17301

15116 3 Hours / 100 Marks Seat No.

Instructions – (1) All Questions are Compulsory.

- (2) Figures to the right indicate full marks.
- (3) Assume suitable data, if necessary.
- (4) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.
- (6) Use of Steam tables, logarithmic, Mollier's chart is permitted.

Marks

20

Attempt any <u>FIVE</u> of the following: a) At what point on the curve y = e^x, the slope is 1? b) Find the radius of curvature of y = e^x at (0,1). c) Evaluate ∫ sin (√x)/(4x) dx

c) Evaluate
$$\int \frac{dx}{\sqrt{x}} dx$$

d) Integrate w.r.t.
$$x = \frac{\sin x}{\cos^2 x}$$

e) Evaluate
$$\int x e^x dx$$

f) Evaluate
$$\int \frac{1}{x(x+1)} dx$$

17301

g) Evaluate
$$\int_{0}^{1} \frac{1}{\sqrt{1-x^2}} dx$$

h) Find the area under the curve $y = x^2$ from x = 0 to x = 3 with X - axis.

[2]

i) Find order and degree of the following differential equation.

$$\frac{d^2 y}{dx^2} = \sqrt{y + \left(\frac{dy}{dx}\right)^2}$$

- j) Form the differential equation of the curve $y = ax^2$.
- k) Three cards are drawn from well shuffled pack of cards. Find the probability that all of them are king.
- 1) Two coins are tossed simultaneously. Find the probability of getting at least one head.

2. Attempt any FOUR of the following:

a) Find the equation of tangent and normal to the curve

$$2x^2 - xy + 3y^2 = 18$$
 at (3, 1)

- b) Show that the radius of curvature at any point on the curve $y = a \log(\sec x/a)$ where *a* is constant is $a \sec(x/a)$.
- c) Find the maximum and minimum value of $x^3 9x^2 + 24x$.
- d) Evaluate $\int \cos^{-1} x \ dx$

e) Evaluate
$$\int \frac{(\tan^{-1}x)^3}{1+x^2} dx$$

f) Evaluate
$$\int \frac{e^x}{(e^x - 1)(e^x + 1)} dx$$

Marks

16

[3]

Marks

3. Attempt any FOUR of the following:
a) Evaluate
$$\int_{0}^{\frac{\pi}{2}} \frac{\cos x}{4 - \sin^{2} x} dx$$

b) Evaluate $\int_{0}^{\frac{\pi}{4}} \log (1 + \tan x) dx$
c) Find the area of an ellipse $\frac{x^{2}}{16} + \frac{y^{2}}{9} = 1$ by integration.
d) Solve $\frac{dy}{dx} = \cos (x + y)$
e) Solve the differential equation $\frac{dy}{dx} = \frac{x^{2} + y^{2}}{xy}$
f) Solve $(x + 1) \frac{dy}{dx} - y = e^{x} (x + 1)^{2}$
4. Attempt any FOUR of the following:
a) Evaluate $\int_{1}^{5} \frac{\sqrt{9 - x}}{\sqrt{9 - x} + \sqrt{x + 3}} dx$
 $\frac{\pi}{2}$

b) Evaluate
$$\int_{0}^{2} \frac{dx}{4+5\cos x}$$

c) Find the area between the parabola $y^2 = 4x$ and the line y = 2x + 3

17301

d) Solve
$$\frac{dy}{dx} = e^{2x+y} + x^2 e^y$$

- e) Solve $(2x + 3\cos y) dx + (2y 3x\sin y) dy = 0$
- f) Show that $y = A \sin mx + B \cos mx$ is a solution of differential equation $\frac{d^2y}{dx^2} + m^2y = 0$

5. Attempt any <u>FOUR</u> of the following:

- a) A problem is given to the three students X, Y, Z whose chances of solving are $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$ respectively. Find the probability that:
 - (i) The problem is solved by each of them.
 - (ii) The problem is not solved by any of them.
- b) If 30% of the bulbs produced are defective, find the probability that out of 4 bulbs selected:
 - (i) One is defective
 - (ii) At the most two are defective.
- c) Using Poisson distribution, find the probability that the ace of spade will be drawn from a pack of well shuffled cards at least once in 104 consecutive trials.
- d) Evaluate $\int \frac{dx}{2+3\cos x}$ e) $\int_{0}^{1} x \tan^{-1} x \, dx$

f) Solve
$$\frac{dy}{dx} = \frac{y}{x} + \sin\left(\frac{y}{x}\right)$$

Marks

16

17301

6. Attempt any <u>FOUR</u> of the following:

- a) A bag contains 20 tickets numbered from 1 to 20. One ticket is drawn at random. Find the probability that it is numbered with multiple of 3 or 5.
- b) A firm produces articles of which 0.1 % are defective, out of 500 articles. If wholesaler purchases 100 such cases, how many can be expected to have one defective? Given $e^{-0.5} = 0.6065$
- c) I. Q.'s are normally distributed with mean 100 and standard deviation 15. Find the probability that a randomly selected person has:
 - (i) An I.Q. more than 130
 - (ii) An I.Q. between 85 and 115.

[z = 2, Area = 0.4772, z = 1, Area = 0.3413]

- d) Divide 80 into two parts such that their product is maximum.
- e) The equation of the tangent at the point (2, 3) on the curve $y = ax^3 + b$ is y = 4x 5. Find the values of a and b.
- f) Find the area of circle $x^2 + y^2 = 16$ by integration.