

WINTER-16 EXAMINATION

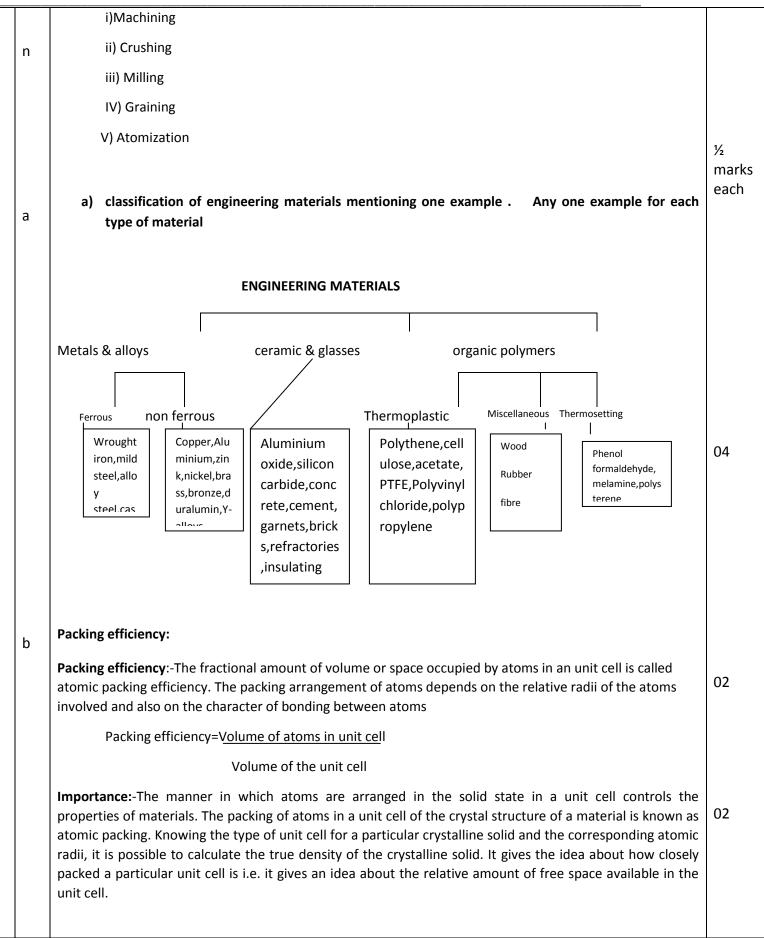
Model Answer

Subject Code: 17303

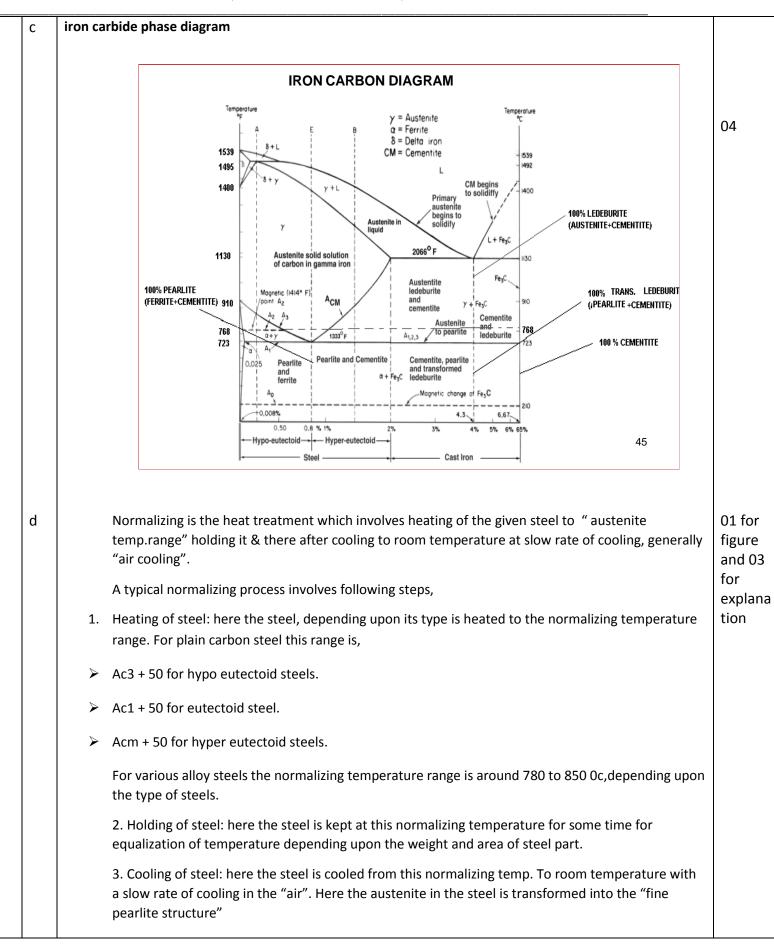
Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in the model answer 1) scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

