

MODEL ANSWER

SUMMER-17 EXAMINATION

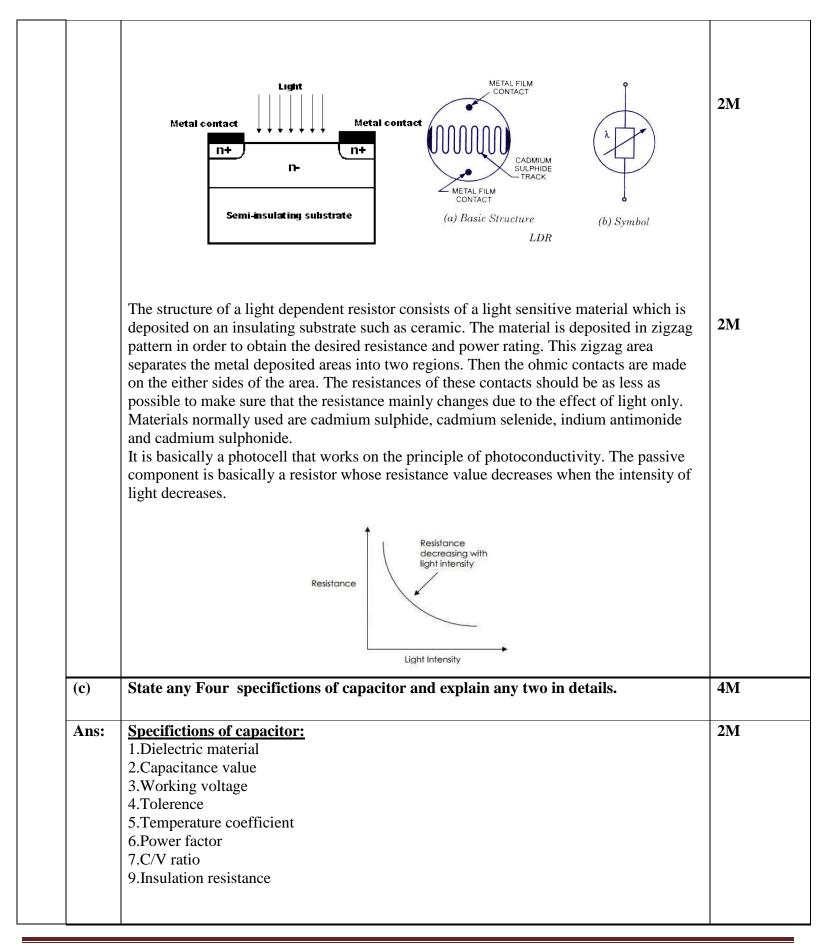
Subject Code:

1	7	5	1	5
_ T	1	Ζ	1	J

Subject Title: Elements of Electronics

- Important Instructions to examiners:
 - 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
 - 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
 - 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
 - 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

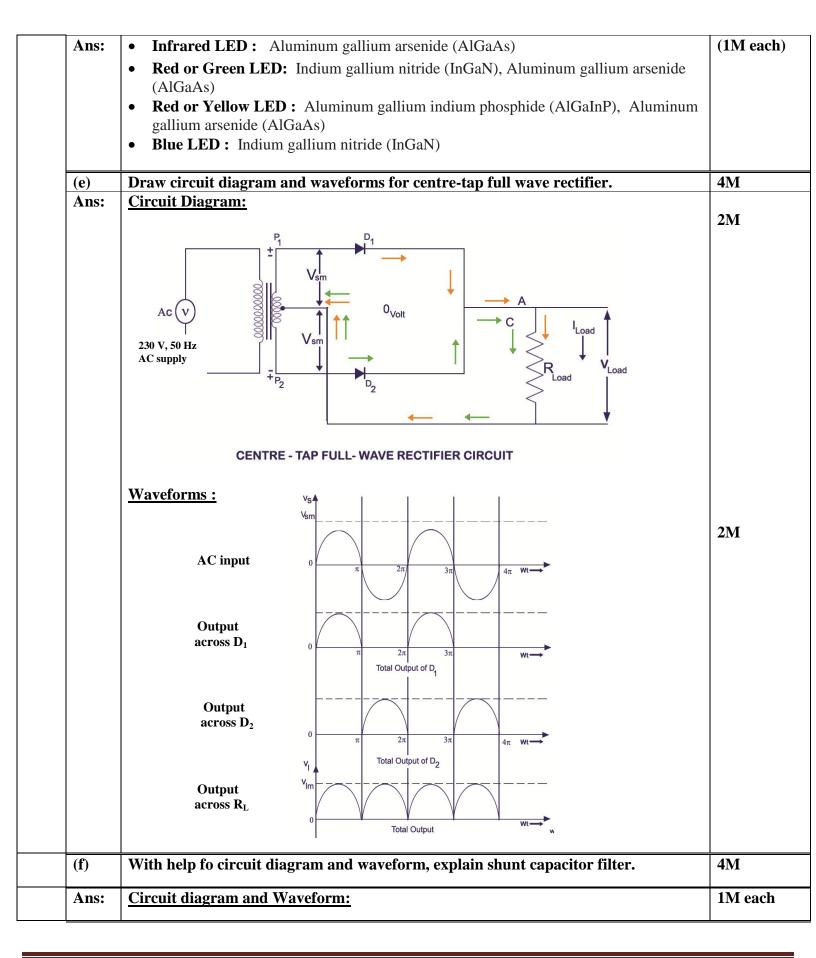
Q. No.	Sub Q.N.	Answer	Marking Scheme
Q.1		Attempt any TEN:	20-Total Marks
	(a)	What is magnetic material ? State it's two applications.	2M
	Ans:	Magnetic materials are those materials that can be either attracted or repelled when placed in an external magnetic field and can be magnetized themselves. <u>OR</u> The materials which provide path to the magnetic flux and can be magnetized are called magnetic materials.	1M
		Applications:1.Floppy disc ,hard disc2.Motors and generators3.Biomedical equipment	1M
	(b)	Define Inductor. Draw its symbol.	2M
	Ans:	An inductor is a passive electronic component that stores energy in the form of a magnetic field	1M
			1M
		-0000-	

