

SUMMER-18 EXAMINATION

Model Answer

Subject Code:

17210

Subject Name: Applied Physics Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q.		Scheme
	N.		
1		Attempt any NINE of the following:	18
1		intempt any relief of the following.	10
	a)	State Ohm's law with mathematical equation.	2
	<i>,</i>	Statement	1
		Mathematical equation	1
		Ohm's law: If physical state of the conductor remains same, the potential difference	
		between two ends of the conductor is directly proportional to the current flowing through	
		11.	
		$\mathbf{V} = \mathbf{I}\mathbf{R}$	
	b)	Evaloin the principle of actentic meter	2
	0)	Explain the principle of potention deter.	$\frac{1}{2}$
		The fall of potential is directly proportional to the length of conducting wire.	

SUMMER- 18 EXAMINATION					
Subject Name: Applied PhysicsModel AnswerSubject Code :		Mame: Applied Physics Model Answer Subject Code :	L7210		
1	Q. No.	Sub Q. N.	Answer	Marking Scheme	
	1	b)	The potential difference between two points of conductive wire is directly proportional to the length/distance between the two points. $V \propto L$		
		c)	Draw a neat diagram of Wheatstone's network. Diagram with labels I I R_1 R_2 R_3 R_4 R_3 R_3 R_4 R_5 R_4 R_5 R_4 R_5	2 2	
		d)	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2 1 1	
		e)	 Define conduction band & forbidden energy gap. Each definition Conduction band :Range of energy possesed by conduction electrons is called conduction band. Forbidden energy gap : The energy difference between conduction band and valance band is called forbidden energy gap. 	2 1	
				2/14	

SUMMER- 18 EXAMINATION						
Su	bject N	ame: Applied Physics <u>Model Answer</u> Subject Code:	17	210		
Q. No.	Sub Q. N.	Answer		Marking Scheme		
1	f)	State the values or range of values of energy band for conductor, semiconductor insulator. Three values Conductor : no gap Semiconductor : 1 eV Insulator : 5.5 eV	&	2 2		
	g)	State Planck's Hypothesis Statement Planck's Hypothesis: Planck's proposed the quantum theory for explanation of energy distribution a black body radiation. According to this theory energy is not emitted absorbed continuously but in a discrete units or packets called photon or qua The photons are electrically neutral and traveled with speed of light i.e. radiation considers as shower of photons. The energy E associated with pho- is directly proportional to frequency of light.	n in l or nta. the oton	2 2		
	h) An X-ray tube is operated at 50 kV. What will be the wavelength of x-rays emitted in it? Formula with substitution Answer with unit Given : $V = 50 \text{ kV} = 50 \text{ x } 10^3 \text{ V}$ $\lambda = ?$ $\lambda = 12400 / \text{ V}$ $= 12400 / \text{ S0 x } 10^3$ $\lambda = 0.248 \text{ A}^0 = 0.248 \text{ x} 10^{-10} \text{ m}$					
	i)	State two points of differentiation between spontaneous emission and stimula emission. Two points	ated	2 2		

			SUMMER-18	BEXAMINATION				
Su	bject N	ame: Applied Phy	sics <u>Mode</u>	l Answer	Subject Code:	17	210	
Q. No.	Sub Q. N.		A	Inswer			Marking Scheme	ŗ,
1	i)	Sponta	neous emission	Stimulated emission	n			
		Excited state on	atoms comes to ground its own accord	Excited atoms comes state after interaction incident photon.	s to ground 1 with			
		Radiation direction waveler	ons are in random n , phase and gth	Radiations are coher monochromatic and direction.	ent, in same			
		Indepen circums	dent of outside tances	Dependent of outside circumstances	e			
		No meta (ordina	stable state exist ry exited state)	Metastable state exis	st			
		Number less	of photons emitted are	Number of photons e more	emitted are			
	j)	Define: Optical p Each definition Optical pumping energy state using	Dumping & Population :- The process of raising light medium is called o	Inversion. g the atoms from lower optical pumping.	r energy state to high	ner	2 1	
		Population inver population of low	sion:- Making the popul er energy level by using	ation of higher energy light energy is called I	level more than population inversion	1.		

