MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
 (Autonomous)
 (ISO/IEC-27001-2013 Certified)

Subject Name: Basic Electronics

WINTER- 17 EXAMINATION

Model Answer
Sub Code:
17213

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent Concept

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \text { N. } \end{aligned}$	Answer			Marking Scheme
1		Attempt any TEN			20M
	a	Give two points of comparison of active and passive components.			2M
	Ans:	Comparison between active and passive components.			
		Sr . No.	Active Components	Passive Components	1 mark each
		1.	The electrical components which are capable of amplifying or processing electrical signals are called active components.	The electrical components which are not capable of amplifying or processing electrical signals are called active components.	
		2.	Example: Diode, Transistor etc.	Example: Inductor, Capacitor, Resistor etc.	
		3.	Active components can introduce gain.	Passive components cannot introduce gain.	

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

	Bandwidth : The range of frequency over which the voltage gain of an amplifier is greater than or equal to 70.7% of maximum value is known as bandwidth of the amplifier.	
g	Give the value of maximum rectifier efficiency in half wave and full wave rectifier.	2M
Ans:	Value of maximum rectifier efficiency in half wave rectifier is $\mathbf{4 0 . 6 \%}$ Value of maximum rectifier efficiency in full wave rectifier is $\mathbf{8 1 . 2 \%}$	1M each
h	Define Drain Resistance and Trans - Conductance of JFET.	2M
Ans:	Drain Resistance of JFET: It is defined as the ratio of small change in drain-tosource voltage $\Delta \mathrm{V}_{\mathrm{DS}}$ to the resulting change in drain current ($\Delta \mathrm{I}_{\mathrm{D}}$) for constant gate-to-source voltage V_{GS}. Trans-conductance: Trans-conductance is defined as the ratio of change in Drain current $\left(\Delta \mathrm{I}_{\mathrm{D}}\right)$ to change in Gate to Source Voltage $\left(\Delta \mathrm{V}_{\mathrm{GS}}\right)$ at a constant V_{DS}.	1M each
i	Draw V-I characteristics of PN junction diode under forward bias. Label it.	2M
Ans:	V-I characteristics of PN junction diode under forward bias:	Neat labeled diagram- 2 marks
j	Give classification of IC's.	2M
Ans:	Classification of IC's:	

WINTER- 17 EXAMINATION
Model Answer Sub Code:
17213

WINTER- 17 EXAMINATION

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:

17213

No.	Sub. Q. No.	Answer	Marking Scheme
$\mathbf{2}$	Attempt any FOUR	$\mathbf{1 6 ~ M}$	
a)	Give any four applications of electronics.	$\mathbf{4} \mathbf{\text { M }}$	
Ans:	Applications of electronics in various fields are as follows: 1. Communication and Entertainment: a) Wire communication or Line communication. : Telegraphy, Telephony, Telex and Teleprinter. b) Wireless communication : Radio broadcasting, TV broadcasting, and Satellite communication. 2. Defence: RADAR, guided missiles. 3. Industrial Applications: Electronic circuits are used : To control thickness, quality, weight and moisture. To Amplify weak signals. For Automatic control of various processes. 4. Medical Sciences: In medical equipment like ECG, EMG, EEG , X-rays, Short-wave diathermy units, etc. 5. Instrumentation: In equipment like Cathode Ray Oscilloscope (CRO), Frequency counter, Signal generator, strain gauges,etc.	Any four points each 1 mark	
Ans:	Experimental set up for obtaining reverse characteristics of Zener diode:		
b)	Draw the experimental set up for obtaining reverse characteristics of zener diode. Draw the VI characteristics for the same.	4 M	

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Sub Code:
17213

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

Explanation:

When the D.C power is switched on, the noise voltage of small amplitude appearing at the base gets amplified and appears at the output.
2. This amplified noise now drives the feedback network consisting of a quartz crystal and a capacitor C. Thus the crystal is excited by a fraction of energy feedback from the output to the input.
3. The crystal is made to operate as an inductor L so that the feedback network acts as a series resonant LC circuit.
4. This is possible only, if the frequency of oscillations f_{o} is in between the series resonant frequency f_{s} and the parallel resonant frequency f_{p} of an electrical equivalent circuit of a crystal, Thus, the frequency of oscillations is set by the series resonant frequency f_{s} of the crystal. This produces undamped oscillations of stable frequency fo.