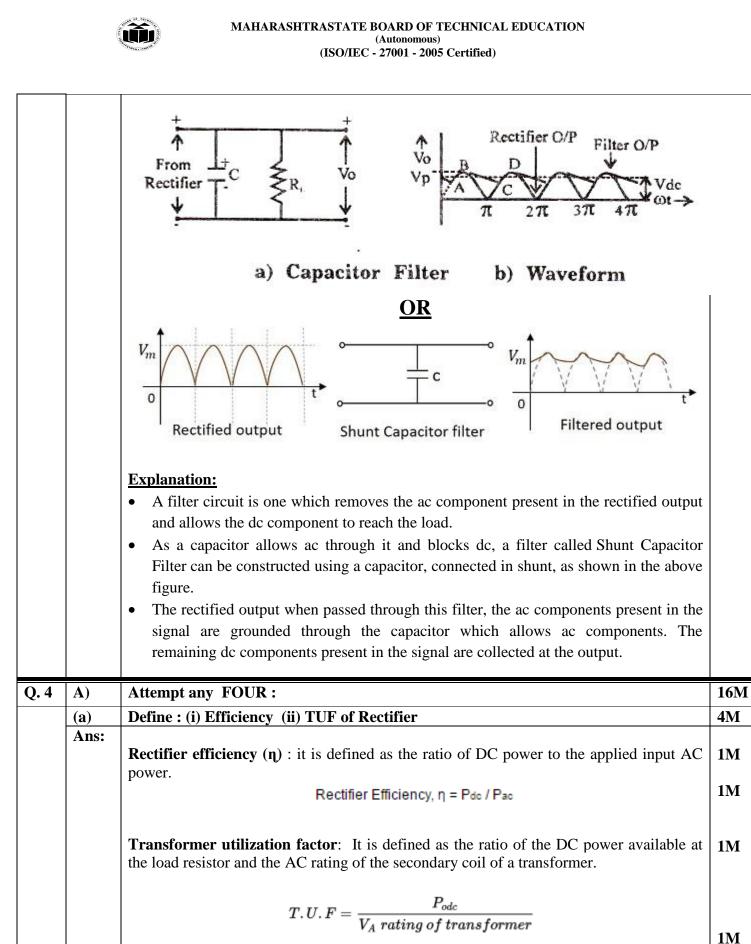

(c)	What is dielectric material? Enlist dielectric material used in capacitor.	2M
Ans:	A dielectric material <i>is</i> an electrical insulator that can be polarized by an applied electric field.	1M
	Dielectric materials used in capacitor: porcelain (ceramic), mica, glass, plastics, and	1M
	the oxides of various metals	
(d)	State any Four applications of PN junction diode.	2M
Ans:	1. Rectifiers in power supplies,	(¹ / ₂ M for
	2. Detectors in RF,	each point
	3 .Clippers,	
	4. In clamping networks used as DC Restorers,	
	5. As switches in digital logic circuits.	
(e)	Draw symbol of (i) Tunnel diode (ii) LED	2M
Ans:		
	(i) <u>Tunnel diode:</u>	1M
		1 IVI
	r transmission of the second sec	
	tunnel diode symbol	
		•
	(ii) <u>LED:</u>	
		1M
		1M
		1M
	(ii) <u>LED:</u>	1M
		1M
		1M
	-	
(f)	Calculate equivalent resistance IFRI and R ₂ resistors are conncted in parallel R ₁ =	1M 2M
	Calculate equivalent resistance IFRI and R ₂ resistors are conncted in parallel R ₁ = 10Ω , R ₂ = 5Ω	2M
(f) Ans:	Calculate equivalent resistance IFRI and R_2 resistors are conncted in parallel $R_1 = 10 \Omega$, $R_2 = 5 \Omega$	2M 1M for
	Calculate equivalent resistance IFRI and R ₂ resistors are conncted in parallel R ₁ = 10Ω , R ₂ = 5Ω	2M
	Calculate equivalent resistance IFRI and R2 resistors are conncted in parallel R1 = 10 Ω , R2 = 5 Ω $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	2M 1M for
	Calculate equivalent resistance IFRI and R2 resistors are conncted in parallel R1 = 10 Ω , R2 = 5 Ω $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	2M 1M for
	Calculate equivalent resistance IFRI and R_2 resistors are conncted in parallel $R_1 = 10 \Omega$, $R_2 = 5 \Omega$	2M 1M for Formula
	Calculate equivalent resistance IFRI and R ₂ resistors are connected in parallel R ₁ = 10 Ω, R ₂ = 5 Ω $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ $\frac{1}{R} = \frac{1}{10} + \frac{1}{5}$	2M 1M for Formula 1M for
	Calculate equivalent resistance IFRI and R2 resistors are conncted in parallel R1 = 10 Ω , R2 = 5 Ω $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$	2M 1M for Formula
	Calculate equivalent resistance IFRI and R ₂ resistors are connected in parallel R ₁ = 10 Ω, R ₂ = 5 Ω $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ $\frac{1}{R} = \frac{1}{10} + \frac{1}{5}$	2M 1M for Formula 1M for
Ans: (g)	Calculate equivalent resistance IFRI and R2 resistors are conncted in parallel R1 = 10Ω , $R_2 = 5 \Omega$ $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ $\frac{1}{R} = \frac{1}{10} + \frac{1}{5}$ $R = 3.33\Omega$ Define (i) Open circuit (ii) Short circuit.	2M 1M for Formula 1M for Answer 2M
Ans:	Calculate equivalent resistance IFRI and R ₂ resistors are conncted in parallel R ₁ = 10 Ω , R ₂ = 5 Ω $\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$ $\frac{1}{R} = \frac{1}{10} + \frac{1}{5}$ R = 3.33 Ω	2M 1M for Formula 1M for Answer

