^{\circ}=60^{\circ}$ $\sigma_{1}=\sigma_{X} \cos ^{2} \theta=10 \times \cos ^{2} 60^{\circ}=2.5 \mathrm{~N} / \mathrm{mm}^{2}$ (Tensile stress) $\sigma_{1}=\frac{\sigma_{x}}{2} \sin 2 \theta=\frac{10}{2} \sin \left(2 \times 60^{\circ}\right)=4.33 \mathrm{~N} / \mathrm{mm}^{2}$	01 01 01 02 02	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		SFcalculation: Take a section XXat distance x fromA $\mathrm{Fx}=\mathrm{SFat}$ section $\mathrm{XX}=(\mathrm{wL} / 2)-\mathrm{wx}$ At A, $\mathrm{x}=0$, $\mathrm{F}_{\mathrm{A}}=\frac{w L}{2}-w \times 0=\frac{w L}{2}=+R_{A}$ At $\mathrm{B}, \mathrm{x}=\mathrm{L}$, $\mathrm{F}_{\mathrm{B}}=\frac{w L}{2}-w \times L=-\frac{w L}{2}=-R_{B}$ At $\mathrm{C}, \mathrm{x}=\frac{\mathrm{L}}{2}$, $\mathrm{F}_{\mathrm{C}}=\frac{w L}{2}-w \times \frac{\mathrm{L}}{2}=0$ BM. Calculation:- BM. at a section XXAt a distance x fromA $\mathrm{M}_{\mathrm{x}}=\frac{w L}{2} \times x-w x \cdot \frac{x}{2}=\frac{w L}{2} \times x-\frac{w x^{2}}{2}$ $B M$ at A $\mathrm{x}=0$ $\mathrm{M}_{\mathrm{A}}=\frac{w L}{2} \times 0-\frac{w}{2} \times 0^{2}=0$ $B M$ at $\mathrm{B}, \mathrm{x}=0$ $\mathrm{M}_{\mathrm{B}}=\frac{w L}{2} \times L-\frac{w}{2} \times L^{2}=0$ To find the maximumBM- At center $\mathrm{C}, \mathrm{x}=\frac{L}{2}$ $M_{C}=M_{\max }=\frac{w L}{2} \times \frac{L}{2}-\frac{w}{2} \times\left(\frac{L}{2}\right)^{2}=\frac{w L}{8}$	01 01	

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answers \& Marks \& Total Marks \\
\hline 3. \& (c)

Ans. \& \begin{tabular}{l}
Point of Contraflexture: - A point where bending moment is change its sign from positive to negative or vice-versa. At that point bending moment is equal to zero Such point called as point of contraflexture.

A simply supported beam of 6 m span is loaded with a udl of 1.5 kN / m over the entire span and concentrated load of 4 kN and 5 kN at distance of $\mathbf{2 m} \& \mathbf{m}$ from the left end support. Find the magnitude and position of the maximum B.M.

i)Reactios:-

Take a moment about A,
$$
\begin{aligned}
4 \times 2+5 \times 4+(1.5 \times 6) \times \frac{6}{2} & =R_{\mathrm{B}} \times 6 \\
R_{\mathrm{B}} & =9.17 \mathrm{kN} \\
R_{A} & =4+5+(1.5 \times 6)-9.17 \\
R_{A} & =8.83 \mathrm{kN}
\end{aligned}
$$

ii) Shear force calculations:
$$
\begin{aligned}
\mathrm{F}_{\mathrm{A}} & =+R_{A}=8.83 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{C}} & =8.83-1.5 \times 2=5.83 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{C}_{\mathrm{L}}} & =8.83-1.5 \times 2-4=1.83 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{D}} & =8.83-1.5 \times 2-4-1.5 \times 2=-1.17 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{D}_{\mathrm{k}}} & =8.83-1.5 \times 2-4-1.5 \times 2-5=-6.17 \mathrm{kN} \\
\mathrm{~F}_{\mathrm{B}} & =8.83-1.5 \times 2-4-1.5 \times 2-5-1.5 \times 2=-9.17 \mathrm{kN} \\
-R_{B} & =-9.17 \mathrm{kN}
\end{aligned}
$$