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	Sub. Q. No.	Answer	Marking Scheme
3		Attempt any FOUR	16 M
	a)	Give the classification and use of different types of resistances.	4 M
	Ans:	Classification of the resistors: Use of Resistors: 1. Current control 2. Potential divider 3. Biasing of device 4. Amplifiers 5. Feedback network 6. Signal generators 7. Coupling Network 8. Medical Instruments (Any other suitable applications can also be considered)	2M
	b)	Draw the symbol of :	4 M

	i)p-n junction diode ii)Tunnel diode			
Ans:	i) Anod ii) iii) iv) Anode	junction diode Cathode nnel diode Cathode aractor diode $1\left({ }^{\text {Gantoce }}\right.$ hottky diode \int Cathode		1 M Each
c)	Distinguish	between JFET and MOSFE'		4 M
Ans:	(Any other	Jelevant difference should b JFET Operated in depletion mode Gate is not insulated from channel	onsidered) MOSFET Operated in depletion mode and enhancement mode Very high input impedance Gate is insulated from channel by SiO_{2} layer	Any four 1 Mark for Each

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Sub Code:
17213

	Relation between $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ $\begin{align*} & \beta=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}} \tag{1}\\ & \alpha=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{E}}} \tag{2} \end{align*}$ We know that $\mathrm{I}_{\mathrm{E}}=\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}$ \therefore Change in current $\begin{aligned} & \Delta \mathrm{I}_{\mathrm{E}}=\Delta \mathrm{I}_{\mathrm{B}}+\Delta \mathrm{I}_{\mathrm{C}} \\ & \Delta \mathrm{I}_{\mathrm{B}}=\Delta \mathrm{I}_{\mathrm{E}}-\Delta \mathrm{I}_{\mathrm{C}} \end{aligned}$ Substituting the above value in equation (1) gives $\begin{equation*} \beta=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{B}}}=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{E}}-\Delta \mathrm{I}_{\mathrm{C}}} \tag{3} \end{equation*}$ Divide equation (3) by $\Delta \mathrm{I}_{\mathrm{E}}$, we get $\begin{aligned} & \frac{\Delta \mathrm{I}_{\mathrm{C}} / \Delta \mathrm{I}_{\mathrm{E}}}{\frac{\Delta \mathrm{I}_{\mathrm{E}}}{\Delta \mathrm{I}_{\mathrm{E}}}-\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{E}}}}=\frac{\alpha}{1-\alpha} \quad \therefore \alpha=\frac{\Delta \mathrm{I}_{\mathrm{C}}}{\Delta \mathrm{I}_{\mathrm{E}}} \\ & \therefore \quad \beta=\frac{\alpha}{1-\alpha} \end{aligned}$	2M
e)	A transistor has collector current $\mathrm{Ic}=1.5 \mathrm{~mA}$ and base current, $\mathrm{I}_{\mathrm{B}}=90 \mu \mathrm{~A}$. Find α and β of the transistor.	4 M
Ans:	Given: $\mathrm{Ic}=1.5 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=90 \mu \mathrm{~A}$ The current gain of a transistor β is given by, $\beta=\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}$	2 M for β

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Sub Code:
17213

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Sub Code:
17213

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \\ \hline \end{array}$	$\begin{aligned} & \text { Sub. } \\ & \text { Q. No. } \end{aligned}$	Answer	Marking Scheme
4		Attempt any FOUR of following:	16 M
	a)	Draw and explain the V-I characteristics of Tunnel diode.	4M
	Ans:	Tunnel diode V-I characteristics For small forward voltages owing to high carrier concentrations in tunnel diode and due to tunnelling effect the forward resistance will be very small. As voltage increases, the current also increases till the current reaches its peak value I_{p} If the voltage is increased beyond the peak voltage, the current will start decreasing. This is negative resistance region. It prevails till valley point. At valley point the current through the diode will be minimum. Beyond valley point the tunnel diode acts as normal diode. In reverse biased condition also Tunnel diode is an excellent conductor due to its high doping concentrations. So it allows conduction to take place for all reverse voltages. There is no reverse breakdown as in conventional diodes.	2M
	b)	With suitable circuit diagram, explain the working of half wave rectifier. Draw the necessary waveforms.	4 M

