

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION

Subject Name: Elements of Electronics Model Answer Subject Code: 17215

Important Instructions to examiners:

- The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given moreImportance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q. N.	Answers	Marking Scheme
1	A	Attempt any TEN:	20- Total Marks
	а	Write colour code of 1 $k\Omega$ resistor.	2M
	Ans:	The colour code of 1 k Ω resistor is : Brown, Black, Red	2M
	b	Draw the symbol of (i) zener diode, (ii) Schottky diode, (iii) LED, (iv) Tunnel diode.	2M
	Ans:	Zener diode Schottky diode	½ M for each
		Anode Cathode	Symbol

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer

el Answer Subject Co

	LED Tunnel diode	
	tunnel diode symbol	
С	List the two advantages of Bridge Rectifier.	2M
Ans:	 The advantages of bridge rectifier: The output is twice that of the center-tap circuit for the same secondary voltage. 	Any tw mark f each
	The PIV is one half that of the center-tap circuit.	
	The need for center tapped transformer is eliminated and hence needs a simple small size transformer.	
	 Transformer utilization factor, in case of a bridge rectifier, is higher than that of a centre-tap rectifier. 	
	There is no possibility of core saturation of transformer secondary winding and	
	hence transformer losses are reduced.	
	It can be used in applications allowing floating output terminals.	
d	List any four applications of laser diode.	2M
Ans:	Applications of LASER diode: • Fiber optics communication.	Any fo
	Barcode readers.	
	CD players, CD-ROMs and DVD	
	Image scanning	
	Optical data recording,	
	Laser surgery	
е	State different types of filters.	2M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer Subject Code: 17215

Ans:	Types of filters:	(1/2 mark for
	1. Series inductor (or choke) filter	each type
	2. Shunt capacitor filter	
	3. Choke input (LC or L type) filter	
	4. Capacitor input (CLC or πtype) filter	
f	Define clipper. Draw circuit of negative shunt clipper.	2M
Ans:		
	Clipper: The circuit with which the waveform is shaped by removing (or clipping) a	1M
	portion of the applied wave is known as a clipper.	
	V_i P_i	1M
	Negative Shunt Clipper	
g	Define linear and non-linear wave-shaping circuit.	2M
Ans:	Linear wave-shaping circuit	1M
	The circuit which makes use of only linear circuit elements is known as linear wave	1141
	shaping circuits. Resistor, capacitor, inductor are used for the circuits. E.g. Integrator,	
	Differentiator	1M
	Differentiator Non-linear wave-shaping circuit	1M
		1M
	Non-linear wave-shaping circuit	1M
	Non-linear wave-shaping circuit The circuit which makes use of nonlinear circuit elements is known as nonlinear wave	1M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

Ans:	Ideal current source Where, Practical current source	(1 mark for each)
	Is = Current Source	
	Rs = internal resistance of source.	
i	List any two applications of Schottkey diode.	2M
Ans:	 Application of Schottky diode: It is used in rectification of very high frequency signals. It is used in communication system circuits. It is used in AC to DC converters. It is used in Radar system. It is used in switched mode power supply. 	(Any 2 applications 1 M each)
j	Define self-inductance and mutual inductance.	2M
Ans:	Self-inductance: As per the Lenz's law, the self-inducedemf opposes any current change taking place. This property of the coil to oppose any change in current flowing through it is known as the self-inductance or inductance. Mutual inductance: It is defined as the property due to which the change in current through one coil produces an emf in the other coil placed nearby, by induction. It is denoted by M and measured in Henry.	(1 mark for each)
	State the necessity of wave-shaping circuit.	2M
k	,	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

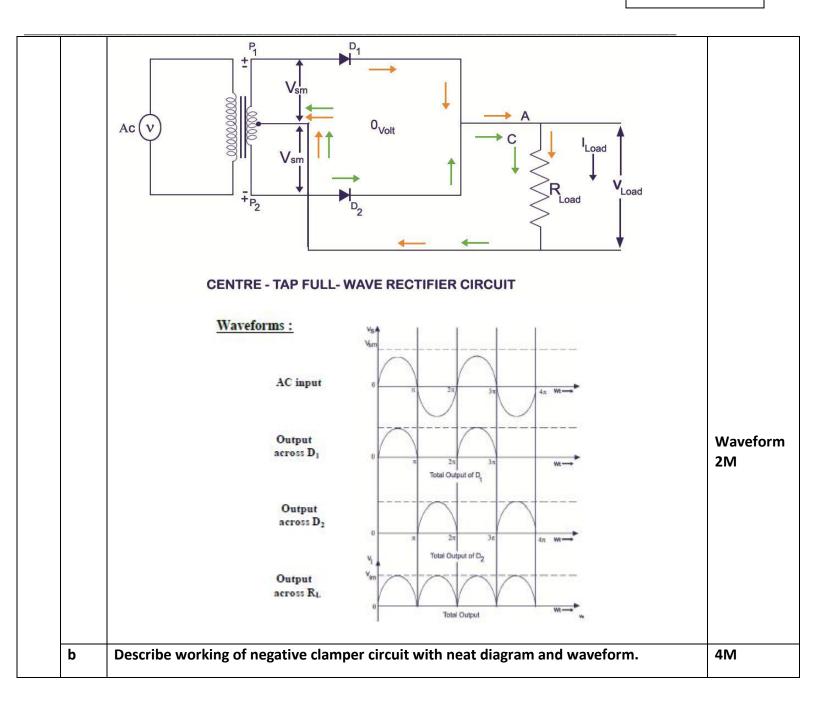
Subject Name: Elements of Electronics Model Answer

m	State superposition theorem.	2M
	Node I_{2} Fig: Illustration for KCL $I_{1} + I_{2} = I_{3} + I_{4} \text{or} I_{1} + I_{2} - I_{3} - I_{4} = 0$	
	leaving the node. $\Sigma I = 0$	
	Total current entering a junction or node is exactly equal to the total current	
	(OR)	
Ans:	In any electrical network, the algebraic sum of the currents meeting at a point or junction is zero.	
1 Ans:	State Kirchoff's current law along with its formulae.	2M
	some dc level etc. To do this wave shaping circuits are needed.	
	positive or negative portion of wave, generation of one wave from other, holding wave at	
	In electronics application, it is often needed to alter the shape of waveform like cutting off	
	(OR)	
	4. To cut off the positive and negative portions of the input waveform.	
	other voltage levels in excess of the preset level.	
	3. To limit the voltage level of the waveform to some preset value and suppress all	2M
	2. To generate one waveform from another.	Correct statemen
		statem