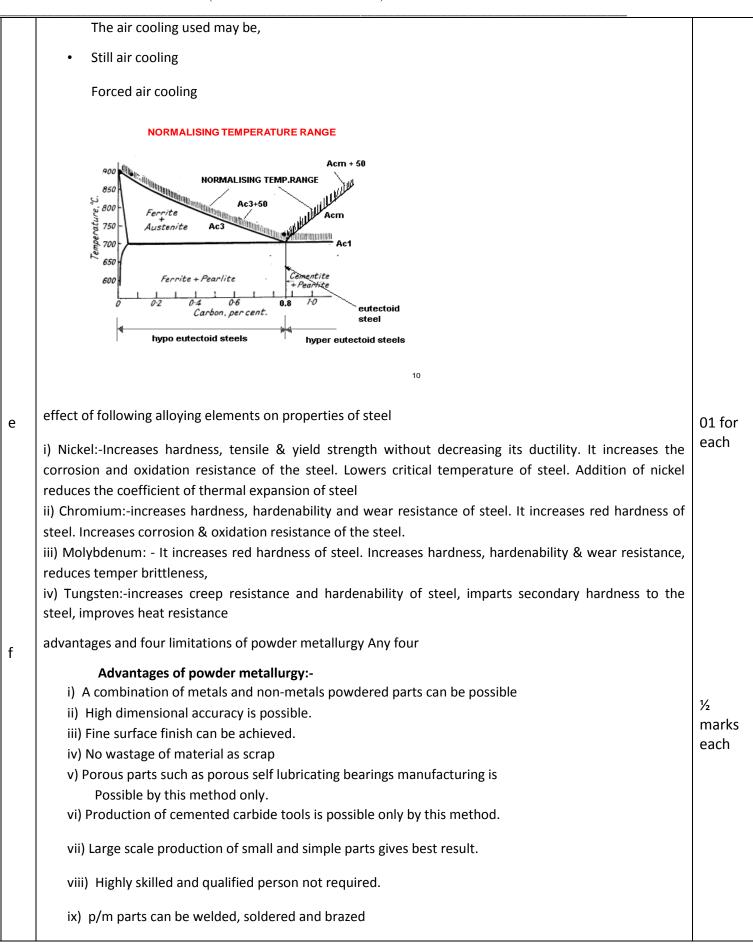
Q.	Su	Answer	Markin
No	b		g
•	Q.		Scheme
	N.		
1	а	Hardness:-The ability of a material to withstand scratching, wear and abrasion or penetration by harder	01
		bodies is known as hardness.	01
		Toughness:-Toughness is the amount of energy that a material can absorb before it fractures	
	b	Fatigue strength: -Fatigue strength is the property of a material to withstand continuously varying and alternating loads	01
	U		01
		Malleability:-Malleability is the ability of a material to exhibit deformation when compressive force is applied	
		OR	01
		A property by which a material can be drawn into thin sheets is known as malleability.	
	с	Pure metal:- A pure metal only consist of a single element. This means that it only has one type of atom in it. They have metallic bond between their atoms.	01
		Alloy: -It is a mixture of two or more elements of which at least one element is a metal and mixture shows metallic properties.	01
	d	It is mixing of two solids into a single phase. It occurs when the components have similarities in crystal structure and atomic diameter.	02