 \&

01

01

01

01
\end{tabular} \& 04

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		(a) Beam (c) BMD in kN.m iii) iii) B.Mcalculation:- $\begin{aligned} & \mathrm{M}_{A}=\mathrm{M}_{B}=0 \\ & \mathrm{M}_{A}=\left(8.83 \times 2-(1.5 \times 2) \frac{2}{2}=14.66 \mathrm{kN}-\mathrm{m}\right. \\ & \mathrm{M}_{A}=\left(9.17 \times 2-(1.5 \times 2) \frac{2}{2}=15.34 \mathrm{kN}-\mathrm{m}\right. \end{aligned}$ Find the $M_{\max }$: $\begin{aligned} \frac{x}{1.83} & =\frac{2-\mathrm{x}}{1.17} \\ \mathrm{x} & =1.2 \mathrm{~m} \end{aligned}$ Distance BetweenEfromA $=2+x=3.22 \mathrm{~m}$ B. M at 3.22 mfromAgivenby, $\begin{aligned} & \mathrm{M}_{\mathrm{E}}=M_{\max }=8.83 \times 3.22-4 \times 1.22-(1.5 \times 3.22) \times\left[\frac{3.22}{2}\right] \\ & \mathrm{M}_{\mathrm{E}}=M_{\max }=15.78 \mathrm{kN}-\mathrm{m} \end{aligned}$	01	04

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(e)	Draw the SFD and BMD for the bean as shown in fig.		
	Ans.	i) To find the R_{A} : For the equilibrium of the beam, Upward reaction at $\mathrm{A}=$ Total downward load $\mathrm{R}_{\mathrm{A}}=2+0.8 \times 1.5=3.2 \mathrm{kN}$ ii) S.F. calculation: $\mathrm{F}_{\mathrm{A}}=\mathrm{R}_{\mathrm{A}}=3.2 \mathrm{kN}$ S.F. just to the right of $\mathrm{C}, \mathrm{F}_{\mathrm{C}_{\mathrm{R}}}=3.2-2=1.2 \mathrm{kN}$ S.F. just to the left and right of $\mathrm{B}, \mathrm{F}_{\mathrm{B}}=3.2-2-0.8 \times 1.5=0 \mathrm{kN}$ Hence, $\mathrm{F}_{\mathrm{A}}=\mathrm{F}_{\mathrm{B}_{\mathrm{L}}}=\mathrm{F}_{\mathrm{R}_{\mathrm{R}}}=0$ iii)B.M. calculation: $\mathrm{M}_{\mathrm{B}}=0$ $\begin{aligned} & \mathrm{M}_{\mathrm{e}}=-(0.8 \times 1.5) \times\left(\frac{1.5}{2}\right)=-0.9 \mathrm{kN.m} \\ & \mathrm{M}_{\mathrm{A}}=-(0.8 \times 1.5) \times\left(\frac{1.5}{2}+1.5\right)-2 \times 1.5=-5.7 \mathrm{kN.m} \end{aligned}$ (a) Beam (b) SFD in kN (c) BMD in kN.m	01 01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(b) Ans.	Perpendicular Axis Theorem: - It state, if I_{XX} and I_{YY} are the moments inertia of a plane section about the two mutually perpendicular axes meeting at O , then the moment of inertia about the third axis Z-Z i.e. Izz is equal to addition of moment of inertia about $\mathrm{X}-\mathrm{X}$ and $\mathrm{Y}-\mathrm{Y}$ axes. Determine the M.I about XX-axis of an unsymmetrical I-section having following details. Top flange $\mathbf{- 1 6 0} \mathbf{~ m m ~ X ~} \mathbf{1 2} \mathbf{~ m m}$, Bottom flange- $240 \mathrm{~mm} \times 12 \mathrm{~mm}$ and web $-200 \mathrm{~m} \times 10 \mathrm{~mm}$.		
			01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.		Stepii) Areas: $\begin{aligned} a_{1} & =160 \times 12=1920 m^{2} \\ a_{2} & =200 \times 20=2000 m^{2} \\ a_{3} & =240 \times 12=2880 m m^{2} \end{aligned}$ Total areas, $\quad \mathrm{A}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}$ $A=6800 \mathrm{~mm}^{2}$ Step i) Distance of thecentroid fromthe bottomface: $\begin{aligned} & y_{1}=218 m m \\ & y_{1}=112 m m \\ & y_{1}=6 m m \end{aligned}$ Distance of horizontal centriodal axis fromthe bottomface. $\begin{aligned} & \bar{y}=\frac{\mathrm{a}_{1} y_{1}+\mathrm{a}_{2} y_{2}+\mathrm{a}_{3} y_{3}}{A} \\ & \bar{y}=97 m m \end{aligned}$ Distance of horizontal centriodal axis fromthe top face. $\begin{aligned} & =\text { Total depth }-\bar{y} \text { frombottomface } \\ & =12+120+12-97=127 \mathrm{~mm} \end{aligned}$ Stepii) Tofind I_{xx} :M.I.of the section about the horizontal centroidal axis is given: $\begin{aligned} & \mathrm{I}_{\mathrm{xx}}=\mathrm{I}_{\mathrm{xx}}+\mathrm{I}_{\mathrm{x} 2}+\mathrm{H}_{\mathrm{xx}} \\ & \mathrm{I}_{\mathrm{xx}}=\frac{160 \times 12^{3}}{12}+1920 \times\left(121^{2}\right)=28133760 \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx} 2}=\frac{10 \times 200^{3}}{12}+2000 \times\left(15^{2}\right)=7116666.67 \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx}}=\frac{240 \times 12^{3}}{12}+2880 \times(91)^{2}=23883840 \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx}}=28133760+7116666.67+23883840 \\ & \mathrm{I}_{\mathrm{xx}}=59134266.67 \mathrm{~mm}^{4}=59.13 \times 10^{6} \mathrm{~mm}^{4} \\ & \mathrm{I}_{\mathrm{xx}}=59.13 \times 10^{6} \mathrm{~mm}^{4} \end{aligned}$	$1 / 2$ 01 01 01 $1 / 2$	04