SUMMER-18 EXAMINATION

Subject Name: Applied Physics		ne: Applied Physics <u>Model Answer</u> Subject Code:	17210	
Q. No.	Sub Q. N.	Answer	Markin Schem	ng ne
1	k)	Define nanometer & nanoparticle. Each definition Nanometer: A nanometer is a billionth of a meter. Nanoparticle: Nanoparticles are particles whose dimensions(any one or many) are between 1 and 100 nanometres (nm) .	2 1	
	1)	State two properties of nanoparticle. Any two properties i. Mechanical property. iii. Structural property. iii. Thermal property. iv. Electric property. v. Magnetic property. vi. Optical property.	22	
L	1	1		

SUMMER-18 EXAMINATION							
Subje	ct Nan	ne: Applied Physics <u>Model Answer</u>	Subject Code:	17210			
Q. No.	Sub Q. N.	Answer		Markin Schem			
2.		Attempt any FOUR of the following:		16			
	a)	The specific resistance of the material of the wire is of the wire is 4 Ω and radius of the wire is 0.6 mm, Formula with substitution Answer with unit Given : L = ? Radius = r = 0.6 x 10 ⁻³ m $\rho = 3 x 10^{-7} \Omega$ -m. R = 4 Ω We have $\rho = RA/L$ L = RA/ $\rho = 4 x 3.14 x (0.6x10^{-3})^2 / L$	is 3 x 10 ⁻⁷ Ω-m. If the rest calculate the length of y 3 x 10 ⁻⁷	istance wire 2 2 2			
		L = 15.07 m					
	b)	State and explain the balancing condition of Whea Diagram Explanation $I_1 = R_1 + R_2$ $I_2 = R_4 + R_3$ $I_2 = R_4 + R_3$ $I_2 = R_4 + R_3$ $I_2 = R_4 + R_3$ $I_3 = R_4 + R_3$ $I_4 = R_4 + R_4$ In this network R_1, R_2, R_3 are kept constant and R_4 is s zero deflection. When galvanometer shows zero defle balanced.	tstone's network.	ter shows e			

SUMMER- 18 EXAMINATION						
Subje	ct Nan	ne: Applied Physics <u>Model Answer</u> Subject Code: 172	10			
Q. No.	Sub Q. N.	Answer	Marking Scheme			
2.	b) c)	Network is balanced means points B and D are at equal potential. This is possible if, (P.D. across AB) =(P.D. across AD) and (P.D. across BC)= (P.D. across DC) Using Ohm's law, I ₁ R ₁ = I ₂ R ₄ (1) I ₁ R ₂ = I ₂ R ₃ (2) Dividing equation (1) by (2) we get $\frac{I_1R_1}{I_1R_2} = \frac{I_2R_4}{I_2R_3}$ $\frac{R_1}{R_2} = \frac{R_4}{R_3}$ This is the balancing condition of Wheatstone's network.				
		Well Labeled Diagram Explanation & Substitution Final Expression	4 2 1 1			

SUMMER- 18 EXAMINATION						
Subje	ect Nan	ne: Applied Physics	Model Answer	Subject Code:	1721	0
Q. No.	Sub Q. N.		Answer			Marking Scheme
2.	c)	Resultant Capacitan	ce when three Condensers are	Connected in parallel :		
		Consider three conder with potential differe potential difference each condenser gets capacitor	nsers C_1 , C_2 & C_3 are connected in nce of V volt. When condenser a across each condenser remains divided into three parts Q_1 , Q_2	in parallel between two are connected in paralle s the same V and the & Q ₃ which depends or	points AB I the total charge on a values of	
		Q =	$Q_1 + Q_2 + Q_3$ (1)			
		But	$C = \frac{Q}{V}$			
		Therefore,	Q = CV			
		Charge on C_1 is	$Q_1 = C_1 V$			
		Charge on C_2 is	$Q_2 = C_2 V$			
		Charge on C_3 is	$Q_3 = C_3 V$			
		Substituting above va	lues in equation (1)			
		CV =	$C_1V + C_2V + C_3V$			
		CV =	$= V(C_1 + C_2 + C_3)$			
		C =	$C_1 + C_2 + C_3$			
	d)	Area of parallel plat mm. Dielectric const	te condenser is 1.6 m ² and distant tant of the material between the	nce between the two pla e two plates is 3.Find ca	ates is 1.2 pacitance	4
		of the condenser.(ε_0	$= 8.85 \times 10^{-12}$)			2
		Answer with unit				2
		Given:-				
		$A = 1.6 \text{ m}^2$ d = 1.2 mm = 1.2x10 ⁻³	³ m			