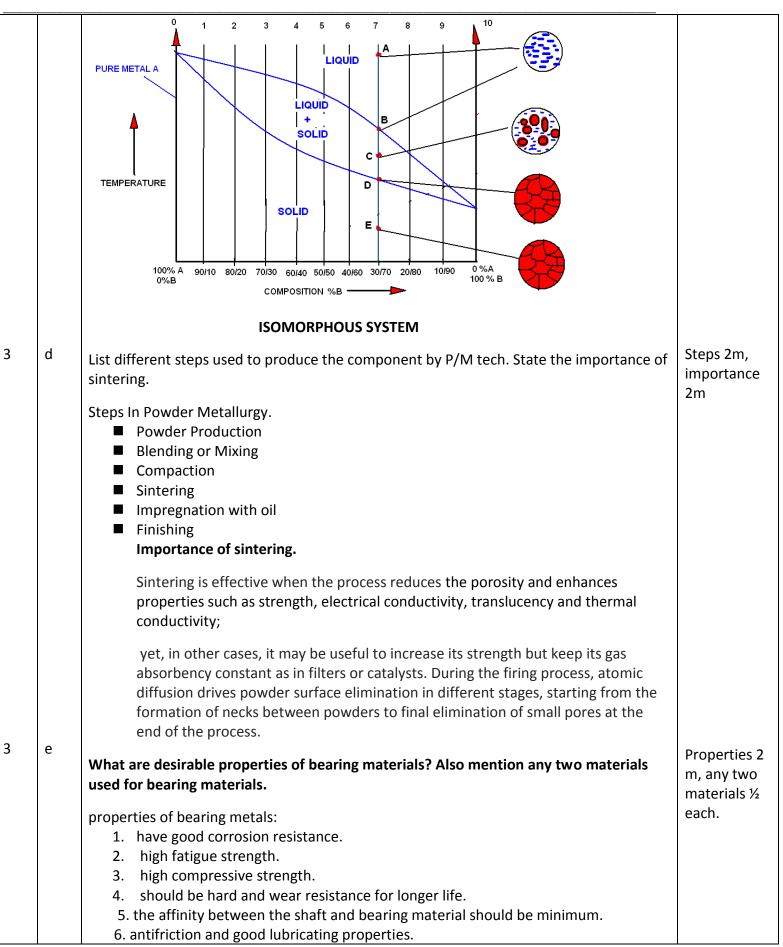


е	a) List four objectives of heat treatment	
	i) To increase hardness, wear resistance and cutting ability of the steel.	1/2
	ii) To alter the physical, mechanical or chemical properties of steels	marks each
	iii) To reduce or eliminate internal residual stresses.	
	iv) To modify grain size of the steel	
	v) To improve ductility & toughness	
	vi) To improve electrical and magnetic properties	
	vii) Improve machinability	
	Viii) Increase corrosion resistance of the steel	
f	TTT is Time-Temperature-Transformation diagram. It shows the microstructures resulting from non equilibrium cooling which is not possible on Fe-c diagram. It shows various microstructures of steels depending upon cooling rate & also the temperature and time taken for each transformation.	02
	types of cast iron	
g	i)White cast iron	
	ii) Gray cast iron	1/2
	iii) Malleable cast iron	marks each
	iv)Nodular cast iron	
	The properties of stainless steel	
h	 i)High corrosion resistance ii) High ductility & formability iii)Excellent surface finish iv)Good creep resistance v) Good thermal resistance vi)Easy weldability vii) Good machinability viii) High resistance to oxidation 	½ marks each
	composition of Y alloy and Muntz metal	
i	Y alloy:- composition is 3.5 to 4.5% copper,1.8 to 2.3% nickel,1.2 to 1.7% manganese and remaining aluminium	
	Muntz metal:-Its composition is 60% copper & 40% zinc	