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	(b) Ans.	A short column $200 \mathrm{~mm} \times 100 \mathrm{~mm}$ is subjected to an eccentric load of 60 kN at an eccentricity of 40 mm in the plane bisecting the 100 mm side. Find the maximum and minimum intensities of stress at the base. Given data: $\mathrm{b}=200 \mathrm{~mm}, \mathrm{~d}=100 \mathrm{~mm}, \mathrm{P}=60 \mathrm{kN}, \mathrm{e}=40 \mathrm{~mm}$ $\begin{aligned} & \mathrm{A}=\mathrm{b} \times \mathrm{d}=200 \times 150=2 \times 10^{4} \mathrm{~mm}^{2} \\ & \sigma_{o}=\frac{P}{A}=\frac{60 \times 10^{3}}{2 \times 10^{2}}=3 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{b}=\frac{M}{Z_{y y}}=\frac{P \times e}{\frac{d b^{2}}{6}}=3.6 \mathrm{~N} / \mathrm{mm}^{2} \\ & \sigma_{\max }=\sigma_{o}+\sigma_{b}=3+3.6=6.6 \mathrm{~N} / \mathrm{mm}^{2}(\text { Compressive }) \\ & \sigma_{\min }=\sigma_{o}-\sigma_{b}=3-3.6=-0.6 \mathrm{~N} / \mathrm{mm}^{2} \text { (Tensile) } \end{aligned}$	01 02 $1 / 2$ $1 / 2$	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	(c) Ans. (d) Ans.	A M.S. link as shown in Fig. 2 transmits a pull of 80 kN . Find the dimension b and f if $\mathbf{b}=\mathbf{3 t}$. Assume the permissible tensile stress as 70 MPa . let bandt in mm $\begin{aligned} & \mathrm{A}=\mathrm{t} \times \mathrm{b}=\mathrm{t} \times 3 \mathrm{t}=3 \mathrm{t}^{2} \\ & \sigma=\frac{\mathrm{P}}{\mathrm{~A}}=\left(\frac{80 \times 10^{3}}{3 \mathrm{t}^{2}}\right) \\ & =70 \mathrm{MPa}=70 \mathrm{Nmm}^{2} \\ & \left(\frac{80 \times 10^{3}}{3 \mathrm{t}^{2}}\right)=70 \\ & \mathrm{t}=19.52 \mathrm{mmSay} 20 \mathrm{~mm} \\ & \mathrm{~b} \end{aligned}=3 \mathrm{t}=60 \mathrm{~mm} .$ A C-clamp as shown in Fig. 3, carries a load $P=\mathbf{2 5 k N}$. The crosssection of the clamp at $\mathrm{X}-\mathrm{X}$ is rectangular, having width equal to twice thickness. Assuming that the C-clamp is made of steel casting with an allowable stress of $100 \mathrm{~N} / \mathrm{mm}^{2}$. Find its dimension.	01 01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	(e)	Given data, $\begin{gathered} \mathrm{b}=2 \mathrm{t}, \sigma=100 \mathrm{Nm} \mathrm{~m}^{2}, e=150 \mathrm{~mm} P=25 \mathrm{kN}=25 \times 10^{3} \mathrm{~N} \\ A=b \times t=2 t \times t=2 t^{2} \mathrm{~mm}^{2} \\ \sigma=\left(\frac{25 \times 10^{3}}{2 \mathrm{t}^{2}}\right)=\frac{12500}{\mathrm{t}^{2}} \mathrm{~N} / \mathrm{mm}^{2} \\ \mathrm{M}=\left(25 \times 10^{3}\right) \times 150=3750 \times 10^{3} \mathrm{Nmm} \\ \mathrm{Z}=\frac{\mathrm{t} \times \mathrm{b}^{2}}{6}=\frac{2}{3} t^{3} \mathrm{~N} . \mathrm{mm} \\ \sigma_{\mathrm{b}}=\frac{\mathrm{M}}{\mathrm{Z}}=\frac{3750 \times 10^{3}}{\frac{2}{3} t^{3}}=\frac{5625 \times 10^{3}}{t^{3}} \mathrm{~N} / \mathrm{mm}^{2} \\ \sigma_{\max }=\sigma_{o}+\sigma_{b}=\frac{12500}{\mathrm{t}^{2}}+\frac{5625 \times 10^{3}}{t^{3}} \\ 100=\frac{12500}{\mathrm{t}^{2}}+\frac{5625 \times 10^{3}}{t^{3}} \\ 10 \mathrm{t}^{3}-12500 \mathrm{t}-56250=0 \end{gathered}$ by trail and error $\begin{aligned} & \mathrm{t}=39.4 \mathrm{mmi} . e .40 \mathrm{~mm} \\ & \mathrm{~b}=2 \mathrm{t}=78.8 \mathrm{mmsay} 80 \mathrm{~mm} \end{aligned}$ A circular section of diameter' d ' is subjected to load ' p ' eccentric to the axis YY. The eccentricity of load is ' e '. Obtain the limit of eccentricity such that no tension is induced at the section. Let us consider a solid circular section of diameter das shown.	$1 / 2$ 02 01 1/2	04