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

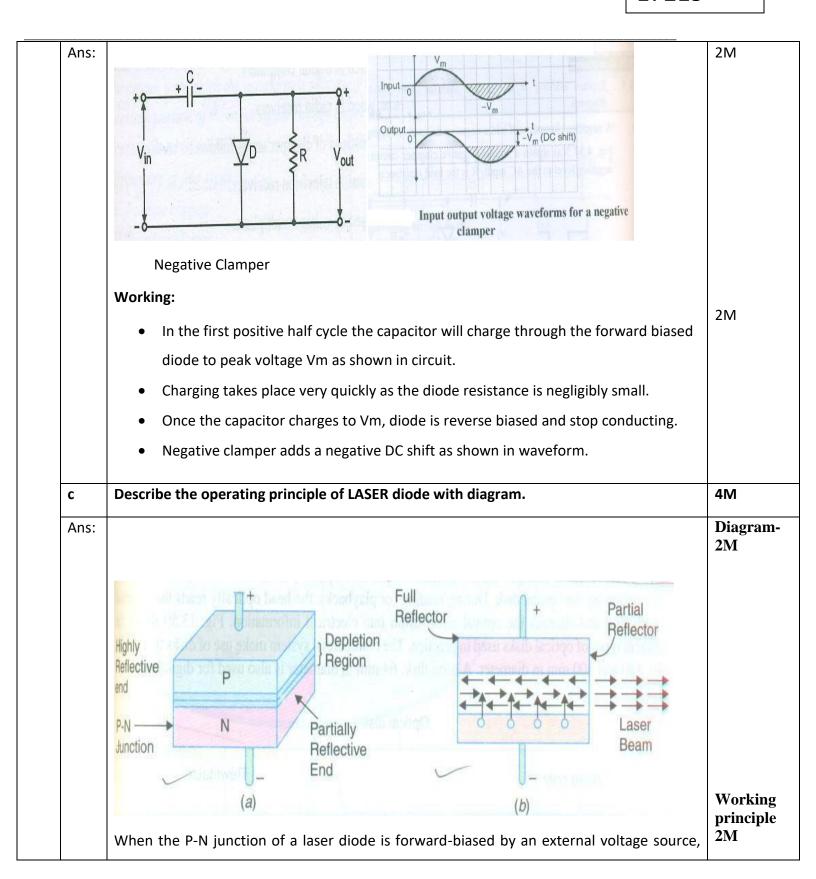
Subject Name: Elements of Electronics Model Answer


	Ans:	Superposition theorem:	2M
		Superposition theorem states that in any linear network containing two or more sources,	
		the response (current) in any element is equal to the algebraic sum of the response	
		(current) caused by individual sources acting alone, while the other sources are replaced	
		by their internal resistances.	
	n	List any two applications of photo diode and IRLED (each).	2M
	Ans:	Applications of photo diode:-	(Any 2 applications
		Cameras	½ M each)
		Medical devices	
		Safety equipment	
		Optical communication device.	
		Applications of IRLED diode:-	(Any 2
		Light source in optical systems.	applications ½ M each)
		Burglar alarm systems.	
		In medical treatment appliances.	
		In space optical communication.	
Q. No.	Sub Q. N.	Answers	Marking Scheme
2		Attempt any FOUR:	16- Total
			Marks
	а	Draw circuit diagram and waveforms for centre-tap full wave rectifier.	4M
	Ans:	Circuit Diagram:	Circuit diagram 2M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer

Subject Code:

17215

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

	electrons move across the junction and recombination occurs in the depletion region which results in the production of photons. As forward current is increased, more	
	photons are produced which drift at random in the depletion region. Some of these	
	photons strike the reflective surface perpendicularly. These reflected photons move back	
	and forth between the two reflective surfaces. The photon activity becomes so intense	
	that at some point, a strong beam of laser light comes out of the partially reflective	
	surface of the diode.	
d	By using Maxwell's loop current method, calculate current in 4 W resistance for the network shown in figure no. 1.	4M
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Ans:	Apply KVL to loop BC FAB, we get	
	$-I_{1}-10-4(I_{1}-I_{2})-2I_{1}+20=0$	
	$-I_1-4I_1+4I_2-2I_1=-10$	Equation1
	$-7I_1 + 4I_2 = -10$	1m
	Apply KVL to loop CDEFC, we get	
	$-4I_{2} + 15 - 4I_{2} - 5 - 4 (I_{2} - I_{1}) = 0$ $-4I_{2} - 4I_{2} - 4I_{2} + 4I_{1} = -10$	
	$4J_1 - 12J_2 = -10 \cdot $	
	On solving equations (1) and (2), we get	Equation2
	$I_1 = 2.35 A$, $I_2 = 1.62 A$	1m
	Current through 42 of branch CF=I1-I2	
	= 0.73A current through 410 of branch CD = branch DE	Ans 2M
	= 1.62A.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer

е	Draw and explain B-H curve.	4M
Ans:	B B B B B B B B B B B B B B B B B B B	(2M)
	 The magnetization curve of magnetic material specimen between the flux density B and the field intensity H is known a B-H curve. It is also known as Hysteresis curve. The B-H curve can be plotted by increasing and then decreasing the field intensity as shown in figure. The flux density B increases, when external field intensity H applied to it is increased. When the saturation of flux density arises, the increase in flux density ceases even though the field strength is increased. This is shown by OP. If the external field is 	(2M)
	 gradually reduced, then the original curve Op is not retraced, but follows the curve PQ. When external field is reduced to zero, the magnetic flux does not reduce to zero, i.e. material remains magnetized. The value of flux density OQ is called remanant flux density Br (or residual magnetism). In order to demagnetize the material completely, the external 	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer Subject Code: 17215