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Sub Code:
17213

e)	With suitable diagram, explain the working of capacitor filter. Draw the necessary waveforms.	$\mathbf{4 M}$
	Figure above represents a capacitor filter circuit. It consists of a capacitor C placed across the rectifier output in parallel with load R_{L}. The rectifier output is applied to the capacitor .During the first half cycle, as the rectifier voltage increases, it charges the capacitor and also supplies current to the load. At the end of quarter cycle, capacitor is charged to the peak value of the rectifier voltage. Now as the rectifier voltage starts to decrease, the capacitor discharges through the load .The voltage across the RC combination decreases very slightly. By then in the next half cycle the capacitor is again charged by the increasing voltage. The process repeats again and again and the output voltage has very little ripple. The waveforms are as shown below:	$\mathbf{2 M}$

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Sub Code:
17213

WINTER- 17 EXAMINATION

Model Answer Sub Code:
17213

Q. 5		Attempt any FOUR :	16 M Marks
	a)	Define i) Peak inverse voltage iii) Knee voltage ii) Static resistance of diode iv) Reverse saturation current.	4M
	Ans:	Definitions : i) Peak inverse voltage : Ans: The maximum value of the reverse voltage that a PN junction or diode can withstand without damaging itself is known as its Peak Inverse Voltage. ii) Static resistance of diode : Ans: The resistance offered by a p-n junction diode when it is connected to a DC circuit is called static resistance. or It is defined as the ratio of DC voltage applied across diode to the DC current or direct current flowing through the diode. iii) Knee voltage : Ans: The minimum voltage at which the diode starts conducting and current starts increasing exponentially is called knee voltage of a diode. iv) Reverse saturation current : Ans: The reverse saturation current is that part of the reverse current in a semiconductor diode caused by diffusion of minority carriers from the neutral regions to the depletion region.	Definition : 1M each
	b)	Define i) Line regulation ii) Load regulation. Give the necessary formulae.	4M
	Ans:	Definitions : i.Line Regulation : The line regulation rating of a voltage regulator is the change in output voltage that	Definition : 1M each

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Sub Code:
17213

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

	- When the reverse voltage is increased to a value equal to the breakdown voltage, very large current flows due to avalanche effect and the junction breaks down permanently. Hence operation in break down region should be avoided. Circuit for reverse biased pn junction characteristic	: 2M
e)	State the need of multistage amplifier. State one application each of different types of multistage amplifiers.	M
Ans:	Need of multistage amplifier: The output from a single stage amplifier is usually insufficient to drive an output device. So additional amplification over two or three stages is necessary. To achieve this, output of each amplifier stage is coupled in some way to the input of the next stage. The resulting system is referred to as multi-stage amplifier or cascade amplifier, where the output of first amplifier is fed as input to second amplifier. Multistage amplifiers are designed to increase the overall gain of the amplifier . Applications of Resistance-Capacitance (RC) coupled Amplifier: a) It is used in tape recorders, VCRs, CD players etc. b) It is used in stereo amplifiers. c) It is used as voltage amplifiers. Applications of Transformer coupled Amplifier: a) It is used to transfer power to low impedance load. b) It is mostly used for impedance matching.	Need : 1 M Application (any one) : 3M (1M for each type)