	applications of bronzes	
j	i) It is used for casting	
	ii) It is used for making coins and metals	
	iii) It is used for springs, taps, marine pumps etc	1/2
	iv) It is used for heavy duty electrical switches, cams and bushings	marks each
	v) Used for manufacture of corrosion resistant mine cables, ship sheathing, valve parts	each
	vi) It is used for making bushes, cotter pins, clutch disks etc	
	uses of Acrylics	
K	i) It can be used in the form of corrugated sheets for use in industrial building	
K	ii)Sanitary ware	
	iii)Fibre optics	
	iv)contact lenses	1/2
	v)sinks,baths	marks each
	vi)Display signs	
	vii)Hospital equipments	
	viii)Aircraft light fixtures	
	i)Austenite ii)Pearlite	
I	Austenite: -It is a solid solution of carbon in gamma-iron (Υ-iron).It can dissolve up to 2% of carbon at 1148 ⁰ C.Austenite is also a soft and ductile phase.It is a non magnetic phase.	
	Pearlite: -It is an intimate mixture of ferrite and cementite.It has distinct lamellar structure and consist of alternate layers of ferrite and cementite	
		01
	powder metallurgy	01
m	It is a branch of engineering materials that deals with the production of metal and non metal powders and subsequently manufacture of components by using these powders. Powder metallurgy components are manufactured by mixing of metal and non metal powders, compacting with simultaneous or subsequent heating at elevated temperatures using a controlled atmosphere to develop metal or metal like component	
	with satisfactory strength and density	02
	different powder making processes	


7

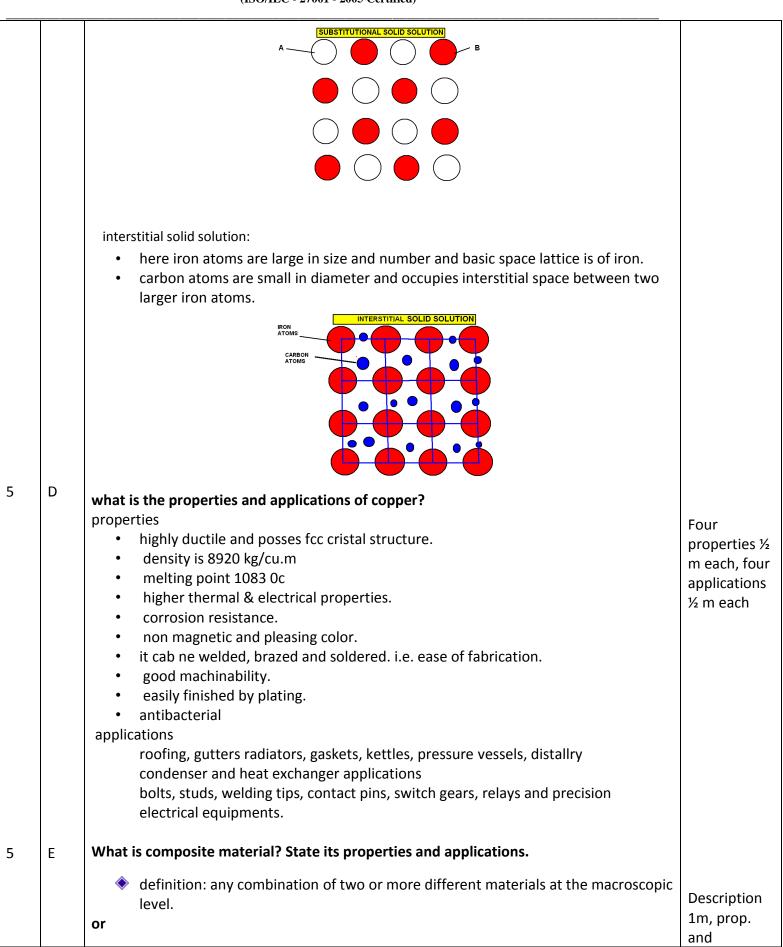

1 100 E	Ancentice.
The second second	and the second second
100	X . 1998

Describe subcritical annealing.	Correct descrip ion 04 m
---------------------------------	-----------------------------------