	 Further increase of field intensity in the reverse direction will now increase the flux density in reverse direction and again at the point S, the saturation occurs. 	
	The residual magnetism in reverse direction is represented by OT and to neutralize	
	it the magnetic field intensity must be increased in positive direction to the value	
	OU. Further increase in field intensity will again magnetize the material and again	
	saturation will occur at P.	
	When the magnetic material is taken through one complete cycle of	
	magnetization, it traces the loop that is called hysteresis loop. When a material is	
	subjected to cyclic changes of magnetization, the domains change the direction of	
	their orientation in accordance with field intensity.	
	The work is done in changing the direction of domain which leads to the	
	production of heat within the material. The energy required to take the material	
	through one complete cycle of magnetization is proportional to the area enclosed	
	by the loop.	
f	Define static and dynamic resistance of diode.	4M
Ans:	Static resistance (Rf): Static Resistance of a P-N junction diode is the ratio of forward	1M
	voltage to forward current.	1M
	$R_f = \frac{DC \text{ voltage}}{DC \text{ current}}$	INI
	DC current Dynamic Resistance (rf): Dynamic Resistance of a P-N junction diode is the small change	1M
	in forward voltage to small change in forward current at a particular operating point.	
	Change in voltage	1M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

Q.	Sub	Answers	Marking
No	Q.		Scheme
	N.		
3		Attempt any FOUR:	16- Total
			Marks
	а	With the help of circuit diagram and waveforms, explain working of RC differentiator.	4M
	Ans		2M –
	:		Diagram
		C	
		+0 +1 -	1M-
			Working
		V _{in} i	1M-
			Waveform
		- 6	vaveloiiii
		Fig: RC differentiating circuit	
		Figure shows a RC differential circuit. It is also known as high pass filter. The reactance of a	
		capacitor decreases with increasing frequency.	
		The higher frequency components in the input signal appear at the output i.e. the capacitor	
		acts as a short circuit for very high frequencies and virtually all the input appears at the	
		output. Therefore, it is also called as high pass RC circuit.	
		In above circuit the voltage drop across R will be very small in comparison with the drop	
		across C. Hence, the current is completely determined by the capacitance C.	
		The value of current I will be,	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer

b	State the advantages of L and C filter. (four points)	4M
	Fig: Generation of a square wave from a triangular wave.	
	$-\alpha \tau$	
	Time (t) →	
	haτ +ατ ldeal ontput O Time (t) ->	
	-V-A C Time (t) →	
	$\begin{array}{c c} & & & \\ & & & \\ \hline \\ & & \\ \hline \\ & & \\ \end{array}$	
	† + V B	
	i.e. the output signal is directly proportional to the derivative of the input signal.	
	Vo = RC x dvi / dt (where R and C are constants) Vo α dvi / dt	
	. Vo = iR	
	The output voltage vo is as given,	
	The output voltage Vo is as given,	

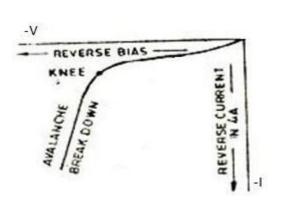
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer Subject Code: 17215

3. lt 4. Th Adva 1. lt i 2. lt 3. lt 4. lt 5. lt	has no surge current through the diode. reduces the ripple in the DC output of rectifier circuit. e L filter is more suitable for heavy loads. Intages of C filter is easy to design is small in size and cheap has low ripple factor for heavy loads. has high output DC voltage for light loads.	(½ Mark for each correct point)
3. It 4. Th Adva 1. It i 2. It 3. It 4. It 5. It	reduces the ripple in the DC output of rectifier circuit. e L filter is more suitable for heavy loads. Intages of C filter s easy to design is small in size and cheap has low ripple factor for heavy loads. has high output DC voltage for light loads.	for each correct
4. The Advantage of Advantage o	e L filter is more suitable for heavy loads. Intages of C filter Is easy to design Is small in size and cheap Thas low ripple factor for heavy loads. Thas high output DC voltage for light loads.	for each correct
1. It i 2. It 3. It 4. It 5. It	intages of C filter s easy to design is small in size and cheap has low ripple factor for heavy loads. has high output DC voltage for light loads.	for each correct
1. It i 2. It 3. It 4. It 5. It	is small in size and cheap has low ripple factor for heavy loads. has high output DC voltage for light loads.	for each correct
2. It 3. It 4. It 5. It	has low ripple factor for heavy loads. has high output DC voltage for light loads.	for each correct
2. It 3. It 4. It 5. It	has low ripple factor for heavy loads. has high output DC voltage for light loads.	correct
3. It 4. It 5. It	has low ripple factor for heavy loads. has high output DC voltage for light loads.	
4. lt 5. lt	has high output DC voltage for light loads.	point)
4. lt 5. lt	has high output DC voltage for light loads.	
5. lt		
	is more suitable for light loads.	
6. It	C	
	has no load voltage equal to maximum transformer voltage.	
c Desc	ribe avalanche and zener breakdown of PN junction with neat graph.	4M
Ans Aval	anche Breakdown	(2Mark fo
: It is	observed in diodes having Vz> 8V. is called Avalanche Breakdown	each
It oc	curs due to accelerating minority carriers.	Breakdov
It sh	ows gradual change.	n)
Brea	kdown voltage increases with increase in temperature.	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

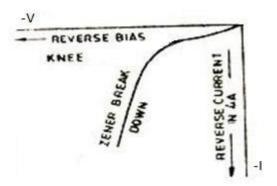

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

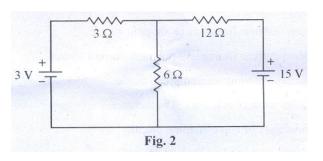
Model Answer

Subject Code:

17215


Zener Breakdown

It is observed in diodes having Vz = 5 - 8V. is called **Zener Breakdown.**


It occurs due to increased electric field.

Breakdown is very sharp.

