MODEL ANSWER

WINTER– 18 EXAMINATION

Subject Title: Mechanical Engineering Materials

Subject Code: 17303

Important Instructions to examiners:

1. The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2. The model answer and the answer written by the candidate may vary but the examiner may try to assess the understanding level of the candidate.
3. The language errors such as grammatical, spelling errors should not be given more importance (Not applicable for subject English and Communication Skills).
4. While assessing figures, the examiner may give credit for the principal components indicated in the figure. The figures drawn by the candidate and the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5. Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate’s answers and the model answer.
6. In case of some questions, credit may be given by judgement on part of the examiner of relevant answer based on the candidate’s understanding.
7. For programming language papers, credit may be given to any other program based on equivalent concept.

<table>
<thead>
<tr>
<th>Q. No.</th>
<th>Sub Q. N.</th>
<th>Marking Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>1 Mark</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>Any two-1Mark</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>Def.-1Mark</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>Any Two</td>
</tr>
</tbody>
</table>

Question 1

How are metals classified? Name any two types of cast iron.

Metals are classified as ferrous and non-ferrous. Example of ferrous metal is iron and remaining all metals are non-ferrous.

Types of cast iron:
- i) White cast iron
- ii) Gray cast iron
- iii) Malleable cast iron
- iv) Nodular cast iron

Question 2

Define pure metal. Give two examples

Pure metal: A pure metal only consists of a single element. This means that it only has one type of atom in it. They have metallic bond between their atoms.

Examples:
- iron
- copper
- nickel
- tin etc.

Question 3

Define the term solid solubility

The dissolving ability of solute in the solvent, while forming a solid solution is called solid solubility. It occurs when the components have similarities in crystal structure and atomic diameter.

Question 4

State the purpose of normalising

- i) To eliminate coarse grained structure.
- ii) To refine grain structure.
- iii) To produce harder and stronger steel than annealing.
- iv) To obtain required mechanical properties.
- v) To relieve internal stresses in some cases.
Describe cast iron in brief

Cast irons are a family of ferrous metals with a wide range of properties produced by being cast into shape. Cast iron contains 2% to 4% carbon and 1% to 3% silicon. Other elements are used to control specific properties. The wide spread use of cast iron is as a result of its low cost and versatile properties. Cast irons have wide range of mechanical properties which make them suitable for use in engineering components.

State the types of polymer materials

- i) Acrylics
- ii) ABS
- iii) Nylons
- iv) Polyethlene
- v) PVC
- vi) Epoxies
- vii) Phenolics
- viii) Polymiders

Define sintering.

It is one of the steps in the manufacture of a component by powder metallurgy. Sintering is carried out to increase strength and hardness of a green compact and consists of heating the compact to a definite temperature under controlled conditions with or without pressure for a definite period.

State different types of elastomers

- i) Natural Rubber (Polyisoprene)
- ii) SBR (Styrene-Butadiene-Rubber)
- iii) EPDM (EPDM ETHYLENE PROPYLENE)
- iv) Butyl rubber.
- v) Polyurethane (AU, EU)
- vi) Neoprene CR (Polychloroprene)

NITRIDING

Process of heating of alloy steels in contact with nitrogen gas environment to a temperature of 500 to 550 degree centigrade and held for a long period of time (25 to 100 hours) in the furnace. This forms “hard alloy nitride particles” in the outer surface of the steel.

Classification Of steel:

1) Mild or Low carbon steel: It contains 0.15 to 0.30% of carbon
2) Medium Carbon Steel: It contains 0.30 to 0.60% of carbon
3) High Carbon steel: It contains 0.60 to 1.5% of carbon

Define Polymorphism

Polymorphism is the property of a material to exist more than one crystal lattice in the solid state.

E.g. **Cristal structure change from bcc (alpha iron) to fcc (gamma iron) and again in bcc (delta iron) as in pure iron**
How the defects are located in magnaflux test?

The component to be inspected for flaws is magnetized and the inspection medium is applied to the component. In the dry method of inspection, a special fine ferromagnetic powder is applied on the surface by means of hand shaker so that powder uniformly distributes on the surface of component. Magnetization of the component is done either by using an external magnetic yoke coil or by passing an electric current through it. A magnetic pole is formed at the crack or flaw, which causes the magnetic powder to concentrate on this area and the flaw gets easily detected.