Q

(h)	path across its terminal.(or any relevent definition) State Kirchhoff's voltage law.	2M
(II)	State Kirchnon S voltage law.	<i>4</i> 1 71
Ans:	The algebraic sum of all the emf's in a loop is equal to zero.	2M Correct Statemen
(i)	State the need of Rectifier circuits.	2M
Ans:	The DC power supply is essential for operation of many electronic devices and circuits. This DC voltage is obtained from AC source. Rectifier circuit is important circuit for this conversion.	2M Correct Statemen
(j)	State types of filters.	2M
Ans:	 Shunt capacitor filter Series inductor filter (Choke filter) Choke input filter (LC or L type filter) Capacitor input filter (CLC or π) 	¹ ⁄ ₂ M for each point
(k)	What is need of wave shaping circuit ?	2M
Ans:	In electronics application, it is often needed to alter the shape of wveform like cutting off positive or negative portion of wave,generation of one wave from other,holding wave at some dc level etc. To do this waveshaping circuits are needed.	Correct statemen 2M
(l)	Draw RC differentiator circuit.	2M 2M
Ans:	v_{in} R v_{out}	2M
	Attempt any FOUR :	16M
(a)	Write down the colour code for following resistor :(i) $150 \ \Omega \pm 5\%$ (ii) $4'6k\Omega \pm 20\%$	4M
Ans:	(i) Brown, Green, Brown, Gold	2M
	(ii) Yellow,blue,red,no colour	2M
(b)	With help of constructional diagram, explain working of LDR.	4 M

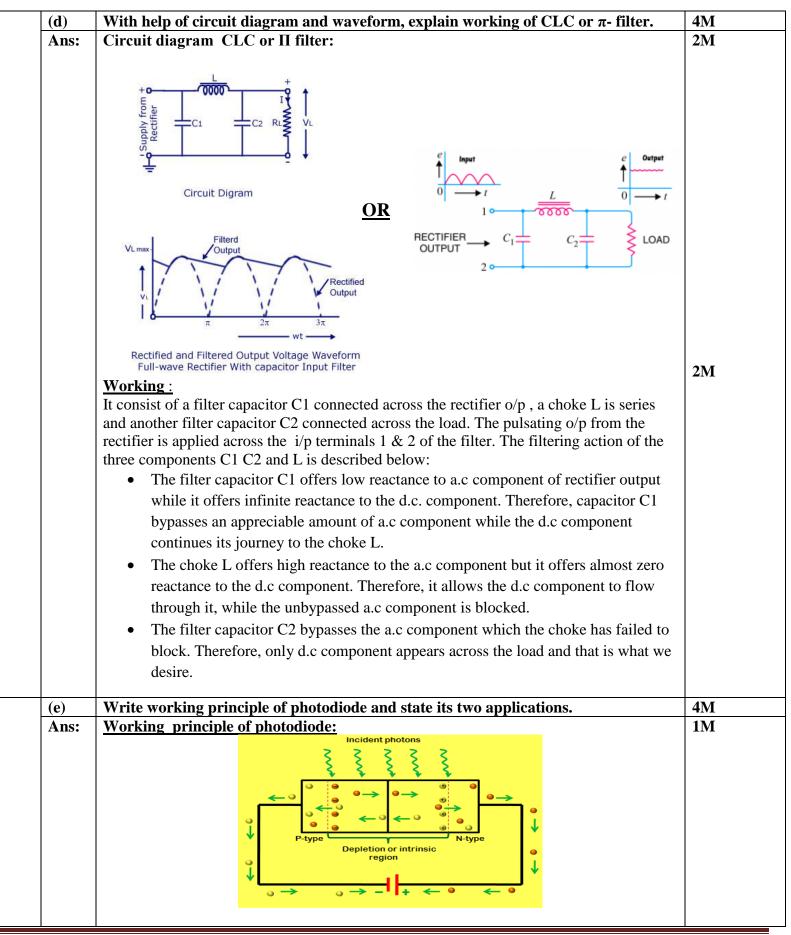
	 Explanation: 1.Working voltage : It is the maximum voltage at which capacitor can operate without failure 2.Power factor : It is the ratio of resistance to reactance at the operating frequency. 3 Tolerance: It is the maximum possible deviation on either side from actual value. 4.C/V ratio: It is the ratio of capacitance to volume. 	2M
(d)	Note:-(Students can explain other specification) With help of constructional diagram, explain working of slug tunned inductor.	4M
Ans:	With help of constructional angluin, explain working of stag values insuccess	
	Variable Inductor (preset) Ferrite Slug Plastic Former	2M
	The variable inductor having an adjustable ferrite core is known as slug tuned inductor. The value of inductance increases or decreases respectively, due to the movement of a ferrite core into or out of the coil winding. The basic construction of a slug tuned inductor is shown in fig. This construction is similar to the fixed ferrite core <u>inductor</u> but the core is adjustable. The value of inductance increases, when the slug is moved into the coil windingand decreases the resonant frequency of the tuned circuit. When the slug is moved out of the coil winding, the inductance decrease and the resonant frequency of the tuned circuit increases. The value of inductance can be varied by using movable core which can be moved up or down by using screw driver.	2M
(e)	Draw and explain V-I characteristics of a P-N junction diode.	4M
Ans:		<u> </u>
	Breakdown Reverse Forward	2M




