

MODEL ANSWER

SUMMER-17 EXAMINATION

Subject Code:

1	7112	
	1213	

Subject Title: Basic Electronics

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for anyequivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answer	
Q.1		Attempt any ten :	20-Total Marks
	a)	Define :	2M
		i) Active components ii) Passive components.	
	Ans:	Active components : The electrical components which are capable of amplifying or processing	1M
		electrical signals are called active components. Example: Diode, Transistor etc.	Each
		Passive components: The electrical components which are not capable of amplifying or	
		processing electrical signals are called active components. Example: Inductor, Capacitor,	
		Resistor etc.	
	b)	Draw the symbol of	2M
	ŕ		
		i) N-channel JFET ii) P-channel JFET.	
	Ans:	<u>Diagram :</u>	1M
		5	Each
		G 	

	G G G S S P-Channel JFET	
c)	Draw V-I characteristics of PN diode.	2M
Ans:	Diagram :	2M
	V _{BR} Reverse voltage ↓ C + ↓ D + ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
d)	List any two types of couplings used in amplifier.	2M
Ans:	 Resistance – capacitance (RC) coupling. Inductance (LC) coupling. Transformer coupling (TC) Direct coupling (D.C.) 	1M Each Any two
e)	Define Barrier potential. Give its values for Si and Ge diode.	2M
Ans:	 Barrier Potential: The depletion layer of a PN junction has no mobile charge carriers. But it contains fixed rows of oppositely charged ions on its two sides.Because of this charge separation, an electric potential is established across the junction. This electric potential is called potential barrier. Barrier potential for Si Diode is 0.6 V and for Ge Diode is 0.2V. 	2M
f)	Give two advantages of ICS.	2M
Ans:	 <u>Advantage :</u> 1. The physical size of an IC is extremely small (generally thousand times smaller) than that of discrete circuits. 2. The weight of an IC is very less as compared to that of equivalent discrete circuits. 3. The reduction in power consumption is achieved due to extremely small size of IC. 4. Interconnection errors are non-existent in practice. 5. Temperature differences between components of a circuit are small. 6. Close matching of components and temperature coefficients is possible. 7. In case of circuit failure, it is very easy to replace an IC by a new one. 	1M Each Any Two

	8. Active devices can be generously used as they are cheaper than passive components.	
g)	Give necessity of filters in DC power supply.	2M
Ans:	Need of the filter: The output of a rectifier contains ac and dc components. If such a dc is applied in an electronic circuit, it will produce noise and therefore to keep the ac components away from the load, filter circuits are used, which removes the ac components and allows only dc components to reach the load.	2M
h)	Define transconductance of JFET.	2M
Ans:	<u>Transconductance</u> Transconductance is defined as the ratio of change in Drain current (Δ ID) to change in Gate to Source Voltage (Δ VGS) at a constant VDS.	2M
i)	Draw the symbol of. i) Varacter diode ii) LDR.	2M
	Anode Cathode Symbol of Varactor diode Anode Cathode Symbol of LDR	
j)	Give classification of ICs.	2M
Ans:	Diagram : The classification of ICs is as under : Integrated Circuits (ICs) Classification based on the active device Bipolar Unipolar ICs ICs Classification Dased on the application Bipolar Unipolar ICs Classification Dased on the application Classification Dased on the Dipolar Classification of integrated circuits (ICs)	2M
k)	Give two application of Light Emitting Diode.	2M

