WINTER- 18 EXAMINATION
Model Answer

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{array}{\|l} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers			Marking Scheme
1	(A)	Attempt any ten of the following:			20- Total Marks
	(a)	Compare active and passive component(any two points)			2M
	Ans:	Parameter	Active component	Passive component	1M each for correct compari son point (Any 2 points)
		Definition	component which introduce gain in the circuit are called active components.	Components which do not introduce any gain in the circuit.	
		Example	Diode, transistor, FET	Resistor, capacitor\& inductor	
		Direction	They are unidirectional	They are bidirectional	
	(b)	Draw the symbol of \mathbf{N}	MOSFET and P- channel JFET		2M

tified)

WINTER-18 EXAMINATION
 Subject Name: Basic Electronics Model Answer
 Subject Code:
 17213

$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Ans: } & & \begin{array}{c}\text { 1M each } \\ \text { for }\end{array} \\ \text { correct } \\ \text { symbol }\end{array}\right]$

	WINTER-18 EXAMINATION
Subject Name: Basic Electronics \quad Model Answer \quad Subject Code:	

f)	Write any two advantages and disadvantages of ICs.		2M
Ans:	Advantages of ICs: 1.The physical size of an IC is extremely small (generally thousand times smaller) than that of discrete circuits. 2. The weight of an IC is very less as compared to that of equivalent discrete circuits. 3. The reduction in power consumption is achieved due to extremely small size of IC. 4. Interconnection errors are non-existent in practice Disadvantages of ICs: 1. It is not possible to directly fabricate inductors. 2. The initial cost to be incurred is high 3. Power dissipation is limited. 4. ICs are very delicate and need extra care while handling		1 Marks each for any 1 advanta ge \& any 1 Disadva ntage
g)	List any two types of filter.		2M
Ans:	Important types of filters are as follows: 1. Shunt capacitor filter 2. Series inductor filter 3. LC filter 4. π type filter or CLC filter 5. CRC filter.		1M each for any 2 types
h)	Differentiate between \mathbf{N}-channel and P-channel J-FET.		2M
Ans:	N-Channel JFET	P-Channel JFET	1M each for any two correct compari son point
	1.The current conduction takes place due to electrons	1.The current conduction takes place due to holes.	
	2.Its switching speed and cut off frequency is high.	2.Its switching speed and cut off frequency is comparatively low.	
	3.Its transconductance is high	3.Its transconductance is low	

WINTER- 18 EXAMINATION
Subject Name: Basic Electronics

Subject Code:
17213

	4.It is less noisy		4.It is comparatively more noisy	
	5.It is most widely use applications	in circuit	5.It is comparatively less used in circuit applications	
i)	Draw the symbol of zener diode and LED.			2M
Ans:	Zener diode symbol Symbol of LED		$\pm \mathrm{K}$ 3	1M each
j)	Give the classification of ICs.			2M
Ans:	The classification of ICs is as under :			2M for correct classific ation
k)	Draw circuit diagram of P-N junction diode in forward bias.			2M

WINTER- 18 EXAMINATION Model Answer

Subject Code:
17213

WINTER- 18 EXAMINATION Model Answer

Subject Code:

	of light. - Color of emitted light depends on which material is used to manufacture the diode.				
c)	Compare CE, CB, CC (any four points)				4M
Ans:	characteristics	CE	CB	CC	1M each for any 4 compari son. Marks should be given if only degree (high, low) is written and the values not written
	Input impedance	Medium (about 800 $)$	Low (about 100)	Very high (about 750K Ω)	
	Output impedance	High (about 50K Ω)	Very high (about 500K Ω)	Low (about 50 $)$	
	3.voltage gain	Highest (about 500)	High (about 150)	Low (less than unity)	
	4.current gain	High $\beta=\frac{\mathrm{IC}}{\mathrm{IB}}$	Less than unity $\alpha=\frac{\mathrm{IC}}{\mathrm{IE}}$	Highest $\gamma=\frac{I E}{I B}$	
	5.Applications	AF Applications	HF Applications	Impedance matching	
d)	Explain working of single stage CE amplifier with circuit diagram.				4M
Ans:	a) R_{1} and R_{2} provides required forward bias for $B E$ region, by divider bias method. b) R_{c} provides $V_{C c}-I_{c} R c$, reverse bias to collector.				2M for diagram \& 2M for explanat ion

