17216

16172 3 Hours / 100 Marks Seat No. Instructions - (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Figures to the right indicate full marks. (4) Use of Non-programmable Electronic Pocket Calculator is permissible. (5) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall. Marks 1. Solve any TEN of the following: 20

a) Find the value of: $i^{20} + i^{30} + i^{40} + i^{50}$

- b) Express: (2+3i)(1-4i) in the form a+ib
- c) Find 'a' if f(x) = ax + 10 and f(1) = 13.
- d) Define: Even and odd function.

e) Evaluate: $\lim_{x \to 3} \frac{\sqrt{x} + \sqrt{3}}{x + 3}$ f) Evaluate: $\lim_{x \to 0} x \cdot \csc x$ g) Evaluate: $\lim_{x \to 0} \frac{a^x + b^x - 2}{x}$ h) Evaluate: $\lim_{x \to 0} \frac{\log(1 + 5x)}{x}$ i) If $y = 2e^{3x} + \tan x - \cos 2x + 9 \sin^{-1} x$, find $\frac{dy}{dx}$.

Marks

j) If
$$y = \frac{\log x}{x}$$
, find $\frac{dy}{dx}$.
k) Differentiate $7x^5 - 11x^2$ w.r.t. $7x^2 - 15x$.
l) Differentiate w.r.t. $x : \tan^{-1}\left(\frac{2x}{1-x^2}\right)$
m) Prove that the root of the equation $x^3 - x - 4 = 0$ lies between
0 and 2.
n) Find the first iteration by using Jacobi's method for the
following system of equations:
 $10x + y + 2z = 13$, $3x + 10y + z = 14$, $2x + 3y + 10z = 15$
Solve any FOUR of the following:
a) If $f(x) = ax^2 + bx + 2$ and $f(1) = 3$, $f(4) = 42$, find a and b .
b) If $f(x) = \frac{2x + 3}{3x - 2}$, Prove that $f\left[f(x)\right] = x$
c) Separate into real and imaginary parts of:
 $\frac{2 + i}{(3 - i)(1 + 2i)}$
d) Solve: $(4 - 5i)x + (2 + 3i)y = 10 - 7i$
e) Simplify: $\frac{(\cos 3\theta + i \sin 3\theta)^4 (\cos 4\theta - i \sin 4\theta)^5}{(\cos 4\theta + i \sin 4\theta)^3 (\cos 5\theta + i \sin 5\theta)^{-4}}$
f) Find all the cube roots of (-1)
Solve any FOUR of the following:
a) If $f(x) = \log[1 + \tan x]$, show that $f\left(\frac{\pi}{4} - x\right) = \log 2 - f(x)$.
b) If $f(x) = x^2 - 3x + 4$ then solve: $f(1 - x) = f(2x + 1)$
c) Evaluate: $\lim_{x \to 5} \frac{x^2 - 9x + 20}{x^2 - 6x + 5}$
d) Evaluate: $\lim_{x \to 3} \frac{\sqrt{x^2 + 1} - \sqrt{10}}{x - 3}$

17216

2.

3.

6

Marks

- e) Evaluate: $\lim_{x \to a} \frac{\sin x \sin a}{x a}$
- f) Evaluate: $\lim_{x \to 0} \frac{15^x 5^x 3^x + 1}{x \cdot \sin x}$

4. Solve any <u>FOUR</u> of the following:

- a) Differentiate w.r.t. $x : x^{\sin 2x}$
- b) If $x = 3\cos\theta \cos 3\theta$, $y = 3\sin\theta \sin 3\theta$ then find $\frac{dy}{dx}$.

[3]

- c) Differentiate w.r.t. $x (\tan x)^x$.
- d) Differentiate $x^{\sin^{-1}x}$ w.r.t. $\sin^{-1}x$.
- e) If $xy = \log(xy)$ show that $\frac{dy}{dx} = -\frac{y}{x}$
- f) If U and V are differentiable functions of x and y = u + vthen prove that: $\frac{dy}{dx} = \frac{du}{dx} + \frac{dv}{dx}$.

5. Solve any FOUR of the following:

a) Evaluate: $\lim_{x \to 0} \frac{\log(2+x) - \log(2-x)}{x}$

b) Show that the roots of the equation $x^3 - 9x + 1 = 0$ lies between 2 and 3. Obtain the roots by Bisection method. (3 iterations only)

- c) Using Newton–Raphson method, Evaluate: $\sqrt[3]{100}$ (Upto three iterations only)
- d) Using Regula Falsi method, find the root of $xe^x 3 = 0$ (three iterations only)
- e) Using Bisection method, find the approximate root of $x^3 2x 5 = 0$ in the interval (2, 3) (3 iterations only)
- f) Find the roots of the equation using Newton-Raphson method $x^2 4x 6 = 0$ near to 5. (three iterations only)

16

16

6.