Describe pearlite in brief.

Pearlite: It is a mechanical mixture of ferrite and cementite

Austenite transforms to pearlite on very slow cooling.

In an eutectoid steel (0.8%C steel) austenite transform to pearlite at 723 °c.

Eutectoid reaction-

\[723 \, ^\circ C \]

Austenite \(\rightarrow\) Pearlite

i.e. (ferrite + cementite)

(88%) + (12%)

Pearlite shows alternate plates of ferrite and cementite.

Define elasticity and malleability of material

Elasticity:- It is the property of material that enables it to regain its original shape & size after load is removed. Elasticity can be expressed by young’s modulus

Malleability:- Malleability is the ability of a material to exhibit deformation when compressive force is applied \(OR \)

The ability of a material to be drawn into thin sheet

State the applications of ABS

Applications of ABS are as under,

- Automobile panels and parts.
- Radiator Grills.
- TV Cabinets and cameras
- Telephones
- Refrigerator Liners.
Q2 a Define creep. What are its stages?

Creep (sometimes called cold flow) is the tendency of a solid material to move slowly or deform permanently under the influence of mechanical stresses.

Stages of creep

When a material is held under a constant stress for a period of time, the process of creep can be divided into three stages of development:

(I) primary creep when the process begins at a fast rate,

(II) secondary creep when the process proceeds at a steady rate, and lastly

(III) tertiary creep that occurs quickly

b Describe cooling curve of pure metal

Freezing starts at b and completes at c and between b &c, the metal is in the liquid plus solid state. Above the temperature indicated by point b, the metal is in the liquid state and below c, it is in the solid state.

Application of phase rule

In region ab

P+F=C+1

1+F=1+1

Therefore the meaning of F=1 is that the temperature can be varied without changing the liquid phase existing in the system.

In region bc

P+F=C+1

2+F=1+1

Therefore the meaning of F=0 is that the temperature can not be varied without changing the liquid and solid phase existing in the system. If temperature is increased, the metal goes in the liquid state and if decreased, it goes in the solid state. Hence pure metals solidifies at
constant temperature

In region cd same as region ab F=1

Draw iron carbon diagram and label it.
d) Compare austempering and martempering

<table>
<thead>
<tr>
<th>Austempering</th>
<th>Martempering</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is not a hardening treatment</td>
<td>It is a hardening treatment</td>
</tr>
<tr>
<td>It gives bainite product</td>
<td>It gives martensite product</td>
</tr>
<tr>
<td>It gives less hardness</td>
<td>It gives more hardness</td>
</tr>
<tr>
<td>Greater ductility & toughness</td>
<td>Low ductility & toughness</td>
</tr>
<tr>
<td>Less distortion</td>
<td>More distortion</td>
</tr>
<tr>
<td>It requires more time</td>
<td>It requires less time</td>
</tr>
</tbody>
</table>

State advantages & limitations of Nitriding

Advantages of Nitriding

1) Very high surface hardness in range of 1150 VPN is produced.
2) No quenching is required so nitrided parts have less distortion and warpage.
3) No machining is required after nitriding.
4) Parts are heated to less temp. range so no oxidation and decarburization.
5) Nitrided parts can retain their hardness up to 500 degree centigrade.

Limitations of Nitriding

1) Long cycle times (25 to 100 hrs)
2) Brittle case
3) Only special alloy steels containing Al, Mo, V, Cr as alloying elements can only be nitrided.
4) Plain carbon steels cannot be effectively nitrided.
5) High cost.
6) Technical control required.
7) If nitrided part gets accidently overheated (above 500 °C) then the hardness will be lost completely.

f) Define annealing. State the objective.

Def.:—Annealing may be defined as the heat treatment in which steel is heated to austenitic region and then cooling very slowly (furnace cooling) in transformation range.

OBJECTIVES OF ANNEALING:

1) To improve homogeneity of steel.
2) To alter microstructure to improve properties of steel.
3) To restore ductility.
4) To refine the grain size.
5) To relieve the internal stresses in steel.
6) To improve machinability of steel.
7) To reduce strain hardening effect of cold working. This increases ductility.
Define carburizing. State its advantages

Definition: It is a process of introducing the carbon in the outer case of low carbon steels in order to produce a hard martensitic structure after quenching in the outer surface. Carbon content in the outer case is increased by process of absorption and diffusion. Low carbon steels are heated to 870 – 925 degree centigrade in contact with carbon-rich material for several hours. Highly enriched outer carbon rich surface is hardened by quenching.