	Ans:	 Infra-red LEDs are used in burglar alarm systems. For solid state video displays which are rapidly replacing CRT. 	2M Any two
		3. An image sensing circuit for picture phones"4. In array of different types for displaying alpha-numeric characters.	
	l)	Enlist two examples of non linear resistors.	2M
	Ans:	Examples of nonlinear resistors are: 1. Thermistor 2. LDR 3. VDR	1M Each
Q 2		Attempt any four :	16M
	a)	State any four applications of electronics in day to day life.	4M
	Ans:	 Communication and Entertainment : a) Wire communication or Line communication. Example : Telegraphy, Telephony, Telex and Teleprinter. b) Wireless communication. Example : radio broadcasting, TV broadcasting, satellite communication. Defense : The most important application is RADAR. Industrial Applications : Electronic circuits are used to control thickness, quality, weight and moisture. They are also used to amplify weak signals. Medical sciences : Electronics helps doctors and scientists in the diagnosis and treatment of various diseases. Eg. X-rays, ECG, Oscillographs and Short-wave diathermy units. Instrumentation : Instrumentation plays very vital role in research field and industry. Eg. Cathode Ray Oscilloscope (CRO), Frequency counter, Signal generator and Strain gauges. 	1M Each Any Four Points
	b)	Draw symbol of Zener Diode. Draw and explain its V-I characteristics.	4 M
	Ans:	<u>Symbol :</u> A K Symbol of a Zener Diode	1M

	WorkingWorking principle- Above fig shows NPN transistor with forward biased emitter-base junction and reverse biased collector-base junction. The forward bias causes the electrons in the N-type emitter to flow towards the base. This constitutes the emitter current IE.As these electrons flow through the P-type they tend to combined with holes. As the base is likely doped and very thin therefore only a few electrons (2%) combine with holes to constitute base current IB. The remaining electrons (98%) cross over in to the collector region to constitute collector current IC. In this way almost the entire emitter current flows in the collector circuit. It is clear that emitter current is sum of collector and base current. $IE = IB + IC$	2M
d)	Derive relation between α and β.	4 M
Ans:	relation between α and β:We know, $IE = IB + IC$ Dividing the above equation on both sides by Ic,	
	IE/IC = IB/IC + 1 Since IC/IE = α and IB/IC = β So, IE/IC = 1/ α and IC/IB = 1/ β Therefore, 1/ α = 1/ β + 1	1M 1M
	Or $1/\alpha = 1+\beta/\beta$ Therefore, $\alpha = \beta/(1+\beta)$ The above expression may be written as $\alpha (1+\beta) = \beta$ $\alpha + \alpha \beta = \beta$ $\alpha = \beta$, $\alpha = \beta$ (1, α)	1M
	Therefore, $\beta = \alpha / (1 - \alpha)$	1M
e)	Give construction and working of Tunnel diode.	4 M
Ans:	Diagram:	2M
	OR	

		As doped ball Sin ball Sin	2M
	6		
	I)	Define Oscillator. Give Bark Hausen Criteria for sustained oscillations.	41/1
	Ans:	Oscillator : An oscillator is a electronic circuit that produces a periodic waveform on its output with only dc supply voltage as an input.	2M
		Bark Hausen Criterion for Oscillations: There is a necessity of a positive feedback for an electronic oscillator The overall voltage gain of a positive feedback amplifier is given by $Av_f = Av/1 - \beta \cdot Av$ If loop gain $\beta \cdot Av = 1$, then $Av_f = \infty$. The overall voltage gain will be infinity only when there is no input. Now the amplifier will start self-oscillating. This condition $\beta \cdot Av = 1$ is known as Barkhausen criterion. The conditions are started as 	2M
		 i.e. β . Av > 1 or Av > 1/β 2. The total phase shift between the input and output signals is an integral or 2 radians i.e. <β . Av = 0° 	
Q. 3		Attempt any four:	16M