	-	-	
		Forward V-I characteristics of p-n junction diode	2M
		If the positive terminal of the battery is connected to the p type semiconductor and the negative terminal of the battery is connected to the n-type semiconductor, the diode is said to be in forward bias. In forward biased p-n junction diode, V_F represents the forward voltage whereas I_F represents the forward current.	
		Forward V-I characteristics :	
		If the external voltage applied on the silicon diode is less than 0.7 volts, the silicon diode allows only a small electric current. However, this small electric current is considered as negligible. When the external voltage applied on the silicon diode reaches 0.7 volts, the p-n junction diode starts allowing large electric current through it. At this point, a small increase in voltage increases the electric current rapidly. The forward voltage at which the silicon diode starts allowing large electric current is called cut-in voltage. The cut-in voltage for silicon diode is approximately 0.7 volts.	
		<u>Reverse V-I characteristics :</u>	
		If the negative terminal of the battery is connected to the p-type semiconductor and the positive terminal of the battery is connected to the n-type semiconductor, the diode is said to be in reverse bias. In reverse biased p-n junction diode, V_R represents the reverse voltage whereas I_R represents the reverse current. The wide depletion region of reverse biased p-n junction diode completely blocks the majority charge carrier current.	
	(f)	Calculate the value of capacitor with the help of colour code.	4M
		 (i) Orange, Orange, Blue (ii) Yellow, Violet, Yellow 	
	Ans:	 (i) 33μF (ii) 0.47 μF 	2M 2M
Q. 3		Attempt any FOUR :	16M
	(a)	Define static and dynamic resistance of diode.	4M
	Ans:	Static resistance $(\mathbf{R}_{\mathbf{f}})$: Static Resistance of a P-N junction diode is the ratio of forward voltage to forward current.	1M
		$R_{f} = \frac{DC \text{ voltage}}{DC \text{ current}}$	1M
		Dynamic Resistance (\mathbf{r}_{f}): Dynamic Resistance of a P-N junction diode is the small change in forward voltage to small change in forward current at a particular operating point.	1M
		$r_{f} = \frac{Change in voltage}{Change in current}$	
		[•] Change in current	1M

(b)	Compare avalanche and zener breakdown.		4M	
Ans:				
	Avalanche breakdown Zener breakdown			
	1 PN junction are lightly doped in	1 PN junction are heavily doped in		
	avalanche breakdown	zener breakdown		
	2 The avalanche breakdown occurs	2 In the Zener effect or Zener		
	when carriers in the transition region	breakdown, the electric field enables		
	are accelerated by the electric field to	tunneling of electrons from the		
	energies sufficient to create mobile or	valence to the conduction band of a		
	free electron-hole pairs via collisions	semiconductor in a reverse biased p-n		
	with bound electrons	diode		
	3 Charge carriers acquire energy from	3 Zener current is independent of		
	the applied potential	applied voltage		
	4 Electron hole pairs are generated	4 Large number of holes and electrons		
		are produced		
(c)	Draw construction of Schottky diode and state it's four applications.			
Ans:				
Ans:	SiO2 Screen Netal contact rectifying Metal Semiconductor Junction Metal contact Cathode (-) (Ohmic)	Schottky barrier metal Schottky barrier metal SiO2 Passivation Guard ring n+ substrate Back contact metal	2M	
Ans:	SiO ₂ screen n-type Si Metal Semiconductor Junction	Schottky barrier metal SiO2 Passivation Guard ring n-epi layer	(Any four	
Ans:	Series Metal Series Series Ser	Schottky barrier metal SiO2 Passivation Guard ring n-epi layer	(Any four	
Ans:	si02 Metal screen Semiconductor n-type Si Semiconductor Junction Junction Cathode (-) (Ohmic) OR Applications :- 1. RF mixer and detector diode: 2. Power rectifier	Schottky barrier metal SiO2 Passivation Guard ring n-epi layer	(Any four	
Ans:	Si02 Metal screen Semiconductor n-type Si Semiconductor Junction Junction Metal contact OR Applications :- I. RF mixer and detector diode: 2. Power rectifier 3. Voltage clamping	Schottky barrier metal Guard ring n+ substrate Rack contact metal	(Any four	
Ans:	Si02 Metal screen Sericonductor n-type Si Sericonductor Junction Junction Applications :- OR 1. RF mixer and detector diode: Or 2. Power rectifier Voltage clamping 4. Stand alone photovoltaic systems in order	Schottky barrier metal Guard ring n+ substrate Rack contact metal	(Any four	
Ans:	Si02 Metal screen Semiconductor n-type Si Semiconductor Junction Junction Metal contact OR Applications :- I. RF mixer and detector diode: 2. Power rectifier 3. Voltage clamping	Schottky barrier metal Guard ring n+ substrate Rack contact metal		
	 Si02 Metal Semiconductor Junction Applications :- 1. RF mixer and detector diode: Power rectifier Voltage clamping Stand alone photovoltaic systems in orde purpose for the solar panels at night Rectifiers in power supplies. 	schottky barrier metal Guard ring Guard ring Hack contact metal	(Any four ¹ /2 M eac	
Ans: d)	 Si02 Metal Semiconductor Junction Applications :- 1. RF mixer and detector diode: 2. Power rectifier 3. Voltage clamping 4. Stand alone photovoltaic systems in order purpose for the solar panels at night 	s of following LED ?	(Any four	