WINTER- 18 EXAMINATION

Model Answer

Subject Code:

WINTER- 18 EXAMINATION
Model Answer

WINTER- 18 EXAMINATION

Subject Code:
17213

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
3		Attempt any four of the following::	16- Total Marks
	a)	Give classification of resistors and draw symbol of any two.	4M
	Ans:	Varistor	Classific ation3M Any two symbol1/2M for each

	WINTER-18 EXAMINATION
Subject Name: Basic Electronics \quad Model Answer \quad Subject Code:	

b)	Explain zener breakdown and avalanche breakdown.	4M
Ans:	The Zener Breakdown and Avalanche Breakdown are two different mechanisms by which a PN junction breaks. The Zener and Avalanche breakdown both occur in diode under reverse bias. The avalanche breakdown occurs because of the ionization of electrons and hole pairs whereas the Zener diode occurs because of heavy doping. Zener Breakdown: The phenomenon of the Zener breakdown occurs in the very thin depletion region. When reverse bias is increased, the electric field across the thin depletion wn -2M region increases. This high electric field breaks the covalent bonds and a large number of minority carriers are generated. So a large reverse current flows and causes breakdown. This process is known as the Zener breakdown.	Avalanc he breakdo wn -2M
	Avalanche Breakdown: As the reverse bias increases, the electrical field across the depletion region increases. When the high electric field exists across the depletion, the velocity of minority charge carrier crossing the depletion region increases. These carriers collide with the atoms of the crystal. Because of the violent collision, the charge carrier takes out the electrons from the atom.	
c)	Explain N-channel J-FET with its transfer characteristics.	
Ans:	Working of Channel JFET: process is continuous, and the electric field becomes so much higher that a large reverse current starts flowing in the PN junction and causes breakdown. The process is known as the Avalanche breakdown.	4M

Working:

1. The application of negative gate voltage and positive drain voltage with respect to source,
reverse biases the gate- source junction of an N-channel JFET.
2. When a voltage is applied between the drain \& source with dc supply voltage (VDD), the
electrons flows from source to drain through the narrow channel existing between the
depletion regions. This constitutes the drain current (ID) \& its conventional direction is from
drain to source. The value of drain current is maximum, when no external voltage is applied
between the gate \& source \& is designated by the symbol IDSS.
3. When VGG is increased, the reverse bias voltage across gate-source junction is increased.
As a result of this depletion regions are widened. This reduces the effective width of the
channel \& therefore controls the flow of drain current through the channel.
4. When gate to source voltage (VGS) is increased further, a stage is reached at which both
depletion regions touch each other.
5. At this value of VGS, channel is completely blocked or pinched off \& drain current is
reduced to zero. The value of VGS at which drain current becomes zero is called pinch off
voltage designated by the symbol VP or VGS(OFF) . The value of VP is negative for N-channel
JFET.

WINTER- 18 EXAMINATION
Subject Name: Basic Electronics

Model Answer
 Subject Code:

WINTER- 18 EXAMINATION
 Subject Name: Basic Electronics
 Model Answer
 Subject Code:

| | WINTER- 18 EXAMINATION
 Model Answer | | Subject Code: |
| :--- | :--- | :--- | :--- |$\quad 17213$

		2. In industry, it is frequently necessary to heat different kind of materials. 3. Oscillators are also needed in testing laboratories. Application: - In radio Transmitter and receiver. - It is used in the radio and mobile communications. - It is used to generate clock in digital systems. - It is used as sweep circuits in TV and CRO.	
Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
4		Attempt any four of the following::	16- Total Marks
	(a)	Draw forward and reverse characteristics of P-N junction diode.	4M

WINTER-18 EXAMINATION
Subject Name: Basic Electronics

Subject Code:

WINTER- 18 EXAMINATION
Model Answer

Subject Code:

	WINTER-18 EXAMINATION	
Subject Name: Basic Electronics \quad Model Answer \quad Subject Code:		