Ans:	Give construction and working of LDR.	4M	
	Construction: <u>Diagram :</u>	2M	
	Light Metal contact n+ n+ n- Semi-insulating substrate		
		2M	
	Explanation : The structure of a light dependent resistor consists of a light sensitive material which is deposited on an insulating substrate such as ceramic. The material is deposited in zigzag pattern in order to obtain the desired resistance &		
	power rating. This zigzag area separates the metal deposited areas into two regions. Then the ohmic		
	contacts are made on the either sides of the area. Materials normally used are cadmium sulphide, cadmium selenide, lead sulphide, indium antimonide and cadmium sulphonide.		
	Working Principle: An LDR works on the principle of photo conductivity, which is an optical phenomenon		
	In which the material's resistivity reduces when the light is absorbed by the material. When light falls i.e. when the photons fall on the device, the electrons in the valence		
	In which the material's resistivity reduces when the light is absorbed by the material. When light falls i.e. when the photons fall on the device, the electrons in the valence band of the semiconductor material are excited to the conduction band. These photons in the incident light should have energy greater than the band gap of the semiconductor material to make the electrons jump from the valence band to the		
	In which the material's resistivity reduces when the light is absorbed by the material. When light falls i.e. when the photons fall on the device, the electrons in the valence band of the semiconductor material are excited to the conduction band. These photons in the incident light should have energy greater than the band gap of the semiconductor material to make the electrons jump from the valence band to the conduction band. Hence when light having enough energy is incident on the device more & more electrons are excited to the conduction band which results in large number of charge carriers. The result of this process is more and more current starts flowing and hence it is said that the resistance of the device has decreased		
	In which the material's resistivity reduces when the light is absorbed by the material. When light falls i.e. when the photons fall on the device, the electrons in the valence band of the semiconductor material are excited to the conduction band. These photons in the incident light should have energy greater than the band gap of the semiconductor material to make the electrons jump from the valence band to the conduction band. Hence when light having enough energy is incident on the device more & more electrons are excited to the conduction band which results in large number of charge carriers. The result of this process is more and more current starts flowing and hence it is said that the resistance of the device has decreased.		

	is called pinch off voltage and is denoted by V _{P.}	
d)	Give two applications of a) Varacter diode b) Tunnel diode.	4M
Ans:	Applications of Varacter Diode:	1M Each
	Voltage controlled oscillators	Any Two
	• RF filters	Points
	Tuning Circuits	
	High frequency amplifiers	
	Applications of Tunnel Diode:	
	High speed switches	
	High frequency oscillator	
	Micro wave generators and amplifiers	
e)	Given $I_B = 110 \mu A$, $I_C = 2 m A$. For a transistor find α and β .	4 M
Ans:	Given $I_B = 110 \mu A I_C = 2mA$	
	Calculation of a -	
	$I_F = I_R + I_C$	2M
	$I_{\rm E} = 110 X 10^{-6} + 2 X 10^{-3}$	
	= 2.11 mA.	
	$\alpha = \frac{1_{\rm C}}{1_{\rm C}}$	
	^{1}E 2 X 10 ⁻³	
	$\alpha = \frac{2 \times 10}{2 \times 11 \times 10^{-3}} = 0.948.$	
		21
	Calculation of β :	<i>2</i> 1 1
	$\beta = \frac{I_{C}}{I_{C}}$	
	I_{B}	
	$\beta = \frac{2 \times 10^{-6}}{110 \times 10^{-6}} = 18.2$	
	OR	
	α 0.948	
	$\beta = \frac{1}{1 - \alpha} = \frac{1}{1 - 0.048} = 18.2$	
	$1 - \alpha = 1 - 0.940$	
f)	Describe the need of multistage amplifier.	
	Stage 1 Stage 2 o/p	4M
	$ \longrightarrow \text{Gain} = 4 \longrightarrow \text{Gain} = 5 \longrightarrow $	
	i/p	
	Find our overall gain.	
Ans:	Need of Multistage amplifier:	1M Each
	• Amplification of single stage is not sufficient.	Any Two
	• Output or input impedance is not of required values.	
	• To obtain required voltage, current and power gain	1