Breakdown voltage decreases with increase in temperature

d Calculate current flowing through 6 Ω resistor using KVL (refer fig. 2)

4M

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

Ans	Note: (Marks may be awarded to solution by any other method)	
:	Apply KVL to loop 1 3-3I, -6(II+ I2)=0.	
	3.71 - 6.71 - 6.72 = 0	
	9 I) + 6 I2 = 3 1 M Apply KVL to loop 2	
	$15 - 12 I_2 - 6(I_2 + I_1) = 0$	
	672 - 611 = 0	
	6 II + 18 Is - 15 1 M.	
	colving equations (1) and (2), we get	
	$T_{1} = -\frac{6}{21} = -0.2857 A.$ $T_{2} = \frac{5.5713}{6} = 0.9285 A$	
	I2= 5.5713 = 0.9283	
	current flowing surough 622 = II + I2	
	= II + I2 = 0.04285 A . 9 - 1 M.	
	352 1252	
	302 1202 302 1 502 6 1 1500 302 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
e Dra	w and describe construction of LED .	4M
	w and describe construction of LED .	
Ans Con		Draw: 2
	w and describe construction of LED .	Draw: 2 Marks &
Ans Con	w and describe construction of LED . struction of LED	Draw: 2 Marks & describe
Ans Con	w and describe construction of LED . struction of LED	Draw: 2 Marks &

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer Subject Code: 17215

	Fig above shows the construction of LED.	
	Here an N-type layer is grown on a substrate by a diffusion process.	
	Then a thin P-type layer is grown on the N-type layer.	
	The metal connections to both the layers make anode and cathode terminals as indicated.	
	The active region exists between the P and N regions.	
	The light energy is released at the junction when the electron hole pair recombination takes	
	place.	
	After passing through the P-region the light is emitted from the window provided at top.	
f	Define given parameters and state their values for bridge rectifier (i) Ripple factor (ii) PIV	4M
	of diode.	
Ans	Ripple Factor:	Each
:	Ripple Factor is defined as the ratio of RMS value of the AC component of output to the DC	Definition
	or average value of the output.	1Mark
	Mathematically it is expressed as,	Fach
	RMS value of the AC component of output	Each value:
	Ripple Factor = $\frac{RMS \text{ Value of the AC component of output}}{DC \text{ or average value of the output}}$	1Mark
	De of average value of the output	IIVIAIK
	(i) Ripple Factor for bridge rectifier – 0.48	
	PIV:	
	Peak Inverse Voltage (PIV) is defined as the maximum negative voltage which appears across	
	non-conducting reverse biased diode.	
	(ii) PIV of diode for bridge rectifier-Vm	
	(ii) PIV of diode for bridge rectifier-viii	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer

	Sub	Answers	Marking
	Q.		Scheme
	N.		
		Attempt any FOUR:	16- Total
			Marks
	а	Write down the colour code for the following resistors :	4M
		(i) 150 Ω ± 5% (ii) 3.3k Ω ± 20%	
F	Ans		Correct
	:	i. 150 Ω ± 5%	Code – 2
		15 x 10 ¹ ± 5%	Marks Ead
		Brown,Green,Brown,Gold	
		ii. 3.3 kΩ ± 20 %	
		$3.3 \times 10^2 \pm 20\%$	
		Orange, Orange, Red, no colour	
	b	Describe working of variable air gang capacitor with neat sketch.	4M
Ē	Ans		2M-
	:	Rotor (fixed spindle)	Diagram
			2M-
		Rotating Stator (Moving plate	Working
		(a) Rotary (b) Concentric	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer Subject Code: 17215

(OR)

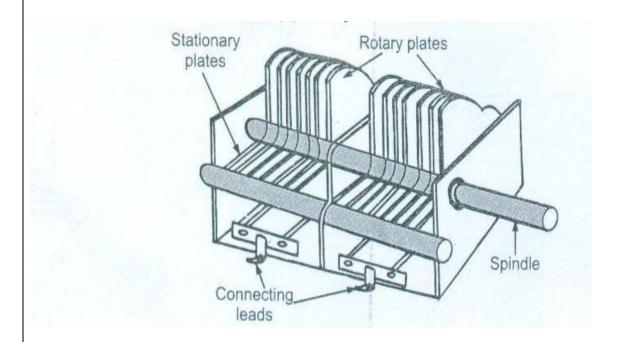


Fig: Air ganged capacitor

working:

Consider the structure of the above figure. It mainly consists of two sets of aluminium plates separated from each other by air. These metal plates may be rotary or concentric type.

The rotary type configuration has a rotor and a stator. The concentric type of configuration has two cups of aluminium.

The concentric type variable capacitor consists of two cups of aluminium, one moving in other. The movement is actuated by a threaded screw.

One set of the plates is fixed, while the other set is connected to a shaft and can be rotated.

The fixed set of plates is insulated from the body of a capacitor on which it is mounted.

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer

	The set of moving aluminium plates can be moved in or out of a fixed set of plates with the	
	help of a suitable knob connected to a rotating shaft. As the plates are moved in and out of	
	the fixed plates, the capacitance value varies.	
	The capacitance is minimum, when the moving plates are completely out and it is	
	maximum, when the moving plates are completely in.	
	The fixed plates are called stators, which are normally made of brass, copper or aluminium.	
	The cadmium plated steel is used for the frames in low cost capacitors.	
	The outer set of plates is called rotors. They get interleaved with stators, when the shaft is	
	rotated. Sometimes, two or more such capacitors are operated by a single shaft.	
С	Describe the working of PN junction diode with neat sketch under forward biased	4M
	condition.	
Ans	Working of PN junction diode under forward biased condition with help of following circuit	Working:2
:	diagram and graph	М
	Region A to B:	
	In this region A to B of the forward characteristics shown in the fig, the forward voltage is	
	small and less than the cut in voltage.	
	Therefore the forward current flowing through the diode is small.	
	With further increase in the forward voltage, it reaches the level of the cut in voltage and	
	the width of depletion region grows on decreasing.	
	Region B to C:	Graph:2M
	As soon as the forward voltage equals the cut in voltage, current through the diode	
	increases suddenly. The nature of this current is exponential.	
	The large forward current in the region B-C of the forward characteristics is limited by	
	The large forward current in the region B-C of the forward characteristics is limited by connecting a resistor 'R' in series with the diode. Forward current is of the order of a few	

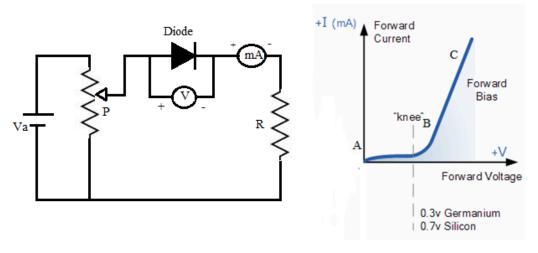
d

Ans

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION


Subject Name: Elements of Electronics Model Answer Subject Code: 17215

Therefore it is considered to be positive current, and the forward characteristics appears in the first quadrant as shown in the fig.