SUMMER-18 EXAMINATION 17210 Subject Code: **Subject Name: Applied Physics Model Answer** Sub Marking Q. Answer No. Q. Scheme N. $\epsilon_0 = 8.85 \times 10^{-12}$ 2. **d**) k = 3Required: C=? $\therefore C = \varepsilon_0 k \frac{A}{d}$ $C = 8.85 \times 10^{-12} \times 3 \times 1.6 / 1.2 \times 10^{-3}$ $C = 3.54 \times 10^{-8} F$ **Distinguish between P-type and N-type semiconductor.** e) 4 Any four points 4 Sr. **N- type Semiconductor P- type Semiconductor** No When small amount of When small amount of trivalent 1 pentavalent impurity is added to impurity is added to a pure a pure semiconductor is called semiconductor is called P-type N-type semiconductor semiconductor Impurity is used for doping is Impurity is used for doping is 2 arsenic, antimony, phosphorus gallium, indium, boron, aluminium It is called donor impurity 3 It is called acceptor impurity 4 There are excess of electrons There are shortage of electrons 5 The electrons are majority The holes are majority carriers carriers

SUMMER- 18 EXAMINATION						
Subje	ct Nan	ne: Applied Physics <u>Model Answer</u> Subject Code: 1721	0			
Q. No.	Sub Q. N.	Answer	Marking Scheme			
No. 2.	Q. N. f)	Plot and explain I -V characteristics of a PN junction diode. Diagram Explanation Breakdown voltage V Va(V) Va(V) Va(V) Va(V) Reverse Blas In forward bias mode P-type of semiconductor is connected to positive terminal and N- type of semiconductor is connected to negative terminal of battery. As voltage increases current starts flowing through diode. When the voltage applied across PN junction reaches to 0.7V (Si) the current flows through the diode i.e. the diode start conducting current as shown above. In reverse bias mode P-type of semiconductor is connected to negative terminal and N- type of semiconductor is connected to positive terminal and N- type of semiconductor is connected to positive terminal of battery. As voltage increases current as shown above. In reverse bias mode P-type of semiconductor is connected to negative terminal and N- type of semiconductor is connected to positive terminal of battery. In this current produced is due to minority charge carriers. This current is called leakage current. As the reverse biased voltage is increased at a critical voltage V _{BR} , the reverse current through the diode increases sharply. Most of the diodes have breakdown voltage more than 50 V.	4 2 2			

SUMMER-18 EXAMINATION 17210 Subject Code: **Subject Name: Applied Physics Model Answer** Sub Marking Answer Q. Q. Scheme N. No. 3. Attempt any FOUR of the following: 16 a) Draw the energy band diagram for conductor, semiconductor & insulator. 4 **Three Diagrams with label** 4 **Conductor:** Conduction band Overlapping Band energy Valence band Semiconductor: Conduction band Eg of 1eV Energy Valence band **Insulator:** Conduction band E_g > 5.5 eV Energy Valence band