		Given diagram, Stage1 Gain = A_{V1} = 4; Stage 2 Gain = A_{V2} = 5 Overall gain = $A_V = A_{V1} X A_{V2}$ = 4 X 5 = 20.	2M
Q. 4	a) Ans:	Attempt any four : Give four applications of Schottky diode. Applications : • To rectify very high frequency signals • As a switching device in digital computers • In clipping and clamping circuits • In low power Schottky TTL circuits • In mixing and detecting circuits used in communication systems. • In low voltage power supply circuits	16M 4M 1M Any Four
	b)	Draw the neat sketch of center tap full wave rectifier. Draw input and output	4M
	Ans:	$\frac{\text{Diagram :}}{\text{Diagram :}}$ $\frac{\text{Waveform:}}{\text{Waveform:}}$ $\frac{\text{Bottom :}}{\text{Waveform:}}$ $\frac{\text{Bottom :}}{\text{Bottom :}}$ $\frac{\text{Bottom :}}{\text{Bottom :}}$ $\frac{\text{Bottom :}}{\text{Bottom :}}$ $\frac{\text{Bottom :}}{\text{Bottom :}}$	Any Correct diagram – 2M; Waveform- 2M
	c)	Compare BJT and FET (any four points).	4M
	Ans:	Sr. no. BJT JFET	

	1.	It is bipolar device i.e. current	It is unipolar device i.e.	1M
		in the device is carried by	current in the device is carried	Each
		electrons and holes.	by either electrons or holes.	Any four
	2.	It is current controlled device	It is voltage controlled device	points
		i.e. base current controls the	i.e. voltage at the gate	-
		collector current.	terminal controls the amount	
			of current flowing through the	
			device.	
	3.	Input resistance is low, of the	Input resistance is very high,	
		order of several KΩ	of the order of several $M\Omega$	
	4.	It has positive temperature	It has negative temperature	
		coefficient of resistance at	coefficient of resistance at	
		high current levels i.e. current	high current levels i.e. current	
		increases as the temperature	decreases as the temperature	
		increases.	increases.	
	5.	It suffers from minority carrier	It does not suffer from	
		storage effects and therefore	minority carrier storage	
		has lower switching speeds	effects and therefore has	
		and cut-off frequency.	higher switching speeds and	
			cut-off frequency.	
	6.	It is more noisy as compared	It is less noisy.	
		to FET.		
	7.	It is complicated to fabricate	It is much simpler to fabricate	
		as an IC and occupies more	as an IC and occupies less	
		space on the IC chip.	space on the IC chip.	
	8.	Thermal break down can	Thermal break down cannot	
			occur.	
	Draw and ex	plain working of CLC filter.	filter man also be sousidaned)	41V1
115.	(<i>Note any oth</i> Diagram:	er diagram snowing recujier wan	i juier may also be considered)	2M
-				2111
		ന്ന		
		From	\perp \leq	
		Rectifier ^{C1}	$-$ ^{C2} \geq ^{RL}	
	Explanation :			
1	CLC filter or a	π filter is used whenever a low out	tput current and a high dc output vo	oltage 2M
-	is required. It	consists of two capacitors C ₁ and	C_2 and an inductor L connected in	the
	form of Greek	t letter π . The pulsating output from	m the rectifier is applied at the inpu	ıt
	terminals of th	he π filter.		
1				
	Working:			
,	<u>Working:</u> Capacitor C ₁ f	ilter: It offers a low reactance to a	c component of rectifier output. Th	nis

	towards L. Inductor L : It offers a high reactance to the ac component of the rectifier output but zero resistance to the dc component. Thus, it allows the dc component to pass through it, and blocks the ac component, which could have been bypassed by the capacitor C ₁ . Capacitor C ₂ : This works similar to C ₁ . It bypasses the ac component of rectifier output, which could not be blocked by Inductor L. Thus only dc component is available at the output. The ripple factor is given by $\gamma = \frac{5700}{C_1 C_2 L R_1}$	
e)	Draw the neat sketch of two stage transformer coupled amplifier.	4M
Ans:	Diagram : $\begin{array}{c} \hline Diagram : \\ \hline \\$	4M
f)	Draw and explain construction and working of crystal oscillator circuit.	4M
Ans:	Diagram :	2M
	 Explanation: A piezoelectric quartz crystal is used as in Crystal Oscillators. Piezoelectric effect : when ac voltage applied across the quartz crystal, it vibrates at the frequency of the applied voltage. Conversely, if a mechanical force is applied to vibrate a quartz crystal, it generates an a.c. output. 	2M

