SUMMER- 18 EXAMINATION
Model Answer

Subject Code:

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in themodel answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may tryto assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given morelmportance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in thefigure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constantvalues may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \mathrm{Q} . \\ & \mathrm{N} . \end{aligned}$	Answers	Marking Scheme
1		Attempt any TEN:	20-Total Marks
	a	Define electronics. Give examples of active components.	2M
	Ans:	Definition: Electronics means study of flow of electrons in electrical circuits. (OR) The word electronics is derived from electron mechanics which means the study of the behavior of an electron under different conditions of externally applied fields. Examples of active components are: Diode, BJT,FET, MOSFET ,SCR, DIAC, TRIAC, ICs etc.	(definition: 1mark, any 2examples :1 mark)
	b	Draw the symbol of MOSFET.	2M

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

Subject Name: Basic Electronics

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION
Subject Name: Basic Electronics

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \mathrm{Q} \text {. } \\ & \mathrm{N} . \end{aligned}$	Answers	Marking Scheme
2		Attempt any FOUR:	16- Total Marks
	a	Describe the working of Zener breakdown of Zener Diode.	4M
	Ans:	Working: When a reverse voltage is applied to a Zener diode, it causes a very intense electric field to appear across a narrow depletion region. Such an intense electric field is strong enough to generate large number of electron-hole pair by breaking covalent bonds. Because of large number of these carriers reverse current increases sharply and breakdown occurs which is known as Zener Breakdown. Zener breakdown characterisitics	(V-I characteris tics :2 marks, explainatio n 2 marks)
	b	State the application of electronics (any 8).	4M
	Ans:	Application of electronics: 1. Wired communication or Line communication. 2. Wireless communication 3. Defense 4. Industrial Applications 5. Medical sciences 6. Instrumentation and control 7.Consumer electronics	Any 8 application s (1/2 mark each)

SUMMER- 18 EXAMINATION

MAHARASHTRASTATE BOARD OF TECHNICAL EDUCATION

e Ans:	State the working of Tunnel diode. Working of Tunnel diode: The operation of tunnel diode is based on special characteristics known as negative resistance. The width of the depletion region is inversely proportional to the square root of impurity concentration. So with increase in the impurity concentration, the depletion region width will reduce. The thickness of depletion region of this diode is so small. That indicates there is large probability of an electron can penetrate through this barrier. This behavior is called is tunneling \& hence the name of the high impurity density PN junction is called as tunnel diode.	4M (diagram: 2 marks, explainatio n :2 marks)
f	Describe the working of crystal oscillator	4M
Ans:		(diagram: 2 marks, explainatio $\mathrm{n}: 2$ marks)

SUMMER- 18 EXAMINATION
Model Answer

Subject Code:

Working of crystal oscillator:

Above fig shows the circuit of crystal oscillator using transistor. In this circuit, the crystal is connected as a series element in the feedback path from collector to the base. The resistors R1, R2 and RE provide voltage divider stabilized d.c. bias circuit. The capacitor CE provides a.c bypass of emitter resistor and RFC coil provides for d.c bias. The coupling capacitor C has negligible impedance at the circuit operating frequency. The circuit frequency of oscillation is set by the series resonant frequency of the crystal and its value is given by the relation

$$
f_{o}=\frac{1}{2 \pi \sqrt{L C}}
$$

Where $f_{o}=$ Frequency of oscillations
C= Couplling Capacitance
L= Inductance of a Crystal depending upon thickness and physical geometry

| Q.
 No. | Sub
 Q.
 N. | Answers | Marking
 Scheme |
| :--- | :--- | :--- | :--- | :--- |
| 3 | | Attempt any FOUR: | 16- Total
 Marks |
| | a | Draw and explain the construction of LDR. Explain its working principle. | 4M |

Ans:

Construction:

Diagram :

Explanation :

- The structure of a light dependent resistor consists of a light sensitive material which is deposited on an insulating substrate such as ceramic.
- The material is deposited in zig-zag pattern in order to obtain the desired resistance \& power rating.
- This zig-zag area separates the metal deposited areas into two regions. Then the ohmic contacts are made on the either sides of the area.
- Materials normally used are cadmium sulphide, cadmium selenide, lead sulphide, indium antimonide and cadmium sulphonide

Working Principle:

- An LDR works on the principle of photo conductivity, which is an optical phenomenon in which the material's resistivity reduces when the light is absorbed by the material.
- When light falls i.e. when the photons fall on the device, the electrons in the valence band of the semiconductor material are excited to the conduction band.
- These photons in the incident light should have energy greater than the band gap of the semiconductor material to make the electrons jump from the valence band to the conduction band.