		- Reduced cost and complexity due to absence of coupling capacitors. Disadvantages: - The output waveform has a dc shift. - Poor frequency response at a higher frequency.	1M each
Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
5.		Attempt any four of the following:	16- Total Marks
	a)	Define: i) Knee voltage ii) Reverse saturation current	4M
	Ans:	i) Knee voltage : The applied forward voltage, at which the PN junction starts conducting and current starts increasing exponentially is called knee voltage. It is 0.7 V for Si and 0.3 for Ge diode. ii) Reverse saturation current The current produced due to minority carriers generated by thermal energy is known as reverse saturation current. (Io) (OR) The reverse saturation current is that part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region.	Each definitio n: 2M
	b)	Explain working of bridge rectifier with the help of waveform.	4M

WINTER- 18 EXAMINATION
 Subject Name: Basic Electronics
 Model Answer
 Subject Code:

Ans: \quad This type of single phase rectifier uses four individual rectifying diodes connected in a closed loop "bridge" configuration to produce the desired output. The single secondary winding is connected to one side of the diode bridge network and the load to the other side as shown below

B
Cirauit Globe

During Positive Half-cycle :

The four diodes labeled D_{1} to D_{4} are arranged in "series pairs" with only two diodes conducting current during each half cycle. During the positive half cycle of the supply, diodes D1 and D3 conduct in series while diodes D2 and D4 are reverse biased and the current flows through the load as shown below.

During Negative Half-cycle :

During the negative half cycle of the supply, diodes D2 and D4 conduct in series, but diodes D1 and D3 switch "OFF" as they are now reverse biased. The current flowing through the

Circuit diagram

Working

WINTER- 18 EXAMINATION
Model Answer

Subject Code:

	WINTER-18 EXAMINATION	
Subject Name: Basic Electronics \quad Model Answer	Subject Code:	

d)	Explain formation of depletion layer in P-N junction diode.	4M
Ans:	Formation of Depletion Layer In PN Junction In an n-type semiconductor, the concentration of electrons is more compared to the concentration of holes. Similarly, in a p-type semiconductor, the concentration of holes is more than the concentration of electrons. During the formation of a $\mathrm{p}-\mathrm{n}$ junction and because of the concentration gradient across the p and n sides, holes diffuse from the p-side to the n-side $(p \rightarrow n)$ and electrons diffuse from the n-side to the p -side ($\mathrm{n} \rightarrow \mathrm{p}$). This motion of charge gives rise to a diffusion current across the junction. When an electron diffuses from $n \rightarrow p$, it leaves behind an ionised donor on the n-side. This ionised donor (positive charge) is immobile as it is bonded to the surrounding atoms. As the electrons continue to diffuse from $n \rightarrow p$, a layer of positive charge (or positive space-charge region) on n-side of the junction is developed. Similarly, when a hole diffuses from $p \rightarrow n$ due to the concentration gradient, it leaves behind an ionised acceptor (negative charge) which is immobile. As the holes continue to diffuse, a layer of negative charge (or negative space-charge region) on the p -side of the junction is developed. This space-charge region on either side of the junction together is known as the depletion region.	Diagram : 2M Explanat ion: 2M

WINTER-18 EXAMINATION
Model Answer
Subject Code:
17213

e)	Draw the circuit diagram of two stage amplifier and state the need of multistage amplifier.	4M
Ans:	Circuit diagram of two stage amplifier : Need of multistage amplifier: The output from a single stage amplifier is usually insufficient to drive an output device. So that additional amplification over two or three stages is necessary. - To achieve this, output of each amplifier stage is coupled in some way to the input of the next stage. The resulting system is referred to as multi-stage amplifier or cascade amplifier, where the output of first amplifier is fed as input to second amplifier. - To increase the overall gain of the amplifier multistage amplifier is needed.	Circuit diagram : 2M (Note: transfor mer coupled and direct coupled amplifie r can be consider ed) Need: 2M
f)	Write any four applications of Schottky diode.	4M
Ans:	1) To rectify very high frequency signals. 2) As a switching device in digital computers. 3) In clipping \& and clamping circuits. 4) In low power schottky TTL circuits.	Any 4 applicati ons: 4M