The V_A rating of the transformer can be defined as: $V_A = V_{r.m.s} \dot{I}_{r.m.s}$ (For secondary coil.)



(b)	With help of constructional diagram, explain working of air-gang capacitor.	4 M
Ans:	Construction of air-gang capacitor :	_
	Air gang capacitors are capacitors which use air as their dielectric. The simplest air	2M
	capacitors are made of two conductive plates separated by an air gap.	
	Stator plates Rotor plates Shaft	
	B Connection plates	
	Working :	
	Working.	2M
	Variable capacitors are made by placing two sets of metal plates parallel to each other (Fig. A) separated by a dielectric of air, mica, ceramic, or a vacuum. The difference between variable and fixed capacitors is that, in variable capacitors, the plates are constructed in such a way that the capacitance can be changed. There are two principal ways to vary the capacitance: either the spacing between the plates is varied or the cross-sectional area of the plates that face each other is varied. Figure B shows the construction of a typical variable capacitor used for the main tuning control in radio receivers. The capacitor consists of two sets of parallel plates. The stator plates are fixed in their position and are attached to the frame of the capacitor. The rotor plates are attached to the shaft that is used to adjust the capacitance.	
(c)	Compare half wave rectifier and full wave rectifier.	4M
Ans:	Compare nun wave recenter una run wave recurrer	
		(Any four points 1M each)

	Half-Wave Rectifier	Full Wave Rectifier centre taped	Full wave Bridge Rectifier
1.			
2.	In this, one diode or one semiconductor diode is used	In this, two diodes or one double diode or two junction diodes are used	In this four junction diodes from the bridge circuit.
3.	Ordinary transformer is used	Centre tap transformer is used	Transformer is not required
4.	It converts half cycle of applied A.C. signal into D.C. signal	of applied A.C. signal into D.C. signal	It converts the whole cycle of applied A.C. signal into D.C. signal
5.	Input and output curves	Input and output curves	Input and output curves
6.	The value of $I_{ms} = \frac{I_0}{2}$	$I_{ms} = \frac{I_0}{\sqrt{2}}$	$I_{rms} = \frac{I_0}{\sqrt{2}}$
7.	$I_{de} = \frac{I_0}{\pi}$	$I_{dc} = \frac{2I_0}{\pi}$	$I_{de} = \frac{2I_0}{\pi}$
8.	The value of ripple factor is $r = \sqrt{\left(\frac{I_{ms}}{I_{de}}\right)^2} - 1 = 121\%$	The value of r in it is 48.2%	The value of r in it is 48.2%
9.	Efficiency (η) (a) $\eta = \frac{40.6}{\left(1 + \frac{r_p}{R_L}\right)}$ (b) When $r_p = R_L$ then $\eta =$	(a) $\eta = \frac{81.2}{\left(1 + \frac{r_p}{R_L}\right)}$ (b) When $r_p = R_L$ then $\eta = 40.6\%$	Its efficiency is 81.2%
	20.3% (c) When $r_p << R_L$ then $\eta = 40.6\%$	(c) When $\frac{r_p}{R_L} \ll 1$ then $\eta = 81.2\%$	
10.	Peak inverse voltage PIV = E ₀	$PIV = 2E_0$	PIV = 2E ₀
		F = 1.11	F = 1.11
11.	Form factor $F = \frac{I_{ms}}{I_{dc}} = \frac{E_{ms}}{E_{dc}} = \frac{\pi}{2} = 1.57$		
11. 12.	$F = \frac{I_{ms}}{I_{dc}} = \frac{E_{ms}}{E_{dc}} = \frac{\pi}{2} = 1.57$ The ripple frequency is	The ripple frequency is twice that of the applied e.m.f.	
	$F = \frac{I_{ms}}{I_{dc}} = \frac{E_{ms}}{E_{dc}} = \frac{\pi}{2} = 1.57$ The ripple frequency is equal to the frequency of	twice that of the applied e.m.f.	twice that of the applied
12.	$F = \frac{I_{ms}}{I_{dc}} = \frac{E_{ms}}{E_{dc}} = \frac{\pi}{2} = 1.57$ The ripple frequency is equal to the frequency of applied e.m.f. Curve between the output voltage from filter circuit	twice that of the applied e.m.f.	twice that of the applied e.m.f.
12.	$F = \frac{I_{ms}}{I_{dc}} = \frac{E_{ms}}{E_{dc}} = \frac{\pi}{2} = 1.57$ The ripple frequency is equal to the frequency of applied e.m.f. Curve between the output voltage from filter circuit and time $V_{dc} \qquad \qquad$	twice that of the applied e.m.f. Curve E The value of D.C. component in output voltage is more than that of A.C.	twice that of the applied e.m.f. Curve E The value of D.,C. component in output voltage is more than that of A.C.
12.	$F = \frac{I_{ms}}{I_{dc}} = \frac{E_{ms}}{E_{dc}} = \frac{\pi}{2} = 1.57$ The ripple frequency is equal to the frequency of applied e.m.f. Curve between the output voltage from filter circuit and time $V_{c} \downarrow \downarrow$	twice that of the applied e.m.f. Curve E The value of D.C. component in output voltage is more than that	twice that of the applied e.m.f. Curve E The value of D.,C. component in output voltage is more than that