3	b	Compare flame hardening with induction hardening		Any four pts
		 FLAME HARDENING surface of steel is heated rapidly by oxyacetylene flame , then quenching. success depends on skill of operator. Suitable for large shaped components Internal surfaces may be heated and hardened OPERATING VARIABLES ARE distance between flame & work piece. gas pressure, flame or work travel rate, type, volume and application of quench. 	 INDUCTION HARDENING steel is heated by high freq. electric induction current and cooled rapidly. success is related to selection and design of proper work coil. Suitable for round shaped components Internal surfaces are difficult to heat. OPERATING VARIABLES ARE induced voltage flow of current resistance offered by work shape and design of coil & 	01 m each
3	C	 Any channel parts are suitable for Explain isomorphous system with neat sketch. ISOMORPHOUS SYSTEM alloy system of two metals a and b which stage as well as in solid stage. both the type of metals have same unit EXAMPLES; Cu-Ni, Au-Ag, Mo-W. Isomorphous binary phase diagrams are found systems. In the isomorphous systems, only one in the system display complete solid solubility. Typically, the isomorphous system has a liquid a mixture of both liquid and solid. Typically, a bin of two phase boundaries: the liquidus and the system should be a substantiation of two phase boundaries. 	h are completely soluble in the liquid cells and space lattice in a number of metallic and ceramic solid phase forms; the two components area, a solid area, and an area that is a ary isomorphous phase diagram consists	Explanation 2m, sketch 2m