Cut in voltage (Knee Voltage):

The voltage at which the forward diode current starts increasing rapidly is known as the cutin voltage of a diode. As shown in fig above, the cut in voltage is very close to the barrier potential. Cut-in voltage is denoted by . Cut-in voltage is also called as Knee voltage.

Generally a diode is forward biased above the cut-in voltage. The cut-in voltage for a silicon diode is 0.6V and that for germanium diode is 0.3V.

Circuit arrangement

Compare soft magnetic materials and hard magnetic materials. (four points)

Forward characteristics

Hard magnetic materials	Soft magnetic materials	1mark for each for any four
They have low resistivity	They have high resistivity	any loui
They have high coercivity.	They have low coercivity	
They have high residual	They have low residual	

4M

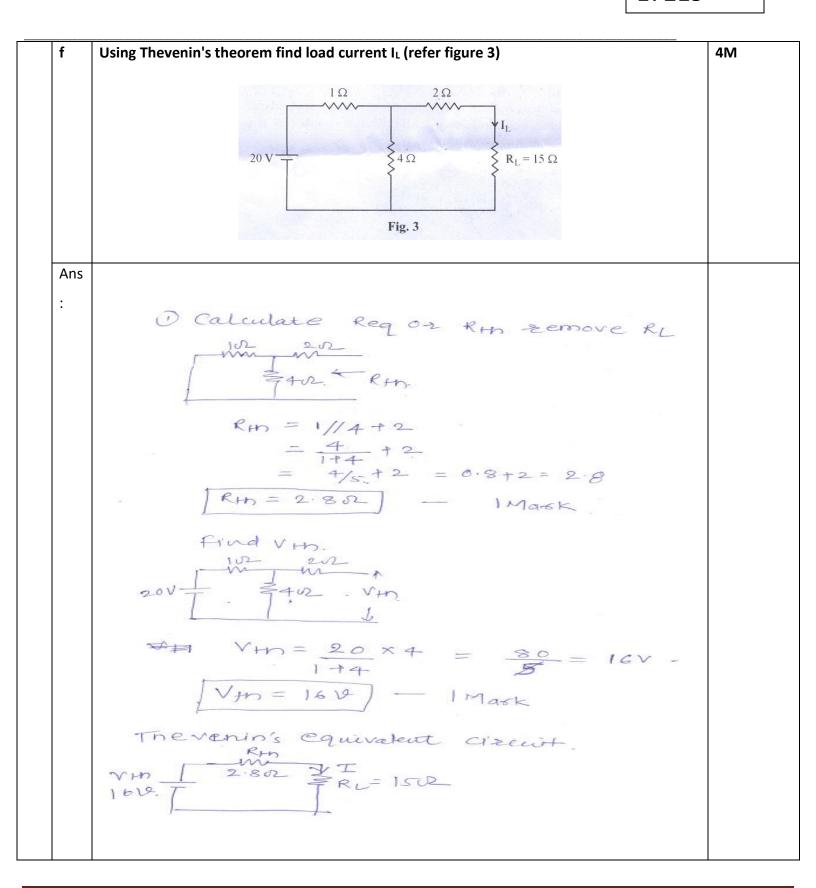
(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

	magnetism	magnetism.	
	They have high (B*H) energy	They have low (B*H) energy	
	They have high retentivity.	They have low retentivity	
	They cannot be easily magnetized	They are easily magnetized.	
	They have wide hysteresis loop.	They have narrow hysteresis loop.	
е	In bridge rectifier load resistance R _L = 2	kW. The diode has forward dynamic resistance of	4M
	10 W. The AC voltage across the secon	ndary winding of transformer is V = 50 sin 413t V.	
	Determine : (i) Peak current (ii) DC value	e of current (iii) PIV of diode (iv) DC voltage.	
Ans			
	J Peak Current Im = Vn (Rs Assume Rs = 0 200 Im = 0.00 Im = 0.00 Idl= 2 Im The state of	$\frac{50}{50}$ $\frac{50}{500}$ $\frac{50}{200}$ $\frac{20}{247}$ $\frac{2 \times 0.0247}{11}$	
	iii) PIV of dod (iv) DC voltage	0157 A) le [Vm = 50V]	