Advantages:
1. For low volume production it is economical.
2. Certain components are heat treated by this method economically.
3. Can be done in any furnace.
4. Process is safe.
5. Less capital investment.
6. No necessity of special space for carburized components.
7. It does not require special controlled atmosphere
8. Same furnace can be used for normalizing, annealing and stress relieving.

Explain with neat sketch BCC and FCC space lattices.

BODY CENTRED CUBIC UNIT CELL (BCC):

![BCC Diagram](image)

EXAMPLES: Iron, Chromium, Molybdenum, Vanadium, Sodium.

Effective number of atom in BCC unit cell= 02

One atom on each corner of the cube and one atom in the center. Because the volume of each corner atom is shared 1/8th part in unit cell and remaining in adjacent cells, each BCC cell contains two atoms.

Packing efficiency: 0.68
FACE CENTRED CUBIC UNIT CELL (FCC)

There are 8 corners of the unit cell and each corner has one atom. But each atom is shared by 8 unit cells.
So. total no. of atoms at corners= 1/8 *8=1 atom.
Also, there are 6 faces which have one electron in the centre of it.
Each such electron is shared between 2 unit cells.
This gives the total no. of atoms at the centre of faces of unit cell=1/2 * 6 = 3 atoms.
Adding the two, we get four atoms in a unit cell
1+3=4 atoms.

Packing efficiency: 0.74

c) Elaborate the purpose of heat treatment.

There is limitation of the properties of plain carbon steels and alloy steels. Heat Treatment is often associated with increasing the strength of material, but it can also be used to alter certain manufacturability objectives such as improve machining, improve formability, restore ductility after a cold working operation. Thus it is a very enabling manufacturing process that can not only help other manufacturing process, but can also improve product performance by increasing strength or other desirable characteristics.

Steels are suitable for heat treatment. And heat treated for one of the following reasons.

Softening: Softening is done to reduce strength or hardness, remove residual stresses, improve toughness, restore ductility, refine grain size or change the electromagnetic properties of the steel.

Restoring ductility or removing residual stresses is a necessary operation when a large amount of cold working is to be performed, such as in a cold-rolling operation or wiredrawing.
Hardening: Hardening of steels is done to increase the strength and wear properties. One of the pre-requisites for hardening is sufficient carbon and alloy content. If there is sufficient Carbon content then the steel can be directly hardened.

Material Modification: Heat treatment is used to modify properties of materials in addition to hardening and softening. These processes modify the behavior of the steels in a beneficial manner to maximize service life.

Metals and their **alloys solidification** defined as a change of state phenomenon (from liquid to solid) associated with emission of a certain amount of heat and the formation of the primary crystalline structure on the way of physically and chemically complicated crystallization process.

pure metal:

Pure metal solidifies at constant temperature. Cooling curve is as shown below.

![Cooling Curve of a Pure Metal](image)

Alloy:

An alloy solidifies over the range of temperature. Cooling curve is as shown below.

![Cooling Curve of an Alloy](image)
e) Explain equilibrium diag. for eutectic system.

It is the alloy system between two metals a and b which are completely soluble in liquid stage but completely insoluble in solid stage and showing eutectic reaction.

Examples: Pb-As, Bi-Cd, Th-Ti.

Eutectic alloy forms at a minimum temperature of particular composition of metal B in metal A, and all other composition shows solid A + eutectic(A+B) or solid B + eutectic(A+B).

Alloy steels:

Alloy steels are made by combining carbon steel with one or several alloying elements, such as manganese, silicon, nickel, titanium, copper, chromium and aluminum.

Purpose:

To Increase hardenability.

- To Increase corrosion resistance.
- To Retain hardness and strength.
- Sulfur, phosphorous, or lead can be added to improve machine ability.
- Again, elements added to steel can dissolve in iron (solid solution strengthening):
 - to Increase strength, hardenability, toughness, creep, high temp resistance.
Q4 a) Differentiate between annealing and normalizing.