SUMMER-18 EXAMINATION 17210 Subject Code: **Subject Name: Applied Physics Model Answer** Q. Sub Marking Answer No. Q. Scheme N. The threshold frequency of a metal is 1.2×10^{15} Hz. If the light of frequency 1.5x 3. b) 4 10¹⁵ Hz is made incident on the metal plate, Calculate the maximum K.E. of the ejected photoelectron. ($h = 6.625 \times 10^{-34} \text{ J-sec}$) 2 Formula and Substitution 2 Answer with unit Given: **Required:** $v_0 = 1.2 \text{ x } 10^{15} \text{ Hz}$ $v = 1.5 \times 10^{15} \text{ Hz}$ E = ? $h = 6.625 \text{ x} 10^{-34} \text{ Js}$ $$\begin{split} E &= h \left(\upsilon - \upsilon_0\right) \\ &= 6.625 \ x 10^{-34} \left(1.5 x \ 10^{15} - 1.2 \ x \ 10^{15} \right) \\ &= \textbf{1.995} \ \textbf{x} \ \textbf{10^{-19}} \ \textbf{J} \\ &= \textbf{1.24} \ \textbf{eV} \end{split}$$ State four properties of X-rays. 4 c) **Any four Properties** 4 They are electromagnetic waves of very short wavelength i. They travel with speed of light. ii. They affect photographic plates. iii. They produce fluorescence in many substances. iv. They can be reflected or refracted under certain conditions. v. They are not deflected by magnetic or electric field. vi. They have high penetrating power. vii. They produce photoelectric effect. viii. They are invisible to eyes. ix. X-ray kill some form of animal cell x. d) 4 Explain with the help of neat & labeled diagram the working of He-Ne laser. 1 Each diagram 1 construction 1 working Quertz Tube Mbduns of He-Ne Ga

SUMMER-18 EXAMINATION

, unje	et i tall			
Q. No.	Sub Q. N.	Answer		Marking Scheme
3.	d)	 Construction : It consists of a quartz tube of about 80 cm length and 1.5 cm diameter. The tube is filled with mixture of helium (He) and neon (Ne) gas. The mixture consists of 90% helium atoms and 10% neon atoms. At one end perfect reflector is fixed and at the other end partial reflector is fixed Working : Working : Working content of helium are close to some excited levels of neon. Therefore excited helium atoms collide with excited atoms of neon and transfer the energy atoms. The actual lasing action is done by neon atoms. The neon atoms with extra from helium atom are forced to jump in ground state by emitting a photon. This provides the state of the st	ed. excited. ore these y to neon ra energy produces	
		 the LASER light. The newly emitted photon triggers the next neon atom and it the radiations. (3) Thus coherent, monochromatic, unidirectional LASER is produced by He LASER The energy level diagram of He-Ne LASER is shown below. 	increases e-Ne gas	
		He atom Ne atom Metastable States		
		H		
		Image: mail of the second secon		
		H ₁ N ₁		

			SUMMER- 18 EXAMINA	ATION			I
Subje	ct Nam	e: Applied Physics	Model Answer	Subject Code:	17210		
Q. No.	Sub Q. N.		Answer			Mark Scher	cing me
3.	e) i)	State Einstein photo – elec symbol. Equation Symbols $E = h (v - v_0)$ E = Kinetic energy, h = Pla $v_0 = Threshold frequency,$ c = velocity of light	ctric equation of photo – ele $h(t) = h c(1/\lambda - 1/\lambda_0)$ ink's constant, $v =$ Frequency $\lambda =$ wavelength of incident	ectric emission with n y of incident light , light , λ_0 = Threshold v	neaning of	2 1 1 1	
	ii)	State any two Engg. applie Each application. Application of X-rays: i)X- rays are used to detect ii) X- rays are used to detect quality control. iii) X – rays are used to detect iv) X- rays are used to detect v) X- rays are used to detect vi) X- rays are used to detect vii) X- ray radiography is u	cation of X-Rays. the cracks in the body of aerect the manufacturing defects i ect flows or cracks in metal j nguish real diamond from du et smuggling gold at airport a et cracks in the wall. used to check the quality of w	oplane . in rubber tyres or tenni obs uplicate one. nd docks (ship) yard. relded joints.	s ball in	2	
	f)	 State any four application Each application. Applications of nonmaterial 1. Data storage system – Son substrate to form the chi 2. Use of nonmaterial in endine fuel are depleting day by data 3. Application in automobican be produced by using nuniform layer of coating on 4. Application in consume cosmetics, domestic's produced to comfort of cotton clothes. 	is of nanomaterial in engine ial in engineering field: Semiconductor material in the p. nergy sector – The conventi- ay, thus use of alternative ene biles- High mechanical streng anotechnology. Nano paintin the vehicle body. er goods – Nanotechnology h ucts and textiles. Using nano	ering field. e form of film can be d onal energy sources likergy source is inevitabl gth material but light in ng materials can be use has wide applications in material fiber, one can	eposited ke coal, e. h weight d to get	4	
		Note: Any other relevant	application.				