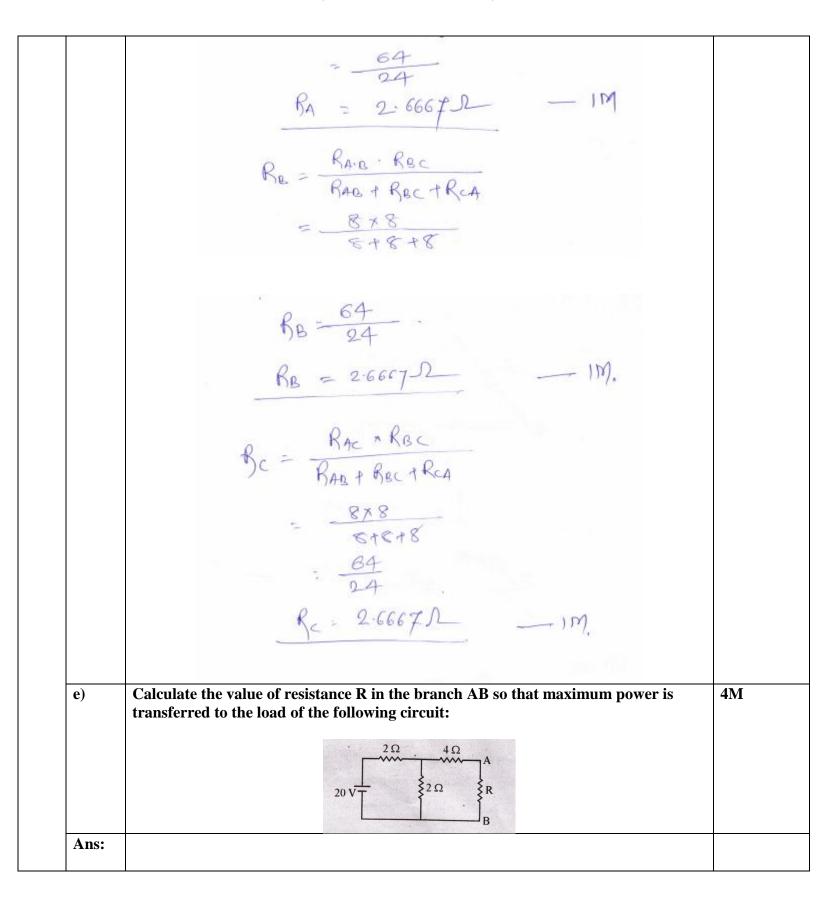
	,	***				
		 A pho current sensor Photoco photoco connect When hole. The arises junction region 	t. Sometimes it is also called as pho diodes are work in reverse bias con- liode is connected to the negative cted to the positive terminal of the battle a photon of ample energy strikes the This mechanism is also called as the in in the depletion region junction, the on by the inbuilt electric field of the o	onsumes light energy to produce electric to-detector, a light detector, and photo- dition, it means that the P-side of the terminal of the battery and n-side is ery. diode, it makes a couple of an electron- ner photoelectric effect. If the absorption the carriers are removed from the depletion region. Therefore, holes in the rons move toward the cathode, and a	2M	
		 Op Op Sm Flat 	ons : ore optic links otical communication otical remote control noke detectors ume detectors ruder alert security system		(Any two ½ M each)	
	f)	Give four applications of LASER diode.				
	Ans:	Application • Fite • Baa • CE • Im • Op	ons of LASER diode: ber optics communication. rcode readers. D players, CD-ROMs and DVD age scanning btical data recording, ser surgery		4M (Any four 1M each)	
Q.5		Attempt	any FOUR		16M	
	a)	-	linear and nonlinear wave shaping	circuits.	4M	
	Ans:	Sr. No.	· · · ·	Non Linear Wave shaping Circuits		
		1	The circuit which makes use of only linear circuit elements is known as linear wave shaping circuits.	The circuit which makes use of nonlinear circuit elements is known as nonlinear wave shaping circuits.		
		2	Linear circuit is an electric circuit in which circuit parameters (Resistance, inductance, capacitance, waveform, frequency etc) are constant. In other words, a circuit whose parameters are not	A nonlinear circuit is an electric circuit whose parameters are varied with respect to Current and Voltage. In other words, an electric circuit in which circuit parameters (Resistance, inductance, capacitance,		