<table>
<thead>
<tr>
<th>ANNEALING</th>
<th>NORMALIZING</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. heating at A3 + 30 -50 °C for hypoeutectoid steel</td>
<td>1. heating at A3 + 30 -50 °C for hypoeutectoid steel</td>
</tr>
<tr>
<td>A1+ 30 -50 °C for hypereutectoid steel.</td>
<td>Acm+ 30 -50 °C for hypereutectoid steel.</td>
</tr>
<tr>
<td>2. Slow cooling in furnace itself. Or buried in sand.</td>
<td>2. Slightly faster cooling. i.e. Cooling in air.</td>
</tr>
<tr>
<td>3. Less hardness, tensile strength and toughness.</td>
<td>3. Higher hardness, tensile strength and toughness.</td>
</tr>
<tr>
<td>4. Larger grain size. (coarse pearlite)</td>
<td>4. Fine grain size. (medium/fine pearlite)</td>
</tr>
<tr>
<td>5. Uniform distribution of grains.</td>
<td>5. Slightly less distribution of grains.</td>
</tr>
<tr>
<td>6. Internal stress are least.</td>
<td>6. Internal stress are slightly more.</td>
</tr>
</tbody>
</table>

b) State the advantages and limitations of tempering.

Advantages:
- Reduce internal stresses.
- Improved ductility and toughness.
- Improved machinability.
- Increased impact strength.
- Improve malleability.

Limitations:
- Decreased hardness.
- Prolonged heating at high temperature range shows grain growth. Due to which Steel becomes more soft, Chances of temper-imbrittleness

What is 18:4:1 steel? State its applications.

18:4:1 steel

It is high speed steel with 18% tungsten, 4% chromium, 1% vanadium.
- These are high alloyed tool steels developed initially to do high speed metal cutting. Now, they used in a wide variety of machining operations.
- These are characterized by high hardness (60-65 HRC at 600-650°C), high red hardness, wear resistance, reasonable toughness and good hardenability.
Define heat treatment. State its objectives.

Heat Treatment is the controlled heating and cooling of metals to alter their physical and mechanical properties without changing the product shape. Heat treatment is sometimes done inadvertently due to manufacturing processes that either heat or cool the metal such as welding or forming.

Objectives:

1. To relieve internal stresses, which are set up in the metal due to cold or hot working
2. To soften the metal.
3. To improve hardness of the metal surface.
4. To improve machinability.
5. To refine grain structure
6. To improve mechanical properties like tensile strength, ductility and shock resistance, etc.
7. To improve electrical and magnetic properties.
8. To increase the resistance to wear, tear, heat and corrosion, etc.

State the effect of Mn, S, Ni, W alloy element in steel.

Mn- manganese:
- Tends to harden steel by encouraging formation of carbide. Like iron carbide fe3c
- Kept below 0.75%
- It controls harmful effects of Sulpher by forming MnS.

SULPHUR- S:
- Lowers the viscosity of melt(deviates fluidity)
- Tends to make it hard and brittle
- Kept below 0.1% for most foundry purposes.
- Promotes amount of combined carbon, forms FeS.
- In wrought iron , it produces red-shortness. It becomes brittle and unworkable.

Ni- nickel:
- Acts as graphatizer but half of silicon
- Helps to refine the size if grains and graphite
- Addition upto 0.25-2.0%
14-30% Ni added in gray irons to resist heat and corrosion and have low expansivity.
• 8% Ni added in stainless steel.

Tungsten (W):
• **Increase strength.**
• helps to form stable carbides
• increases hot hardness.
• used in tool steels.

State the types of cast iron with microstructure.

- **Gray cast iron**
 - Graphite flakes

- **Nodular/ductile cast**
 - Nodules of carbon

- **White cast iron**
 - Cementite/Fe3c

- **Malleable cast iron**
 - Free carbon accumulated / bull’s eye

(1 mark for each type)
Q5

a. Describe the composition and applications of Muntz steel

Composition: - 60% copper and 40% Zinc.

Machinability increases by adding 0.4 to 0.8 lead

Application: -- Ship sheathing, condenser tube; pump parts, marine fitting

b. Differentiate between white C.I. and grey C.I.