		• Resistors R ₁ , R ₂ and	R_E form the volta	ge divider biasing circuit,	, fixes the Q point.		
		Crystal connected as	s a series element	in the feedback path from	collector to base.		
		• Capacitor C _E paralle	l with R _E provides	s low reactance path to the	e amplified AC signal.		
		• RFC coil provides	the dc bias also c	couples any ac signal from	m affecting the output		
		signal		······································			
		• C _a with negligible in	nnedance blocks (le between collector and h	pase		
0.5		A thereast every form a	inpedance bioeks (161	
Q.5	9)	Attempt any four : Describe process of fo	rmation of Denle	ation I avor			
	Ans:	Describe process of ro Depletion Laver •	If we join a piece	of \mathbf{n} – type semiconducto	r to a piece of $n - type$	4M	
	11150	semiconductor suc	n we join a piece	structure remains continu	ious at boundary a PN		
		iunction is formed.	i that the erystar	structure remains contine	ious at boundary a riv		
		 As soon as the junc 	tion is formed fol	lowing process takes place	е.		
		• The holes from the	p – region diffuse	e to the N $-$ region where	they combine with the		
		free electrons. Ea	ch hole that diff	fuses into the N-side w	ill behind a negative		
		immobile ion on the	e n-side				
		• The free electrons f	rom N – region d	iffuse to the P – region wh	here they combine with		
		holes. Each electro	n that diffuses int	o the p-side will behind a	positive immobile ion		
		• The negative accen	tor ions in the P r	egion and positive donor	ion in the N region are		
		left uncovered in th	e vicinity of junct	ion	ion in the iv region are		
		• When sufficient no	astive ions get as	oumulated in the n region	noor the junction the		
		when sufficient ne	a the force of repu	ultion while diffusing from	n n ragion to n ragion		
		Hence diffusion st	e the force of repr	distoir while diffusing from	in in-region to p-region.		
		Cimilarly, the resid		innetion in a median and	al the heles as that the		
		• Similarly, the positi diffusion of holes to	tive tons near the point stops.	junction in n-region repe	el the noies so that the		
		• This layer of ions is	s termed as deplet	ion layer.			
	b)	Compare Half wave, f	full wave, full wa	ve center tap and full wa	ave bridge type	4M	
	,	rectifier (four points).					
	Ans:					1M Each	
		Parameter	Half wave	Full wave center tap	Full wave bridge	Any four	
		Dc or average load	$I_{ m m}/\pi$	$2 I_m / \pi$	$2 I_m / \pi$	points	
		Max average load	ν /π	2 V /π	2 V /π		
		voltage	• m/ <i>n</i>	$2 v_m / \pi$	$\Sigma \mathbf{v}_{\mathrm{m}}/\mathbf{h}$		
		RMS load current	I _m /2	$I_m/\sqrt{2}$	$I_m/\sqrt{2}$		
		RMS load voltage	V _m /2	$V_{\rm m}/\sqrt{2}$	$V_{\rm m}/\sqrt{2}$		
		Max rectification	40.6%	81.2%	81.2%		
		efficiency					
		Dc load power	$I_{\rm m}^{2}$. R _L / π^{2}	4. I_m^2 . R_L / π^2	4. I_m^2 . R_L/π^2		
		Ripple factor	121 %	48 %	48 %		
		TUF	28.7 %	69.3 %	81.2 %		
		Ripple frequency	50 Hz	100 Hz	100Hz		
		No of diodes	1	2	4		