1 Marks for any
Constructi onal
diagram

1 Mark for explanatio n

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

or $\mathrm{Iz}=\mathrm{Is}-\mathrm{I}_{\mathrm{L}}$

As the load current increase, the Zener current decreases so that the input current remains constant.

According to Kirchhoff's voltage law, the output voltage is given by,

$$
\mathrm{Vo}=\mathrm{V}_{\mathrm{i}}-\mathrm{Is} . \mathrm{Rs}
$$

As the input current is constant, the output voltage remains constant (i.e. unaltered or unchanged). The reverse would be true, if the load current decreases. This circuit is also correct for the changes in input voltage.

As the input voltage increases, more Zener current will flow through the Zener diode. This increases the input voltage Is, and also the voltage drop across the resistor Rs, but the load voltage Vo would remain constant. The reverse would be true, if the decrease in input voltage is not below Zener voltage.

Thus, a Zener diode acts as a voltage regulator and the fixed voltage is maintained across the load resistor R_{L}.

C	Explain the FET parameters.

Ans:

1) Dynamic drain resistance $\left(r_{d}\right)$: It is defined as the ratio small change in drain to source voltage ($\Delta \mathrm{V}_{\mathrm{DS}}$) to the resulting change in drain current $\left(\Delta \mathrm{I}_{\mathrm{D}}\right)$ for constant

1 Mark for
Any four gate to source voltage(V_{GS}) It is also called A.C drain resistance.

$$
r_{d}=\frac{\Delta V_{D S}}{\Delta I_{D}} \text { for } V_{G S}=\text { Constant }
$$

2) Transconductance $\left(\mathrm{g}_{\mathrm{m}}\right)$: Transconductance is defined as the ratio of change in Drain current $\left(\Delta I_{D}\right)$ to change in Gate to Source Voltage $\left(\Delta V_{G S}\right)$ at a constant $V_{D S}$.

$$
\mathrm{g}_{\mathrm{m}}=\frac{\Delta I_{D}}{\Delta V_{G S}} \text { keeping } \mathrm{V}_{\mathrm{DS}} \text { constant. }
$$

SUMMER- 18 EXAMINATION

3) Amplification Factor (μ) : Amplification Factor is defined as the ratio of change in Drain to Source Voltage ($\Delta \mathrm{V}_{\mathrm{DS}}$) tochange in Gate to Source Voltage $\left(\Delta \mathrm{V}_{\mathrm{GS}}\right)$ at a constant I_{D}.

$$
\mu=\frac{\Delta V_{D S}}{\Delta V_{G S}} \quad \mathbb{I}_{\mathrm{D}}=\text { constant }
$$

4) Input resistance $\left(\mathbf{R}_{i}\right)$:- It is the ratio of reverse gate to source $\left(V_{G S}\right)$ to a resulting reverse gate current when the drain to source voltage is zero.

$$
R_{i}=\frac{V_{G S}}{I_{G S S}}
$$

5) Static or ohmic resistance $\left(R_{D}\right)$:

It is the ratio of drain-to-source voltage $V_{D S}$ to the resulting drain current $\left(I_{D}\right)$ for a constant gate-to-source voltage V_{GS}

$$
R_{D}=\frac{V_{D S}}{I_{D}} a t V_{G S}=\mathrm{constant}
$$

6) $I_{\text {DSs }}$ (Drain saturation current): The maximum amount of drain current at zero gate-to source voltage V_{GS} is known as drain saturation current.

d
Ans:

Circuit diagram of CE configuration:

2 Marks for any diagram

SUMMER- 18 EXAMINATION
Model Answer

Subject Code:
17213

	f Ans:	State Barkhausen criteria for oscillator and describe its use. Barkhausen's Criterion for Oscillations : 1. Loop gain (β.Av) ≥ 1 2. Phase shift between the input and output signal must be equal to 360° or 0°. Use: Oscillators are circuits which produce periodic waveforms of desired frequencies which are necessary for functioning of various electronics circuits. When Barkhausen's Criterion is satisfied then these circuits will work as oscillators and produce sustained oscillations.	4M 2 Marks for criteria 2 Marks for use
Q. No.	Sub Q. N.	Answers	Marking Scheme
4		Attempt any FOUR:	16- Total Marks
	a	Draw constructional diagram of Schottky diode and explain it.	4M
	Ans:	Construction of a Schottky diode	2 Marks for any relevant diagram

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

		4 5 6 7 8 9 10	It has a positive temperature coefficient at high current levels. It means that current increases as temperature increases. It is comparatively more noisy. It has relatively higher gain bandwidth product as compared to FET It is comparatively difficult to fabricate on IC \& occupies more space on chip compared to FET. Transfer characteristics is linear Thermal runaway can damage the BJT Symbol:	It has a negative temperature coefficient at high current levels. means that current decreases as temperature increases. It is less noisy. It has relatively lower gain bandwidth product as compared to BJT. It is simpler to fabricate as IC \& occupies less space on chip compared to BJT. Transfer characteristics is non- linear Thermal runaway does not take place Symbol: n-channel p-channel	
	d	Draw	cock diagram of R-C coupled amplif		4M
					4 Marks for correct diagram

	Explanation : CLC filter or π filter is used whenever a low output current and a high dc output voltage is required. It consists of two capacitors C_{1} and C_{2} and an inductor L connected in the form of Greek letter π. The pulsating output from the rectifier is applied at the input terminals of the π filter. Working: Capacitor C_{1} filter: It offers a low reactance to ac component of rectifier output. This capacitor C_{1} bypasses most of the ac component to the ground, while dc component moves towards L. Inductor L: It offers a high reactance to the ac component of the rectifier output but zero resistance to the dc component. Thus, it allows the dc component to pass through it, and blocks the ac component, which could have been bypassed by the capacitor C_{1}. Capacitor C_{2} : This works similar to C_{1}. It bypasses the ac component of rectifier output, which could not be blocked by Inductor L. Thus only dc component is available at the output.	2 Marks for explanatio n
f	Define the following : 1)Bandwidth 2)Power gain 3)Current gain 4)Voltage gain.	4M
Ans:	1) Bandwidth: The range of frequency over which the voltage gain of an amplifier remains constant is known as bandwidth of an amplifier. It is denoted as $B W=F_{H}-F_{L}$ of an amplifier. 2) Power Gain:	1 Mark for each definition

		The ratio of output power to input power of a BJT amplifier is known as power gain. It is denoted by a letter A_{p}. $A_{P}=$ Output power/Input power $=P_{0} / P_{i}$ 3) Current Gain: The ratio of output current to input current of a BJT amplifier is known as current gain. It is denoted by a letter A_{i} $A_{i}=\text { Output current/ Input current }=I_{0} / I_{i}$ 4) Voltage Gain: The ratio of output voltage to input voltage of a BJT amplifier is known as voltage gain. It is denoted by a letter A_{v}. $A_{v}=\text { Output voltage } / \text { Input voltage }=V_{0} / V_{i}$	
No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
5		Attempt any FOUR:	16- Total Marks
	a	Define the following : 1)Knee voltage 2)Peak inverse voltage 3)Reverse saturation current 4)Maximum forward current	4M
	Ans:	1) Knee voltage: The applied forward voltage, at which the PN junction starts conducting is called knee voltage. The knee voltage for a silicon diode is 0.6 V (or 0.7 V) and that for a germanium diode is 0.2 V (or 0.3 V). 2) Peak inverse voltage(PIV): The maximum voltage at which non conducting PN junction diode must withstand without its damage during the negative half cycle of AC input signal is called peak inverse voltage.	1Mark each definition

SUMMER- 18 EXAMINATION

- The saturation state occurs when both junctions(EB junction and CB junction) are in forward bias.
- When input voltage $\mathrm{V}_{\mathrm{in}}=\mathrm{V}$, both EB and CB junction are in Forward biased and transistor is saturated.
- Output voltage $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{CE}(\text { sat })}(0.2 \mathrm{~V}$ for Si$)$ and collector current $\mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{CMAX}}$ $\left(I_{C}=V_{C C} / R_{C}\right)$
- Thus transistor acts as closed switch.