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer
Sub Code:
17213

Q. 6		Attempt any FOUR :	16 - Total I
	a)	With suitable diagram, explain the construction of P-N junction diode. What are majority and minority carriers?	4M
	Ans:	Construction: - The PN junction diode has a P-type and N-type semiconductor material which is joined by the process of alloying. Thus, both the ends of the diode has different properties. - The electrons are the majority charge carrier of the N-type material, and the holes are the majority charge carrier of the p-type semiconductor material. - The region in which both the p-type and n-type material meet is called the depletion region. This region does not have any free electrons because electrons and holes combine with each other in this region. Majority carriers: - The charge carriers that are present in large quantity are called majority charge carriers. The majority charge carriers carry most of the electric charge or electric current in the semiconductor. - In n-type semiconductors they are electrons, while in p-type semiconductors they are holes. Minority carriers: - The charge carriers that are present in small quantity are called minority charge carriers. The minority charge carriers carry very small amount of electric charge or electric current in the semiconductor.	Diagram : 1M Explanation : 1M Definition : 1M each

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

	- In n-type semiconductors they are holes, while in p-type semiconductors they are electrons.	
b)	Draw the block diagram of regulated power supply and describe each block.	4M
Ans:	Block diagram of D.C power supply. There are four basic blocks of a d.c. regulated power supply. They are 1) Step down transformer 2) Rectifier 3) Filter 4) Voltage Regulator. Functions of each block are as follows : Step down transformer : Reduces 230 volts 50 Hz ac voltage to required ac voltage level. Rectifier : Rectifier converts ac voltage to dc voltage. It may be a half-wave rectifier, a full-wave rectifier using a transformer with centre-tapped secondary winding or a bridge rectifier. But the output of a rectifier will be fluctuating. Filter : Filter is a circuit used to remove fluctuations (ripple or ac) present in dc output. Voltage Regulator : Voltage regulator is a circuit which provides constant dc output voltage irrespective of changes in load current or changes in input voltage.	Block Diagram : 2M Explanatio $: 2 \mathrm{M}$
c)	Define biasing. State the requirements of biasing.	4M
Ans:	Definition: Biasing: Transistor biasing is the application of controlled amount of voltage and current to a transistor for it to produce the desired amplification or switching effect.. Or Biasing a diode refers to applying a positive voltage in order to overcome the barrier potential which is developed whenever a pn junction is formed. Requirements of transistor biasing:	$\begin{aligned} & \text { Definition } \\ & : 1 M \end{aligned}$

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

	- Position of a Q point - Value of I_{C} at quiescent point(Q point) - Value of every stability factor should be as low as possible. - Transistor should be biased in the linear portion of transfer characteristics. - Forward bias the B-E junction and reverse bias C-B junction to bias the transistor in active region. - Maximum output swing without producing any distortion.	Requireme nts : 3M
d)	With suitable diagram, explain the working of astable multivibrator. Draw the necessary waveforms.	4M
Ans:	Circuit diagram: Explanation: When Vcc is connected, one transistor will conduct more than other. Initially assume Q_{1} is in saturation and Q_{2} is in cut off mode ie. Vc_{1} is at 0 V and Vc_{2} $=+V c c . C_{1}$ charges exponentially with time constant $\mathrm{R}_{1} \mathrm{C}_{1}$ towards Vcc through R_{1}. $\mathrm{V}_{\mathrm{B} 2}$ also increases exponentially towards Vcc. When $\mathrm{V}_{\mathrm{B} 2}$ crosses the cut-in voltage, Q_{2} starts conducting and $\mathrm{V}_{\mathrm{C} 2}$ fall to Vc_{E} (sat). At the same time $V_{B 1}$ falls, thereby driving Q_{1}, to OFF state. Now $\mathrm{V}_{\mathrm{C} 1}$ rises, causes a small overshoot in voltage in $\mathrm{V}_{\mathrm{B} 2}$. Thus Q_{1} is OFF and Q_{2} is ON. So, $\mathrm{V}_{\mathrm{C} 1}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{B} 2}=\mathrm{V}_{\mathrm{BE}}(\mathrm{sat})$, and $\mathrm{V}_{\mathrm{C} 2}=\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$. $V_{B 1}$ now increases exponentially with $R_{2} C_{2}$ towards $V_{C C}$. Therefore Q_{1} is driven into	Circuit diagram : 1M Explanatio : 2M Waveforms : 1M

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:
17213

WINTER- 17 EXAMINATION

Subject Name: Basic Electronics
Model Answer Sub Code:

