17216

15116 3 Hours /	100 Marks Seat No.
Instructions –	 All Questions are <i>Compulsory</i>. Answer each next main Question on a new page. Illustrate your answers with neat sketches wherever
	necessary.(4) Figures to the right indicate full marks.(5) Assume suitable data, if necessary.
	(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
	(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

20

1.		Attempt any <u>TEN</u> of the following:
	a)	If $z = 1 + 3i$ evaluate $z^2 + 2z + 4$

b) Express 1+i in modulus and amplitude form.

c) If
$$f(x) = 16^{x} + \log_{4} x$$
 find $f(\frac{1}{2})$.

d) Define even and odd function.

e) Evaluate
$$\lim_{x \to 1} \frac{x^2 + 2x + 5}{x + 1}$$

17216

f) Evaluate $\lim_{x \to 0} \frac{\sin 3x}{\tan 5x}$ g) Evaluate $\lim_{x \to 0} \frac{3^{2x} - 2^{3x}}{\sin x}$ h) If $y = e^{4x} \cos 3x$ find $\frac{dy}{dx}$ i) If $y = \log [\sin (4x - 3)]$ find $\frac{dy}{dx}$ j) Find $\frac{dy}{dx}$ if $x = 4 \sin 3\theta$, $y = 4 \cos 6\theta$

- k) Show that the root of $x^3 9x + 1 = 0$ lies between 2 and 3.
- 1) Find the first iteration by using Jacobi's method for the following system of equations:

5x + 2y + z = 12, x + 4y + 2z = 15, x + 2y + 5z = 20

2. Attempt any FOUR of the following:

a) Find cube roots of unity and show that one root is square the other.

b) Simplify :
$$\frac{(\cos 2\theta + i \sin 2\theta) (\cos \theta - i \sin \theta)^4}{(\cos 3\theta + i \sin 3\theta) (\cos 5\theta - i \sin 5\theta)^3}$$

using De-Moiver's theorem.

c) If sin(A + iB) = x + iy prove that:

(i)
$$\frac{x^2}{\cos h^2 B} + \frac{y^2}{\sin h^2 B} = 1$$

(ii) $\frac{x^2}{\sin^2 A} - \frac{y^2}{\cos^2 A} = 1$

Marks

Marks

16

d) Using Euler's exponential formula prove that $\sin^2 \theta + \cos^2 \theta = 1$

e) If
$$f(x) = \log\left(\frac{x}{x-1}\right)$$
 show that $f(a+1) + f(a) = \log\left(\frac{a+1}{a-1}\right)$

f) If $f(x) = \frac{3x+2}{4x-3}$ show that $f = f^{-1}$

3. Attempt any <u>FOUR</u> of the following:

a) If $f(x) = \frac{x+3}{4x-5}$ and $t = \frac{3+5x}{4x-1}$ show that f(t) = x.

b) If
$$f(t) = 50 \sin(100 \pi t + 0.04)$$
, then show that $f\left(\frac{2}{100} + t\right) = f(t)$

c) Evaluate
$$\lim_{x \to 0} \frac{\sqrt{3+x} - \sqrt{3}}{x}$$

d) Evaluate
$$\lim_{x \to 0} \frac{\sin 2x - 2\sin x}{x^3}$$

e) Evaluate
$$\lim_{x \to \frac{\pi}{2}} \frac{\cos 3x + 3\cos x}{\left(\frac{\pi}{2} - x\right)^3}$$

f) Evaluate
$$\lim_{x \to 3} \frac{\log (x-2)}{x^2 - 9}$$

Marks

4. Attempt any FOUR of the following:

a) If u and v are differentiable functions of x and $y = \frac{u}{v}$ where

$$v \neq 0$$
 then prove that $\frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$.

b) By using first principle find the derivative of $y = \cos x$.

c) If
$$y = \sin^{-1} \left[\frac{1}{\sqrt{1+x^2}} \right]$$
 find $\frac{dy}{dx}$

d) Find
$$\frac{dy}{dx}$$
 if $y = \frac{(\cos x)^x}{(1+x^2)}$

e) If
$$x^{p} \cdot y^{q} = (x+y)^{p+q}$$
 show that $\frac{dy}{dx} = \frac{y}{x}$

f) If
$$y = 3\sin t - 2\sin^3 t$$
, $x = 3\cos t - 2\cos^3 t$ find $\frac{dy}{dx}$ at $t = \frac{\pi}{4}$.

5. Attempt any <u>FOUR</u> of the following:

a) Evaluate
$$\lim_{x \to 0} \left(\frac{6^x - 3^x - 2^x + 1}{x^2} \right)$$

b) Evaluate
$$\lim_{x \to 3} \frac{\log x - \log 3}{x - 3}$$

c) Find the approximate roots of the equation $x^3 - x - 4 = 0$ by Bisection method.

16

- d) Show that root of the equation $x^3 4x + 1 = 0$ in (1, 2) and find it by using Newton-Raphson method performing two iterations.
- e) Solve the following equations by Gauss elimination method. x + 2y + 3z = 14, 3x + y + 2z = 11, 2x + 3y + z = 11.
- f) Solve the following equations by Gauss-Seidal method. 5x - y = 9, x - 5y + z = -4, y - 5z = 6

6. Attempt any FOUR of the following:

a) If $y = e^{m \sin^{-1} x}$ prove that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - m^2 y = 0$

b) If
$$x = a(\theta + \sin \theta)$$
, $y = a(1 + \cos \theta)$ find $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{2}$.

- c) Obtain the root of the equation by Regula-Falsi method. $x^{3} - x - 1 = 0$
- d) Solve the following equation by Jacobi's method 20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25.
- e) Solve the equation by using Gauss elimination method. 4x + y + 2z = 12, -x + 11y + 4z = 33, 2x - 3y + 8z = 20
- f) Use Newton-Raphson method to evaluate $\sqrt[3]{20}$ correct to three decimal places.

Marks

16