Ans:	i) Active n/w and passive n/w Sr. Active n/w Passive n/w	2M
	ii) Bilateral n/w and unilateral n/w	
c)	Compare ; i) Active n/w and passive n/w	4 M
	Hence, output voltage directly proportional to integration of input voltage.	
	$V_0 \alpha \int V_i dt$	
	$= \frac{1}{RC} \int V_i dt$	
	$=\frac{\int \frac{V_i}{R}.dt}{c}$	
	$=\frac{c}{c}$	
	$\int i.dt$	
	output voltage $V_0 = \frac{q}{c}$	
	$q = \int i.dt$	
	The charge q on the capacitor at any instant.	
	$i = \frac{V_R}{R} = \frac{V_i}{R}$	
	input voltage i.e. $V_i = V_R$	
	Since R is very large as compared to X_C , therefore voltage across R i.e. V_R is equal to the	
	i : Resulting alternating current.q : Charge on the capacitor at any instant.	
	V_i : ac input voltage.	
	Mathematical Analysis:-	3M
	$\begin{array}{c c} I & I \\ Input & C \\ \hline \end{array} \\ \end{array} \\ Output \\ \end{array}$	
Ans:	$\frac{1110 \text{ circuit of integrator is as below}}{R}$	11111
b) Ans:	Draw circuit diagram of RC Integrator and explain its working. The circuit of integrator is as below-	4M 1M
	4E.g. Integrator, DifferentiatorE.g. Clipper, Clamper	
	used for the circuits. capacitors etc. are used for the	
	Circuit. 3 Resistor, capacitor, inductor are Diode, transistor, resistors and	
	changed with respect to Current and Voltage is called Linear Circuit.waveform, frequency etc) is not constant, is called Non Linear	

·	No.	Ι		
I	1	It is a network which contains active elements.	It is a network which does not contains active elements or any	
I			sources of emf in it.	
	2	Active elements such as battery,	Passive elements such as Resistor,	
		transistor, vaccum tube etc	capacitor, inductor	
	ii) Bil	ateral n/w and unilateral n/w		
	Sr. No.	Bilateral n/w	Unilateral n/w	2M
	1	In bilateral circuits, the property of	In unilateral n/w, the property of	
		circuit does not change with the	circuit changes with the change of	
		change of direction of supply	direction of supply voltage or current.	
		voltage or current. In other words,	In other words, unilateral circuit	
		bilateral circuit allows the current	allows the current to flow only in one	
		to flow in both directions.	direction.	
	2	Eg: transmission line	Eg: Diode rectifier	
(d)	Defin	e ; i) Clipper ii) Clamper		4 M
Ans:	portion Clam dc lev	n of the applied wave is known as a cl per: A circuit that shifts either positiv	rm is shaped by removing (or clipping) a lipper. e or negative peak of the signal at a desired clamper. These circuits are also called D.C.	(2M Each For suitab definition)
(e)		and explain Thevenin's theorem		4M
Ans:	Theve	and explain they ching states that "Any line:	ar circuit containing several voltages and	(2M
	resista connec As far of mul equiva	ances can be replaced by just one single cted across the load ". T as the load resistor R_L is concerned, a ltiple resistive circuit elements and en- alent resistance Rth and one single equance value looking back into the circuit	e voltage in series with a single resistance any complex "one-port" network consisting ergy sources can be replaced by one single	Statement
	A seri	enin's equivalent circuit: es combination of Thevenin's equival- alent resistance Rth forms Thevenin's	ent voltage source Vth and Thevenin's equivalent circuit as shown below. Rth	(2M Explanation n)
		A Linear Network	Vth	

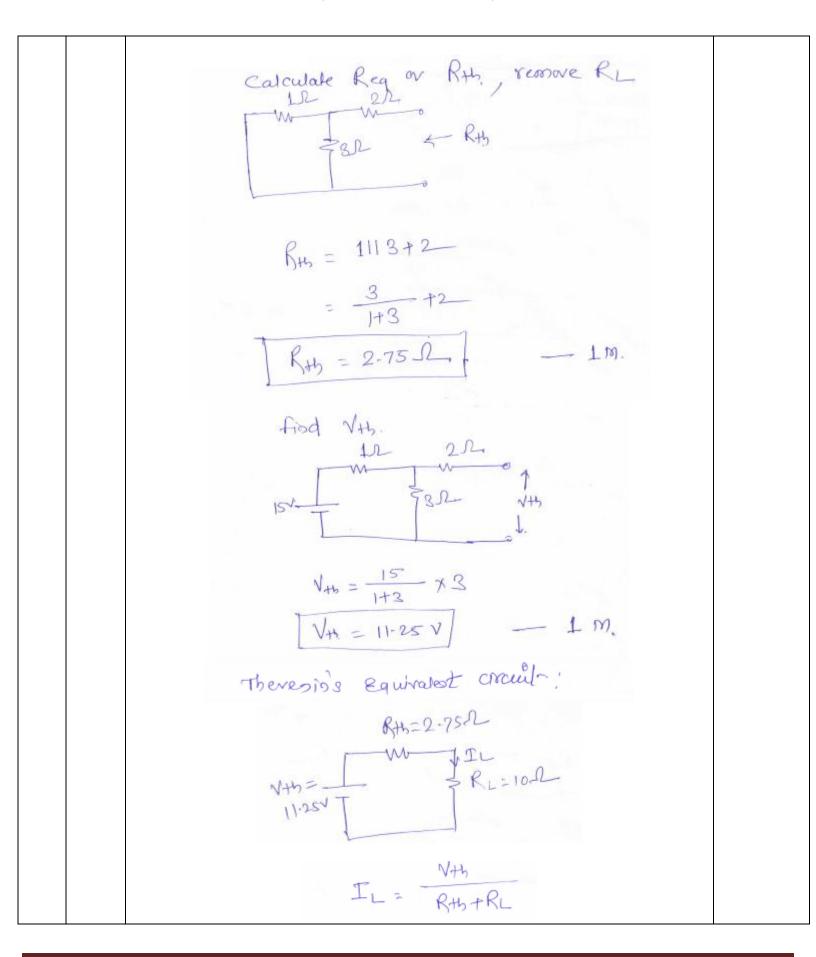
(f)	Using Morton's theorem find Morton's equivalent circuits of following:	4M
	$10 \text{ V} \xrightarrow{2\Omega} 2\Omega \\ 11 \Omega \\ 0 \text{ b}$	
Ans:	Ans: short a fb.	
	100 I Isc or In.	
	$Req = \frac{2 \times 1}{2 + 1} + 2$	
	$=\frac{2}{3}+2$ Reg = 2.6667_2 - 1.M	
	$I_{s} = \frac{10}{2.6667}$ $I_{s} = 3.7499 A$	
	$I_N = I_S \times \frac{1}{1+2}$	
	$= \frac{3.7499 \times 1}{10} = 1.2483 \text{ A} - 1 \text{ M}$	