<table>
<thead>
<tr>
<th>White cast iron</th>
<th>Grey cast iron</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is an alloy of carbon with iron. Carbon is present in combined form (Carbide -Fe₃C)</td>
<td>It is an alloy of carbon and silicon with iron. Carbon is present in free form (Graphite)</td>
</tr>
<tr>
<td>White in colour(fractured appearance)</td>
<td>Grey colour (fractured appearance)</td>
</tr>
<tr>
<td>It is hard, brittle and not machinable</td>
<td>Better machinability</td>
</tr>
<tr>
<td>Used for machine tool structure</td>
<td>Used for extrusion dies</td>
</tr>
<tr>
<td>Produced by chilling method</td>
<td>Produced by refining pig iron</td>
</tr>
</tbody>
</table>

c. State the composition and application of naval brass and gun metal

Naval Brass:

Composition: -- 60% Copper, 0.8 % tin, and 39.2 % Zinc.

Application: - condenser plates, heat exchanger tube, Marine Construction, propeller shaft, marine hardware.

d. **Gun metal:**

composition: - 2—11 % tin 1—10 % zinc and remaining copper

Application:- valves, pipe fitting, pumps, and bearing, gun barrels

Explain porous self lubricated bearing

These bearings are produced by the process of power metallurgy. These are made from copper or iron base power. Bearing made by this process is having 40—50% porosity.

These pores are impregnated with oil under pressure. The oil from the pores slowly comes out and serves the purpose of lubrication. They do not require external lubrication so it is called as self lubricating bearing.

Used for textile mill, paper mill, and food industry.
Q6

a List the applications of high carbon steel

- Die block, wheel tires, mandrels, hammers, razors, ball mill parts,
- Drill, and tap Wire dies and cutting tools,

b Explain the following bearing metals with their properties and uses
i) White metal ii) Leaded bronzes

White metal:
- Properties: it is Ductile, hard and low friction
- Uses: - used where withstand only limited pressure

Leaded bronzes:
- Properties: - Very high wear resistance, good thermal conductivity
- Uses: - used in bearing when heavy load are to be carried.

c Describe NDT. Give applications of NDT

NDT: - Non destructive testing as the name implies does not damage
Or reduce the service life of the component, usually these tests do not directly measure the
mechanical properties but they are used to locate the defect or flaws in the component.

Applications: - Inspection of large casting and forging, inspection of rail,
Cracks in fabrication, cracks in steam & gas turbine balding, inspection of plastics,
Ceramics and glass. e.g. dye penetrant test, magna flux, radiography test

d State the applications of glass wool

- Ceiling of residential building, thermal and sound insulation for furnaces, ovens, Water
heaters, refrigerators, A.C. system insulations, electrical insulations

e Define stainless steel. State its properties. Stainless steel contains iron, chromium,
manganese, silicon, carbon and, in many cases, significant amounts of nickel and
molybdenum. These elements react with oxygen from water and air to form a very thin,
stable film that consists of such corrosion products as metal oxides and hydroxides.
Stainless steel has high corrosion resistance and hence they do not corrode in most of the
usual environmental condition.

Properties: - high ductility and formability, good weldability and machinability. High resistance to scaling & oxidation, Excellent surface finish.
<table>
<thead>
<tr>
<th>d</th>
<th>Describe two characteristics and uses of epoxies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Characteristics:</td>
</tr>
<tr>
<td></td>
<td>Outstanding adhesion properties, good electrical properties,</td>
</tr>
<tr>
<td></td>
<td>They are expensive, they have strength and toughness.</td>
</tr>
<tr>
<td></td>
<td>Uses:</td>
</tr>
<tr>
<td></td>
<td>For manufacturing laminates and casting, protective coating,</td>
</tr>
<tr>
<td></td>
<td>Insulating material in electrical application</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>e</th>
<th>Explain the procedure of ultrasonic crack detection with neat sketch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ultrasonic (high frequency) waves are emitted from a transducer in to an object and returning waves are analyzed. If the crack is present the sound will bounce off and seen in returned signal .when mechanical sound energy comes back to the transducer, it is converted in to electrical energy.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>f</th>
<th>Define composite materials. How they are classified?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Composite material :-</td>
</tr>
<tr>
<td></td>
<td>Composite material is composed of at least two element working together to produce material properties that are different to the properties of that element on their Own and to increase the strength and stiffness</td>
</tr>
<tr>
<td></td>
<td>Classification:-</td>
</tr>
<tr>
<td></td>
<td>Fiber composite, particulate composite, laminar composite, Flake composite, and filled composite</td>
</tr>
</tbody>
</table>

![Ultrasonic Crack Detection Diagram](image-url)