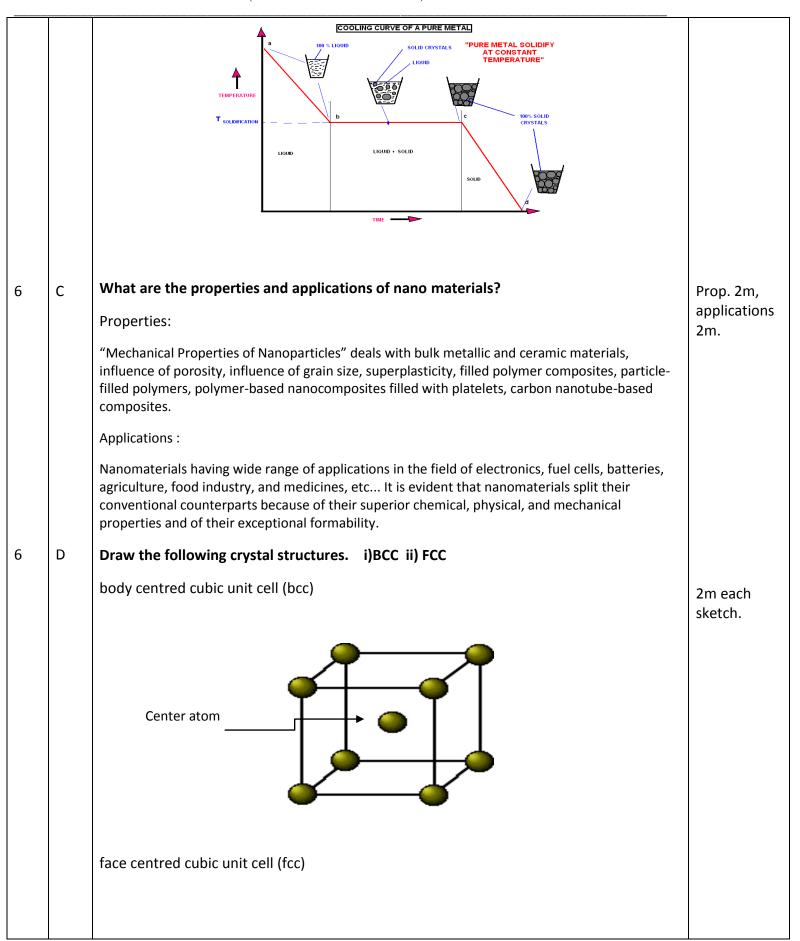
		7. high thermal conductivity.	
		8. should have antiseizing properties.	
		bearing materials are.	
		babbits (snsb) tin antimony, plain tin bronzes (10-15% tin), phosphur bronzes (10-13% tin,	
		0.3-10% phosphur rest cu), chrome steel – sae 52100, martensitic stainless steel – aisi	
		440c,Aluminum Bronze, Gun Metal etc.	
3	f	State the properties and applications of polysters.	
			Description
		Properties of Polyesters	Properties
		-	2m, applications
		1. Resistant to stretching and shrinking	2m.
		2. Resistant to most chemicals	2111.
		 Quick drying Crisp and resilient when wet or dry 	
		5. Wrinkle resistant	
		6. Mildew resistant	
		7. Abrasion resistant	
		8. Retains heat-set pleats and crease	
		9. Easily washed	
		10. Strong.	
		Applications of Polyesters	
		1. Apparel: Every form of clothing	
		2. Home Furnishings: Carpets, curtains, draperies, sheets and pillow cases, wall	
		coverings, and upholstery	
		3. Other Uses: Hoses, power belting, ropes and nets, thread, tire cord, auto	
		upholstery, sails, floppy disk liners, and fiberfill for various products including	
		pillows and furniture	
4		Attempt the following (any four)	
	а	What is nitriding? State its advantages and limitations.	
		NITRIDING	Description
		NITRIDING	1m,
		 process of heating of alloy steels in contact with nitrogen bearing gas 	Annethrop
		environment to a temperature of 500 to 550 degree centigrades and held for a	Any three
		long period of time (25 to 100 hours) in the furnace.	advantages ½ m each,
		 during holding period ,there is a chemical reaction in the gas and the free 	any three
		nitrogen atoms are liberated.	, disadvantage
			½ m each.
		 these atoms penetrate into outer surface of the steel component and combine 	
		with alloying elements to form "hard alloy nitride particles" in the outer surface	
		of the steel.due to which outer surface becomes extremely hard and wear	
		resistant.	
		 hard outer surface is formed without quenching. 	
		 maximum case depth achieved is around 0.03 mm to 0.6 mm. 	

]
		advantages of nitriding	
		high corrosion resistance	
		increased fatigue resistance.	
		very hard outer layer	
		wear resistance.	
		disadvantages of nitriding	
		long cycle times (25 to 100 hrs)	
		brittle case	
		 only special alloy steels containing al,mo,v.cr as alloying elements can only be 	
		nitrided.	
		plain carbon steels cannot be effectively nitrided.	
		high cost.	
		• technical control required.	
		• if nitrided part gets accidently overheated.(above 500 °c) then the hardness will	
4	_	be lost completely.	
4	В	Give the classification of tool steel.	
		SHOCK-RESISTING TOOL STEELS	
		COLD-WORKED TOOL STEELS	
		Oil-hardened Air-hardened High Carbon, High Chromium	Any four 1m
		HOT-WORKED TOOL STEELS	each
		Chromium-based Tungsten-based Molybdenum-based	
		HIGH-SPEED TOOL STEELS	
		Tungsten-based Molybdenum-based	
		WATER-HARDENED TOOL STEELS	
		Define i) cementite ii) ferrite	
4	С		
		i) Cementite : It is a intermetallic stable carbide compound. Called as iron	
		carbide, CM, fe₃c. Cementite contains 6.67 % C by wt. Very very hard and	02 m each
		brittle interstitial compound. Associated Crystal structure is orthorhombic	definition.
			definition.
		ii) Ferrite: It is an interstitial solid solution of carbon dissolved in α -iron.	
		Maximum solubility of carbon is 0.008 % at room temp. and this solubility	
		limit increases up to 0.025 % at 723 ⁰ c. Associated Crystal structure is BCC	
		(body centered cubic) – structure.	
	_	(body centered cubic) – structure.	
4	D	What is carburizing? List its advantages and limitations.	
		CARBURIZING	
		• process of introducing the carbon in the outer case of low carbon steels in order	Description
		to produce a hard martensitic structure in the outer surface. carbon content in	1m, any
		the outer case is increased by process of absorption and diffusion.	three adv, ½
			m each, any
		 low carbon steels are heated to 870 – 925 degree centigrades in contact with 	three
		carbon –rich material for several hours.	limitations ½