	PIV	V _m	$2V_{m}$	V _m	
c)	State and explain th condition.	e operating princi	ple of P-N junction diode	e under forward bias	4 M
Ans:	Diagram : Diagram : POOOOI HOLES HOLES OOOOOI OOOOOOI OOOOOI OOOOOOI OOOOOOI OOOOOOOI OOOOOOI OOOOOOOO				
	 ELECTRON FLOW Explanation : The process of applying and external voltage to a junction in such a direction that it cancels the potential barrier, thus permitting the current flow is called as forward biasing. If the p-region (anode) is connected to the positive terminal of the external source and n-side (cathode) connected to the negative terminal of the external source, then the diode is said to be forward biased. It is shown in the fig above. Conventional current flows in the direction opposite to the flow of electrons. The applied forward potential establishes an electric field, which acts against the field due to potential barrier. Therefore, the resultant field is weakened and the barrier height is reduced at the junction. The holes and electrons are attracted to opposite polarities of the battery and start to make efforts to cross the junction. As potential barrier is very small, a small forward voltage is sufficient to completely eliminate the barrier. Once the potential barrier is eliminated by forward voltage, junction resistance almost becomes zero and a low resistance path is established for entire circuit. Therefore, aurent flowing is the ginemini is applied as forward aurent. 				
d)	Give construction of	Bistable multivib	rator using transistor.		4 M
	Diagram •		5		4 M

	A rectifier is a device that converts an AC signal into pulsating DC signal.	
	 <u>Need of rectifier :</u> Every electronic circuit such as an amplifier needs dc power supply for its operation. This dc voltage has to be obtained from ac supply. For this a.c supply voltage has to be reduced first using a step down transformer and then converted to dc by using a rectifier. 	1M
	<u>Ripple factor :</u> The ratio of R.M.S value of a.c. component to the d.c. component in the rectifier output is known as RIPPLE FACTOR.	1M
	Efficiency : It is defined as the ratio of d.c power delivered to the load to the a.c input power from the secondary winding of the transformer.	1M
c)	Define "Biasing of Transistor." Explain in brief voltage divider biasing.	4M
Ans:	Biasing of Transistor: The application of a suitable Dc voltage across the transistor terminals is called biasing.	2M
	Voltage divider biasing: <u>Diagram :</u>	2M
	 In this circuit, the voltage divider holds the base voltage fixed independent of base 	
	current provided the divider current is large compared to the base current.	
	• However, even with a fixed base voltage, collector current varies with temperature (for example) so an emitter resistor is added to stabilize the Q-point	
d)	 However, even with a fixed base voltage, collector current varies with temperature (for example) so an emitter resistor is added to stabilize the Q-point Draw DC load line of transistor. Explain working of transistor as a switch. 	4M

		1
	<u>Ohmic Region</u> : Shown by curve OA in fig (b). In this region the drain current increases linearly with the increase in drain to source voltage VDS. JFET acts as a simple resistor.	
	Curve AB: In this region the drain current increases slowly as compared to that in the Ohmic Region. This is because with increase in drain to source voltage, the drain current increases. This in turn increases the reverse bias voltage across the gate source junction. As a result of this the depletion region grows in size, thereby reducing the effective width of the channel.	
	<u>Pinch-off Region</u> : This region shown by BC curve. It is also called saturation Region or constant current region. In this region, the drain current remains constant at its maximum value. The pinch-off region is the normal operating region of JFET, when it is used in an amplifier circuit.	
	Break down Region: This region shown by curve CD. In this region the drain current increases rapidly as the drain to source voltage increases. This happens because of break down of gate to source junction due to avalanche breakdown. The drain to source voltage corresponding to point C is called breakdown voltage VBR	
f)	Draw neat sketch of half wave rectifier. List its two disadvantages. Draw input out waveforms	4M
Ans	Half Wave Rectifier : Diagram :	2M
	V_i Q_i V_s I_L R_i Pulsating	
	A.C. Supply 3	
	 A.C. Supply J.J. J. J	1M