2. Transistor in cut off region:

- The cut-off state occurs when both junctions(EB junction and CB junction) are in reverse bias.
- When input voltage $\mathrm{V}_{\text {in }}=0$, both $E B$ and $C B$ junction are in reverse bias and transistor is cut off.
- Output voltage $\mathrm{V}_{\mathrm{o}}=\mathrm{V}_{\mathrm{CE}}=\mathrm{V}_{\mathrm{CC}}$ and collector current $\mathrm{I}_{\mathrm{C}}=0$

	- Thus transistor acts as open switch	
d	Explain Reverse Bias of P-N junction.	4M
Ans:	- Majority carrier current: 1. When PN junction is reverse biased the holes in the P-region are attracted towards the negative terminal of the battery, and the free electrons in the N -region are attracted to the positive terminal of the battery 2. Thus the majority carriers are drawn away from the PN junction. 3. Thus depletion region is widens. And barrier potential increases. 4. This makes the majority carriers diffusion across PN junction very difficult, this reduces the majority carrier current. - Minority carrier current: 1. In reverse biased PN diode Minority carrier is swept across the junction(ie. Holes from N region and electrons from P region) 2. Very small amount of current flows through diode due to minority carriers. (nA in Si .	2 Marks for diagram 2 Marks for Explanatio n

	diode and $\mu \mathrm{A}$ in Ge. Diode) 3. The rate of generation of minority carriers depend upon temperature. 4. If temperature is fixed, this current remain constant though the reverse voltage is increased, thus the current is called as reverse saturation current.	
e	State the working of direct coupled amplifier with the help of its circuit diagram.	4M
Ans:	Circuit diagram : Direct coupled amplifier Description: - There is no capacitor used for coupling one stage to the other. - Q_{1} and Q_{2} are the transistors, $V c c$ is the dc supply, $R_{1}, R_{2}, R_{c 1}, R c_{2}, R_{E 1}, R_{E 2}$ are the biasing elements. - Output of Q_{1} (ie voltage at collector of Q_{1}) is connected to base of Q_{2}. - The input AC signal is applied to base of $Q_{1}, o / p$ at collector of Q_{1} is connected directly to base of Q_{2}. Final o / p is obtained at collector of Q_{2}. Hence it is called direct coupled amplifier.	2 Marks for circuit diagram

		- Due to the absence of coupling capacitors, the gain does not reduce on the lower frequency side. - The amplifier can amplify even the dc signals. - It suffers from the drift problem due to direct coupling.	
	f	Name the materials which are used for LED making. State LED's applications.	4M
	Ans:	Material used for making LED : 1. Gallium Arsenide (GaAs) emits infrared light 2. Gallium Phosphide (GaP) emits red or green light 3. Gallium Arsenide Phosphide (GaAsP) emits red or yellow light. 4. Gallium Nitride(GaN) emits blue light Applications of LED : 1. LED is used as a bulb in the homes and industries. 2. The light emitting diodes are used in the motorcycles and cars. 3. These are used in the mobile phones to display the message. 4. At the traffic light signals led's are used. 5. In Opto couplers 6. In infrared remote control 7. In optical communication system 8. To indicate power On/Off conditions 9. In 7 segment display (Other suitable applications should also be considered)	2Marks for material 2Marks for any 2 applicatio ns
$\mathrm{Q} .$ No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
6		Attempt any FOUR:	16- Total Marks
	a	Compare PN Junction and Zener Diode. (4 points)	4M
	Ans:		1 mark for