	highly enriched outer carbon rich surface is hardened by quenching .	m each.
	advantges:	
	 it produces hard workpiece surface. 	
	 cores largely retains their toughness and ductility. 	
	 case depth is around 1.27 mm. 	
	 hardness about 65 rc. 	
	disadvantages:	
	 dimensional deviations by the high temperature process and hardening treatment. 	
	 selective increase of angle points. 	
	 expensive machining. 	
	 different furnaces required as per the component sizes. 	
	 carburising time is long. 	
	 no control on case of carburising. 	
	 not suited for direct quenching. 	
	 process is dirty and dusty. 	
	 loading and unloding operation requires considerable floor space and time 	
E	What are the properties and applications of Naval brass?	
	properties:	_
	 it has increased resistance to salt water corrosion. 	Properties
	 high tensile strength (300-400 mpa) 	2m, applications
	 higher hardness (brinell hardness 80-135 hb) 	2m.
	 suited to fabrication by hot forging. 	2111.
	applications :	
	condenser plates, welding rods, propeller shafts, piston rods, valve stems.	
	leaded naval brass with 1.75% lead (pb) used for marine hardware.	
	State the characteristics and applications of ABS	Characteris
F		Characteris
	characteristics:	tics 2m,
	 these are tough, hard and rigid. light weight and impact resistant. 	applications 2m.
	 light weight and impacr resistant. good chemical &heat resistance. 	2111.
	 easy in processing & machining. 	
	 unaffected by water, inorganic salts, alkalis and many acids. 	
	 they are soluble in ketones, aldehydes and esters. 	
	applications :	
	car interior and exterior parts, mobile phone bodies. tv and computer cabinets.	
	toy manufacturing. luggage, laptop cases, protective helmets and canoes.	

5	٨	Attempt the following (any four)	
5	A	Attempt the following (any four)	
		Differentiate between austempering and martempering.	
		AUSTEMPERING MARTEMPERING	1m each point.
		1. cooled in isothermal bath 1. cooled in isothermal bath	
		maintained in between nose of ttt maintained just above ms temp. i.e.	
		diag and ms temp. i.e. 510 to 220 above 220 ^o c. then cooled in air.	
		^o c. 2 austenite transforms to martensite.	
		2. austenite transforms to bainite . 3 hardness of martensite is rc 64.	
		3. hardness of bainite is rc 60. 4 tempering is essential to relieve	
		4 no need of further tempering as internal stresses.	
		internal stresses are not developed	
5	В	What are the properties and applications of high carbon steels?	
-			Properties
		Properties	2m,
		 hard, wear resistant, brittle and difficult to machine and weld. 	applications 2m
		 can be hardened by heat treatment. 	2111
		can not cold work and hot worked.	
		have high strength, lower elongation	
		can be quench hardened applications	
		 used in applications where surface subject to abrasion 	
		tools, knives, files, chisels, agri implements. forging dies, punches, hammers,	
		springs, clutch discs, car bumpers, chisels, vice jaws, shear blades, drills, leaf	
		springs, knives, razor blades, balls and races of ball bearings, mandrels, cutters,	
		files, reamers, wire drawing dies, metal cutting saws.	
5	С	Define i) exhetitutional calid colution ii) interatitial calid colution	
		Define i) substitutional solid solution ii) interstitial solid solution	
		Substitutional solid solution:	2m each, sketch
		Here the atoms of two elements are nearly same in size & substitutes each others action in space lettice	preferred.
		position in space lattice.They have nearly same size	preferreu
		Same electrochemical nature	
		Solution has lower valancy.	