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answers \& Marks \& Total Marks \\
\hline 5. \& (f)

Ans. \& \begin{tabular}{l}
A M.S. flat 50 mm wide and 5 mm thick is subjected to load ' p ' acting in a plane bisecting thickness at a point 10 mm away from the centroid of the section. If the tensile is not to exceed 150 MPa , calculate the magnitude of ' p '.

Given data:

$\mathrm{b}=50 \mathrm{~mm}, \mathrm{~d}=5 \mathrm{~mm}, \mathrm{e}=10 \mathrm{~mm}, \sigma_{\max }=150 \mathrm{MPa}$ (Tensile)
$$
\begin{aligned}
\sigma_{\mathrm{o}} & =\frac{\mathrm{P}}{\mathrm{~A}}=\frac{P}{250} \\
\sigma_{\mathrm{b}} & =\frac{\mathrm{M}}{\mathrm{Z}_{\mathrm{yy}}}=\frac{P \times e}{\frac{d b^{2}}{6}}=\frac{6 P \times e}{d b^{2}} \\
\sigma_{\mathrm{b}} & =0.0048 \mathrm{P} \\
\sigma_{\max } & =\sigma_{o}+\sigma_{b} \\
150 & =\frac{P}{250}+0.0048 \mathrm{P} \\
\mathrm{P} & =17045.45 \mathrm{~N} \\
\mathrm{P} & =17.045 \mathrm{kN}
\end{aligned}
$$

 \&

01

01

01

01
\end{tabular} \& 04

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	(e) Ans. (f) Ans.	A hollow shaft is required to transmit a torque of $36 \mathrm{kN}-\mathrm{m}$. The inside diameter is 0.6 times the external diameter. Calculate both diameters, if the allowable shear stress is $\mathbf{8 0} \mathbf{~ M P a}$. Given:- T = $36 \mathrm{kN} . \mathrm{m}, \mathrm{fs}=80 \mathrm{~N} / \mathrm{mm}^{2}, \mathbf{d}=\mathbf{0 . 6 D}$ $\begin{aligned} & T=\frac{\Pi}{16} \times f s \times\left(\frac{D^{4}-d^{4}}{D}\right) \\ & 36 \times 10^{6}=\frac{\Pi}{16} \times 80 \times\left(\frac{D^{4}-(0.6 D)^{4}}{D}\right) \\ & 36 \times 10^{6}=\frac{\Pi}{16} \times 80 \times\left(0.8704 D^{3}\right) \\ & D^{3}=2633078.103 \\ & D=138.08 \mathrm{~mm} \\ & d=82.85 \mathrm{~mm} \end{aligned}$ i) Write the flexural formula. State the meaning of each term. ii) Compare solid shaft and hollow shaft. Flexural formula: - $\frac{M}{I}=\frac{\sigma}{y}=\frac{E}{R}$ Where, $M=$ Mxximumbending moment uhichis equal to moment of resistance of a beam $I=$ Mbment of inertia of the beamsection about the neutral axis $\sigma=$ Bending stress in layer at a distance 'y fromNA $y=$ Distance of the layer fromNA of the beamcross section $E=$ Modulus of elasticity of the beammaterial $R=$ Radius of curvature of abent of beam	01 01 01 01 01 01	04