WINTER- 18 EXAMINATION
Subject Name: Basic Electronics

		5) In mixing and detecting circuits used in communication systems. 6) In low voltage power supply circuits.	
Q.	Sub Q.N.	Answers	Marking Scheme
6.		Attempt any four of the following::	16- Total Marks
a)		Explain static and dynamic resistance of diode.	M
		Static resistance: The resistance of a diode at the operating point can be obtained by taking the ratio of V_{F} and I_{F}. The resistance offered by the diode to the forward DC operating conditions is called as "DC or static resistance". $\mathrm{R}_{\mathrm{F}}=\frac{D C \text { Voltage }}{D C \text { current }}$ When forward biased voltage is applied to a diode that is connected to a DC circuit, a DC or direct current flows through the diode. Direct current or electric current is nothing but the flow of charge carriers (free electrons or holes) through a conductor. In DC circuit, the charge carriers flow steadily in single direction or forward direction. Dynamic resistance: The resistance offered by a diode to the AC operating conditions is known as the "Dynamic Resistance ". (OR) Dynamic resistance is also defined as the ratio of change in voltage to the change in current. It is denoted as rf. $\mathrm{r}_{\mathrm{F}}=\frac{\text { Change in Voltage }}{\text { Change in current }}$ When forward biased voltage is applied to a diode that is connected to AC circuit, an AC or	Static resistan ce: 2M Dynamic resistan ce: 2M
$\begin{aligned} & \text { Page } \\ & \text { 24/29 } \end{aligned}$			

	WINTER-18 EXAMINATION	
Subject Name: Basic Electronics \quad Model Answer	Subject Code:	

		separated by one thin block of n-type semiconductor.	one P-type layer	relevant point can be consider ed)
	Symbol			
	Direction of Current	Emitter to Collector	Collector to Emitter	
	Majority Charge Carrier	Holes	Electrons	
	Switching Time	Slower	Faster	
	Positive Voltage	Emitter Terminal	Collector Terminal	
	Ground Signal	High	Low	
d)	Draw and explain the circ	agram of transistor as a switch		4M
Ans:	- The transistor ca switching. For the - Whereas for switch cut off (full off) reg a. Transistor in cut- off re - In the cut -off reg small reverse curr - The voltage drop transistor is equiv - \quad Therefore, $\mathrm{V}_{\mathrm{CE}}=$	used for two types of app fication as a transistor is biase applications it is biased to oper (open switch): both the junction of a transist ows through the transistors. ss the transistor $\left(\mathrm{V}_{\text {CE }}\right)$ is high. to an open switch.	ication viz. amplification and in its active region. ate in the saturation (full on) or r are reverse biased and very Thus, in the cut off region the	Diagram : 2M Working : 2M

WINTER- 18 EXAMINATION
Model Answer

Subject Code:
17213

b. Transistor in the saturation region(closed switch):

- When Vin is positive a large base current flows and transistor saturates.
- In the saturation region both the junctions of a transistor are forward biased. The voltage drop across the transistor (V_{CE}) is very small, of the order of 0.2 V to 1 V depending on the type of transistor and collector current is very large. In saturation the transistor is equivalent to a closed switch.
- Therefore , $\mathrm{V}_{\mathrm{CE}}=0$

e) Explain the construction of P-channel J-FET.

WINTER- 18 EXAMINATION
Subject Name: Basic Electronics

WINTER- 18 EXAMINATION

Model Answer

$\mathrm{r}=\frac{\text { Vrrms }}{\mathrm{Vdc}}=\sqrt{\left(\frac{\text { Irms }}{\text { Idc }}\right)^{2}-1}$
where Vrrms is ripple RMS voltage of rectified output
Vdc is rectified output DC voltage

TUF
The transformer utilization factor (TUF) of a rectifier circuit is defined as the ratio of the DC power available at the load resistor to the AC rating of the secondary coil of a transformer.

ii) Efficiency of Rectifier

Efficiency of Rectifier is defined as the ratio of output DC power of the rectifier to the applied input AC power.
$\eta=\frac{P d c}{P a c}$
where Pdc is the output DC power of the rectifier
Pac is the applied input AC power.
iii) PIV

Peak Inverse Voltage (PIV) refers to the maximum voltage a diode or other device can withstand in the reverse-biased direction before breakdown.