		For Nortoo's equivalent Resistance RN, $\frac{2\Omega}{3} + \frac{2L}{10}$ $R_{N} = 2111 + 2$ $= \frac{2}{2+1} + 2$ $= \frac{2}{3} + 2$ $R_{N} = 2.6667 - 2 - 1M$ Norton's equivalent circuit: $R_{N} = 2.6667 - 1M$	
		1-2483A	
Q.6	a)	Attempt any of FOUR: With help of circuit diagram and waveform, explain working of positive series	16M 4M
	Ans:	Clipper. Series Clipper (Positive):-	1M (Biased positive series clipper also can be consider)



	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			2M
	0	& o/p wave form:-		1M
		Vin 1		
		Vout	t	
			t	
b)	Comp	are Integrator and differentiator.		4M
/	Comp Sr. No.	are Integrator and differentiator. Integrator	Differentiator	4M (1M Any
/	Sr.		Differentiator A circuit that gives an output voltage directly proportional to the derivative of its input is known as a differentiating circuit.	
/	Sr. No.	Integrator A circuit that gives an output voltage directly proportional to the integral of its input is known as an	A circuit that gives an output voltage directly proportional to the derivative of its input is known as a differentiating	(1M Any
b) Ans:	Sr. No. 1	Integrator A circuit that gives an output voltage directly proportional to the integral of its input is known as an integrating circuit. The values of R & C are selected in such a way that the time constant (RC) of the circuit should be very large than the time period of the	A circuit that gives an output voltage directly proportional to the derivative of its input is known as a differentiating circuit. The value of R & C are selected in such a way that the time constant (RC) of the circuit should be very small than the	(1M Any

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
c)	State and explain superposition theorem.	4 M
Ans:	Superposition theorem states that: In a linear circuit with several sources the voltage and current responses in any branch is the algebraic sum of the voltage and current responses due to each source acting independently with all other sources replaced by their internal impedance.	(2M Stateme
	Steps to solve a circuit with the help of Superposition theorem:	2M
	 First of all make sure the circuit is a linear circuit; or a circuit where Ohm's law implies, because Superposition theorem is applicable only to linear circuits and responses. Replacing a Voltage source or Current Source replace with their internal resistance or impedance. If the Source is an Ideal source or internal impedance is not given then replace a Voltage source with a short; And replace a Current source with an Open. Determine the branch responses or voltage drop and current on every branches simply by using KCL, KVL or Ohm's Law. Repeat step 2 and 3 for every source the circuit has. Now algebraically add the responses due to each source on a branch to find the response on the branch due to the combined effect of all the sources. 	
d)	Three resistances of 8Ω each are connected in delta. Find equivalent star connected network.	4M
	$R_{e}^{2.6667}$ $R_{e}^{2.6667}$ $R_{e}^{2.6667}$ $R_{e}^{2.6667}$ $R_{e}^{2.6667}$ $R_{e}^{2.6667}$ $R_{e}^{2.6667}$	



Ans: Remove load reelistance R. and short terminal A, B. 200 T F222 VIN. B
Req = 41 2 + 2 = $\frac{8}{4+2} + 2$ = $\frac{8}{6} + 2 = \frac{3\cdot33 - 2}{6} - 1M$,
$I_{s} = \frac{20}{3.23}$ $F_{s.} = 6.006 \text{ A}$ $I_{N} = 6.006 \times \frac{2}{4.12}$ $F_{N.} = 2.002 \text{ A}$

	for RN. 22 AV W V A 22 RN = 2112+4 = 4 +4 RN = 5-R IN: 2.002 N: 2.002 N: 2.002 N: 2.002 RN = 5-R IN a chrowit, power supplied to the load is omaximum obeo load registance is equal to the Baurce registance. i.e. R = 5-L - 1M.	
(f)	Using theorem find load current I _L . $1\Omega = 2\Omega$ I_L $I_L = 10\Omega$	4M
Ans:		

11.25 2.75+10 IL = 0.8823 A 210,