(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

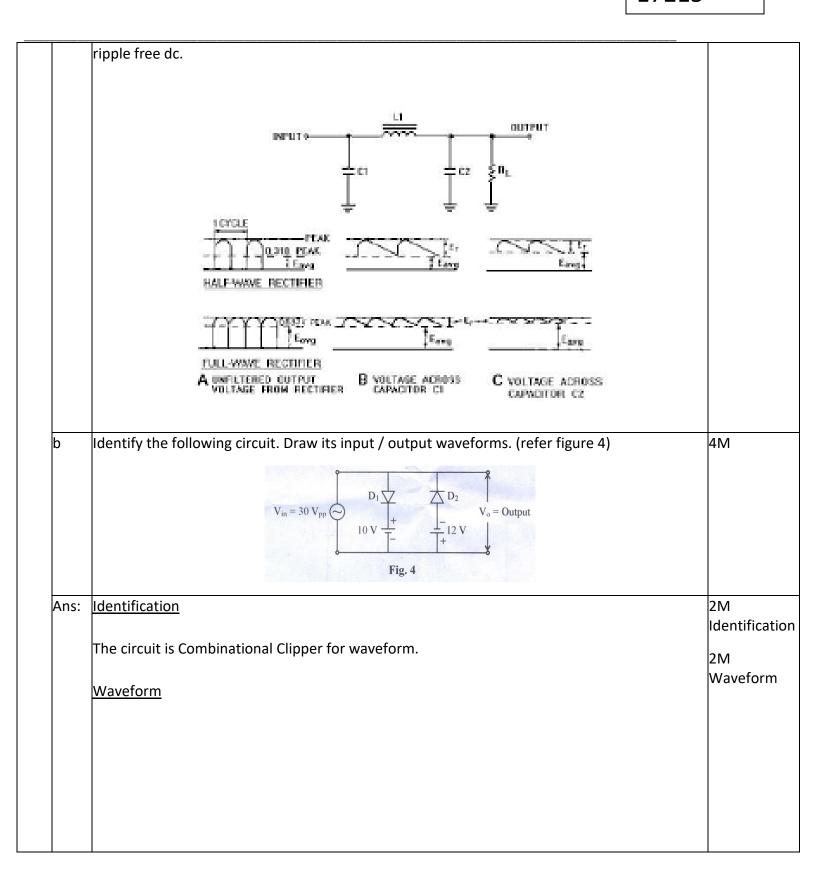
SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

		$T_{L} = \frac{V_{H}}{R_{H} + R_{L}} = \frac{16}{2.8 + 15} = \frac{16}{17.8}.$ $= .0.898 \text{ Amp.}$ $J_{L} = 0.898 \text{ Amp.}$ $J_{L} = 0.898 \text{ Amp.}$	
Q. No.	Sub Q. N.	Answers	Marking Scheme
5		Attempt any FOUR:	16- Total Marks
	а	With help of circuit diagram & waveform, explain working of CLC or π filter.	4M
	Ans:	CLC Filter	1 M Diagram,1M Waveform 2M Explanation
		Full wave C1 + RL	
		C ₁ will bypass ac & blocks dc.	
		This output is given to inductor, it will block ac and pass only dc. This output is given to C_2 it will again bypass remaining ac and block dc, so at output we get	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

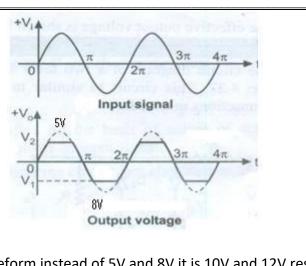

SUMMER- 18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

Subject Code:

17215


(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer

Subject Code:

17215

In the output Voltage waveform instead of 5V and 8V it is 10V and 12V respectively.

c Compare HWR and FWR. (four points)

4M

Parameter	Half wave rectifier	Center tap full wave	Bridge full wave	Any 4 points-
		rectifier	rectifier	4M
1.No of diodes	One	Two	Four	
2.PIV	V _m	2V _m	V _m	
3.ripple factor	1.21	0.48	0.48	
4.ripple frequency	f	2f	2f	
5.efficiency	40%	80%	80%	

d State Maximum Power Transfer Theorem.

4M

Ans: Theorem – 2 marks

Ans:

The maximum power transfer theorem states that the maximum amount of power will be delivered to the load resistance when the load resistance is equal to the Thevenin/ Norton resistance of the network supplying the power. If the load resistance is lower or higher than the Thevenin/ Norton resistance of the source network, then the power delivered to load is less than maximum. That means the condition for maximum power transfer according to

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

Subject Code: 17215

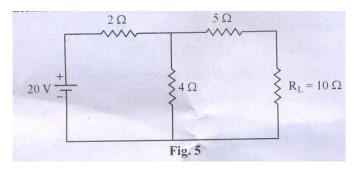
maximum power transfer theorem is,'

RL = RTH

Example:2M

For the circuit shown in fig, determine the value of load resistance when load resistance draws maximum power. Also find the value of the maximum power.

From circuit above,


 $RL = RTH = 25\Omega$

 $P_{L \max} = (V_{oC})^2 / 4R_L$

 $=(50)^2/4x25$

P_{L max}= 25Watt

Calculate the value of current in 10 Ω resistor using Norton's Theorem. (refer fig. 5)

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

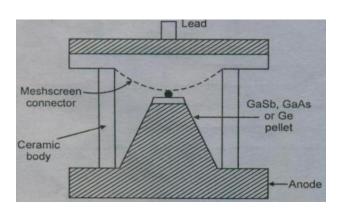
Subject Name: Elements of Electronics Model Answer