c	State the relation between α and β. Define Q point.	4M
Ans:	Relationship: - We know, $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}$ - Dividing the above equation on both sides by I_{C}, $\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{C}}=\mathrm{I}_{\mathrm{B}} / \mathrm{I}_{\mathrm{C}}+1$ - Since $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{E}}=\alpha$ and $\mathrm{I}_{\mathrm{B}} / \mathrm{I}_{\mathrm{C}}=\beta$ So, $\mathrm{I}_{\mathrm{E}} / \mathrm{I}_{\mathrm{C}}=1 / \alpha$ and $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=1 / \beta$ Therefore, $\quad 1 / \alpha=1 / \beta+1$ Or $1 / \alpha=1+\beta / \beta$ Therefore, $\quad \alpha=\beta /(1+\beta)$ - The above expression may be written as $\begin{aligned} & \alpha(1+\beta)=\beta \\ & \alpha+\alpha \beta=\beta \\ & \alpha=\beta-\alpha \beta=\beta(1-\alpha) \end{aligned}$ Therefore, $\beta=\alpha /(1-\alpha)$ Q point:The operating point of a device, also known as bias point, quiescent point, or Q point, is the point on the output characteristics that shows the DC collector-emitter voltage $\left(\mathrm{V}_{\mathrm{CE}}\right)$ and the collector current $\left(\mathrm{I}_{\mathrm{C}}\right)$ with no input signal applied.	2 Marks for derivation of α and β 2 Marks for Qpoint
d	Explain Astable multivibrator with its circuit diagram.	4M
Ans:	Circuit diagram Astable multivibrator :	2Marks for circuit diagram

Explanation :

- When Vcc is connected, one transistor will conduct more than other, and we can assume say Q_{1} is in saturation And Q_{2} is in cutoff mode. The $V_{c 1}$ is at $O V$ and $\mathrm{V}_{\mathrm{c} 2}=+\mathrm{Vcc}$.
- Hence C_{1} charges exponentially with $R_{1} C_{1}$ time constant towards Vcc through R_{1}. Hence $V_{B 2}$ also increases exponentially towards Vcc.

2Marks forExplana tion

- When $\mathrm{V}_{\mathrm{B} 2}$ crosses the cut-in voltage, Q_{2} starts conducting and $\mathrm{V}_{\mathrm{C} 2}$ fall to $\mathrm{V}_{\mathrm{CE}(\text { sat })}$.
- Also $\mathrm{V}_{\mathrm{B} 1}$ falls , thereby driving Q_{1}, to OFF state.
- Thus $\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{B} 2}=\mathrm{V}_{\mathrm{BE}(\text { sat })}$, and $\mathrm{V}_{\mathrm{C} 2}=\mathrm{V}_{\mathrm{CE}}$
- (sat)
- $V_{B 1}$ now increases exponentially with $R_{2} C_{2}$ towards $V_{C C}$. Therefore Q_{1} is driven into saturation and Q_{2} to cutoff.
- This regenerative process continues when Q_{2} is $O N$, falling voltage $V_{C 2}$ permits

SUMMER- 18 EXAMINATION
Subject Name: Basic Electronics
Model Answer
Subject Code:
the discharging of the capacitor C_{2} which drives Q_{1} into cutoff.

$\mathrm{V}_{2} / \mathrm{V}_{1}=\mathrm{N}_{2} / \mathrm{N}_{1}$
$\mathrm{~V}_{2}=\mathrm{V}_{1} * \mathrm{~N}_{2} / \mathrm{N}_{1}$
$\mathrm{~V}_{2}=230 * 1 / 2$
$\mathrm{~V}_{2}=115 \mathrm{~V}$

Maximum secondary voltage V_{m} is given by,
$V_{m}=\sqrt{2} v_{2}$
$\mathrm{V}_{\mathrm{m}}=\sqrt{2} * 115$
$V_{m}=162.63 \mathrm{~V}$
D.C. output voltage $V_{d c}$ is given by,
$V_{d c}=0.636^{*} V_{m}(O R) \quad 2 * V_{m} / \pi$

Thus the DC output voltage is given by

$$
V_{d c}=103.43 \mathrm{~V}
$$

2.PIV =For F.W.Bridge Rectifier is, PIV $=\mathrm{V}_{\mathrm{m}}$

PIV $=\mathrm{V}_{\mathrm{m}}=162.63$