	 two inherently different materials that when combined together produce a material with properties that exceed the constituent materials. reinforcement phase (e.g., fibers) binder phase (e.g., compliant matrix) properties uniform mechanical properties in the plane of the flakes higher strength higher flexural modulus higher dielectric strength and heat resistance better resistance to penetration by liquids and vapor lower cost applications aerospace industry sporting goods automotive construction 	applications 3m.
f	Draw microstructure of white CI and gray CI Giving two applications of each.	Microstr
Τ	microstructure of white Cl applications: wear resisting components as extrusion dies cement mixer liners jcb bucket teeths plough tooth ball mills foundary drawing dies etc. microstructure of gray Cl Audienticate	ucture 1m each, any two applications of each type ½ m each.
	Applications:	

	Engines- Cylinder blocks, liners, Brake drums, clutch plates	
	Pressure pipe fittings	
	Machinery beds	
	Furnace parts, ingot and glass moulds.	
	attempt the following (any four)	
	Explain spherodise annealing with its applications.	
А	spherodizing annealing :	Explanation
	-spherodizing annealing is done to improve the "machinability" of the steel.	3m, applications
	-here plate form of cementite is converted into globular or spherical form of cementite.	1m. sketch
	-effective for high carbon steels, high carbon tool steels, all alloy steels, ball bearing steels.	preferred.
	following two methods are used. prolonged holding below ac1 temp:here the steel is heated below ac1 temp.& held at	
	this temperature for prolonged period of time(6 to7 hrs) to convert plate form of	
	cementite into globular or spherical form of cementite.	
	PEARLITE IPLATE FORM OF CEMENTITE)	
	Act A B 723 oC	
	TEMP SPHERODIZING ANNEALING	
	SPHERODIZING ANNEALING	
	applications:	
	this process applied for the following.	
	high carbon steels, high carbon tool steels, all alloy steels, ball bearing steels.	
	Explain solidification of pure metal with neat sketch.	
В	Pure metal solidify at a constant temperature. Liquid changes into solid.	Sketch 2m,
	Thermodynamically both solid and liquid have same energy at melting point. And	explanation
	therefore both are stable at melting point. Below melting point solid becomes more stable than liquid.	2m.

		Face atom	
6	E	Explain properties of gray cast iron and white cast iron.	2m for each.
		 Properties of gray cast iron : Dull gray crystalline or granular structure , it gives glistering effect due to reflection of lightby graphite flakes. Fracture shows black spots. Contains carbon in the form of graphite flakes. Silicoin encourges formation of graphite. It is btittle may broken by hammer blow. 150-200 bhn It is cheap, having low melting point -1150 to 1200 oc Easily machined. Properties of white cast iron : Carbon exclusively present in the form of cementite and martensite. Mn encourages formation of carbides. Very hard and brittle 400-600 bhn It has limited applications. High wear resistant Can not machined. Widely used to produce wrought iron and malleable ci. 	
6	f	Explain properties of high speed steel and spring steel.	2m each
		properties of high speed steel These are high alloyed tool steels developed initially to do high speed metal cutting. Now, they used in a wide variety of machining operations. These are characterized by high hardness (60-65 HRC at 600-650°C), high red hardness, wear resistance, reasonable toughness and good hardenability. They contain 0.6 % carbon, 4% Chromium, 5-12% Cobalt. Carbon imparts hardness of at-least 60 HRC of martensite formed. Chromium increase hardenability & corrosion resistance. Cobalt increases the thermal conductivity, melting point, red hardness & wear resistance of high speed steels. properties of spring steel:	

 high impact strength higher resilience i.e. load per unit deflection should be high. 	
 high tensile strength and high modulus of elasticity. 	