Apply kyl to loop 2:- $-4(\overline{1}, \overline{1}) - 5\overline{1} = 0$ $4\overline{1} - 4\overline{1} - 5\overline{1} = 0$ $4\overline{1} - 9\overline{1} = 0$ $\overline{1} = 4.73A$ $\overline{1} = 2.10A$, $\overline{1} = 2.10A$. To obtain $\overline{1} = 2.10A$ $\overline{1} = 2.$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		By ohms law:- $RN = Vth = 6.34 \Omega$ The Tac $RN = Vth = 6.34 \Omega$ Norton's equivalent circuit:- $T = Tsc \times RN$ $RN + R$ $Tsc = (1) = RN = R = 10 \Omega$ $RN + R$ $RN + R$	
Apply kyl to $ oop 2: -4(I-I_1)-5I_2=0$ $4I_1-4I_2-5I_2=0$ $4I_1-9I_2=0$ $-I_1=4.73A, I=2.10A, I_{Sc}=I_2=2.10A.$ To obtain $Vth:-$ $201 $	Apply kvl to loop 1 $20-2T_1-4(T_1 T_2)=0$ $20-2T_1-4T_1+4T_2=0$ $-6T_1+4T_2=-20 \text{ T}$ $4T_1-4T_2=-20 \text{ T}$ $4T_1-3T_2=0 \text{ T}$ $T_1=4.73A, T_1=2.10A, T_2=0$ $T_2=4.73A, T_1=2.10A, T_2=0$ $T_1=4.73A, T_2=2.10A, T_3=-2.10A.$ $T_1=0A \text{ (Sute to open circuit)}$ $T_1=0A \text{ (Sute to open circuit)}$ $T_1=0A \text{ (Sute to open circuit)}$		Nortons equivalent circut:- T = Isc × RN	
Apply kyl to $ \cos p 2: -4(\overline{1}, \overline{1}) - 5\overline{1} = 0$ $4\overline{1} - 4\overline{1} - 5\overline{1} = 0$ $4\overline{1} - 9\overline{1} = 0$ $-\overline{1} = 4.73A, \overline{1} = 2.10A, \overline{1}_{Sc} = \overline{1} = 2.10A.$ To obtain $\overline{1}$	Apply kvl to loop 1 $ 20 - 2T_1 - 4(T_1 T_2) = 0 $ $ 20 - 2T_1 - 4T_1 + 4T_2 = 0 $ $ - 6T_1 + 4T_2 = -20 \text{ (T)} $ Apply kvl to loop 2: $-4(T_1 - T_1) - 5T_1 = 0$ $ 4T_1 - 4T_1 - 5T_1 = 0 $ $ 4T_1 - 3T_1 = 0 \text{ (T)} $ $ T_1 = 4.73A, T = 2.10A, T_2 = 7.10A. $ To obtain Vth:- $ 272 - 572 $ To obtain $= 2.10A$		T-AA (Due to appe count)	
Apply kul to $ 00p2:$	Apply kvl to loop 1 $20-2T_1-4(T_1-T_2)=0$ $20-2T_1-4T_1+4T_2=0$ $-6T_1+4T_2=-20 \text{ (T)}$ Apply kvl to loop 2:- $-4(T_2-T_1)-5T_2=0$ $4T_1-4T_2-5T_2=0$ $4T_1-9T_2=0 \text{ (T)}$ $T_1=4.73A, T_1=2.10A, T_2=1.0A.$		ZOV T TAR (Sus to a rep count)	
-61+41 ₂ 20 (1)	Apply kvl to loop 1 $20 - 2T_1 - 4(T_1 - T_2) = 0$ $20 - 2T_1 - 4T_1 + 4T_2 = 0$		Apply kyl to $ \cos p 2: 4(I - I_1) - 5I_2 = 0$ $4I_1 - 4I_2 - 5I_2 = 0$ $4I_1 - 9I_2 = 0$ $- I_1 = 4.73A, I_2 = 2.10A, I_3c = I_2 = 2.10A.$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer Subject Code: 17215

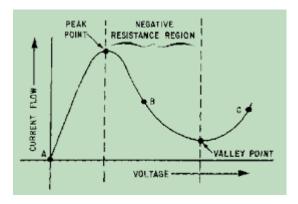

			of the segment.	resistance mixers having different resistivity to make up the total length of the film.	
		3.	Linear potentiometers are less expensive as compared to logarithmic potentiometers.	Logarithmic potentiometers are more expensive as compared to linear potentiometers.	
		4	In consumer electronics, user control uses linear potentiometers.	Logarithmic potentiometers are often used in connection with audio amplifiers.	
Q. No.	Sub Q. N.		Ans	wers	Marking Scheme
6		Attemp	ot any FOUR:		16- Total Marks
	а	Calcula	te value of capacitor if following is printed	d on body of capacitors : (i) 404 (ii) 2K3.	4M
	Ans:	It's mea = 400 r	tor marking is "404" an that = 40 + 4 Zeros = 400000 pF nF 2.3k = (2.3 x 10³) x 10 ⁻¹² = 2.3 x 10 ⁻⁹ =2.3nf	F	
	b		be the working of tunnel diode. Draw its c		4M
	Ans:		l of TUNNEL DIODE		
		operati	Anode Anode ing principle of tunnel diode	Cathode	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer Subject Code: 17215

Working


The operation of tunnel diode is based on special characteristics known as negative resistance.

The width of the depletion region is inversely proportional to the square root of impurity concentration.

So increase in the impurity concentration, the depletion region width will reduce. The thickness of depletion region of this diode is so small. That indicates there is large probability of an electron can penetrate through this barrier.

This behavior is called is tunneling & hence the name of the high impurity density PN junction is called as tunnel diode.

Tunnel diode characteristics

a)It is also capable for very fast operations.

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER- 18 EXAMINATION

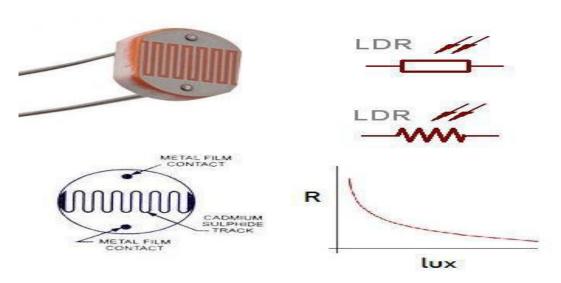
Subject Name: Elements of Electronics Model Answer

Subject Code:

17215

b)It has heavily doped PN junction of only 10 nm wide .

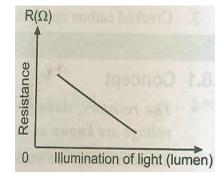
c)It exhibit negative resistance region.


d)Applications:microwave applications,ultra high speed switching device, relaxation oscillators.

e)The process of penetrating charge carrier directly through potential barrier is called tunneling.

With the help of constructional diagram, explain the working of LDR with neat sketch.

4M


Ans:

Working Principle

The resistance depends on the intensity of light, as resistance decreases with increase in light intensity.

Characteristics

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

Subject Code: 17215

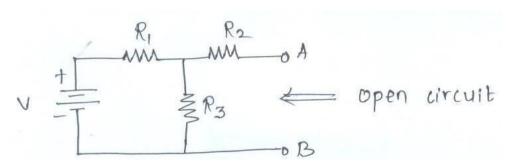
Applications of LDR

- 1. They are often used as light sensors.
- 2. They are used when there is a need to detect absences or presences of light like in a camera light meter.
- 3. Used in street lamps, alarm clock, burglar alarm circuits, light intensity meters,

for counting the packages moving on a conveyor belt, etc.

Explain with neat circuit, concept of open circuit and short circuit.

4M


Ans: Open Circuit

(2 Marks)

Two points in a circuit are said to be open circuited if there is no circuit element or direct connection between them.

An open circuit exist between points "A" and "B" in below figure. The resistance between the open circuited points is infinite.

 $R_{AB} = \infty$

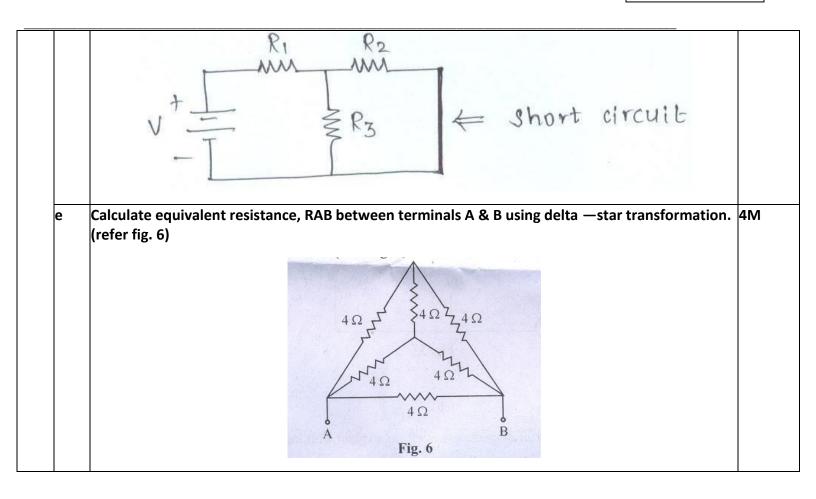
Short Circuit (2 Marks)

Two points in a circuit are said to be short circuited when they are connected to each other by a good conducting wire.

Points ,,A" and ,,B" are short circuited in below figure. The resistance between short circuited points is zero.

 $R_{AB} = 0\Omega$

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)


SUMMER- 18 EXAMINATION

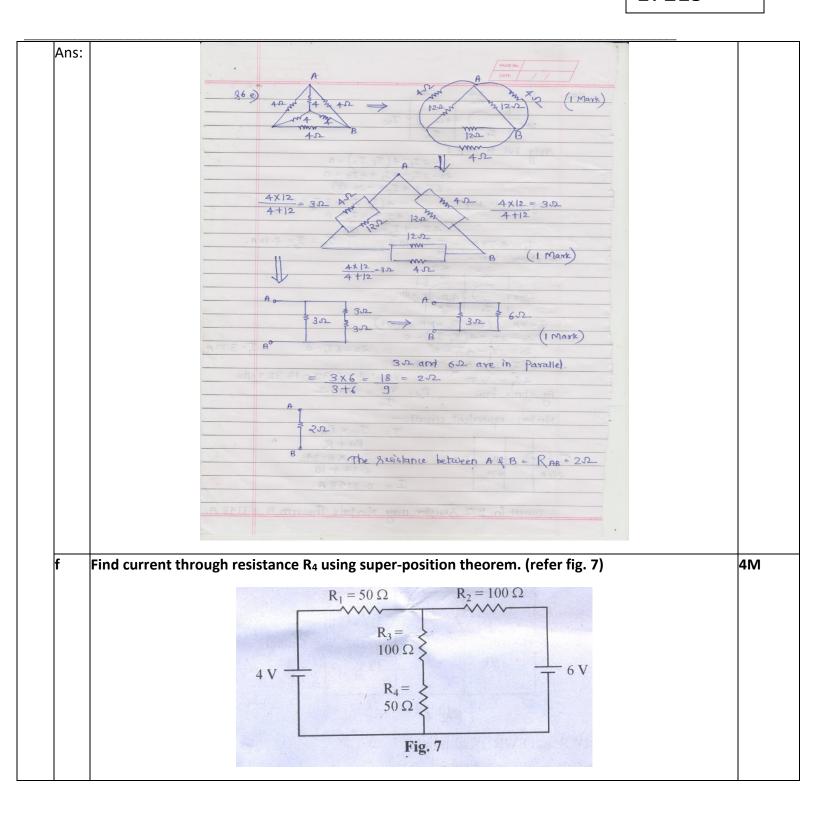
Subject Name: Elements of Electronics

Model Answer

Subject Code:

17215

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)


SUMMER- 18 EXAMINATION

Subject Name: Elements of Electronics

Model Answer

Subject Code:

17215

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Elements of Electronics Model Answer

PAGE No.	
R6f. CaseI - Keep 4VON,	
502 1002	
AVI	
I, I 5002 I2	
$4 - 50 \text{ T}_1 - 100 (\text{T}_1 - \text{T}_2) - 50 (\text{T}_1 - \text{T}_2) = 0$	
$\frac{4-50\mathrm{T}-100\mathrm{T}+160\mathrm{T}-50\mathrm{T}+50\mathrm{T}=0}{-200\mathrm{T}+150\mathrm{T}=-4}$	
$-50(I-I_1)-100(I-2I_1)-100I_0=0$	
50T - 50T + 100T - 100T = 0	
T = 0.036A $T = 0.0218 A$	
I= I- I= 0.0142 A.	
Case II - Keep 6V ON.	
50.72 100.72 W	
\$1000	
T, T 50.72 T2	
-50 T-100 (T- T2) -50 (T- T2) = 0	
$-5^{1}\overline{1} - 150\overline{1} + 150\overline{1} - 50\overline{1} + 50\overline{1} = 0$ $-300\overline{1} + 150\overline{1} = 0 \overrightarrow{\oplus}^{2}$	
-200I + 150 I = 0 $-50(I-I) - 100(I-2I) - 100 I - 6 = 0$	
-50 I + 50 I, -100 I + 100 I, -100 I = 6.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
T = -0.0327A $T = -0.0436A$	
According to superposition Theorem.	
Current through R4=5012 sesister, I= I'+ I'	
= 0.0142 + 0.0109	
$= 0.025 \mid A.$	