Subject Name: Applied Physics SUMMER- 18 EXAMINATION
Model Answer

| $\begin{array}{l}\text { Q. } \\ \text { No. }\end{array}$ | $\begin{array}{l}\text { Sub } \\ \text { Q. } \\ \text { N. }\end{array}$ | | Answer |
| :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Marking \\

Scheme\end{array}\right]\)| Attempt any NINE of the following: |
| :--- |
| 1 |
| a) |
| State Ohm's law with mathematical equation. |
| Statement
 Mathematical equation
 b)
 Ohm's law: If physical state of the conductor remains same, the potential difference
 between two ends of the conductor is directly proportional to the current flowing through
 it.
 Explain the principle of potentiometer.
 Principle and explanation
 The fall of potential is directly proportional to the length of conducting wire. |

SUMMER- 18 EXAMINATION

Subject Name: Applied Physics
Model Answer Subject Code :
17210

SUMMER- 18 EXAMINATION
Subject Name: Applied Physics
Model Answer
Subject Code: 17210

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \mathrm{Q} . \\ & \mathrm{N} . \end{aligned}$	Answer	Marking Scheme
1	f)	State the values or range of values of energy band for conductor, semiconductor \& insulator. Three values Conductor : no gap Semiconductor : 1 eV Insulator: $\quad 5.5 \mathrm{eV}$	$\begin{aligned} & \mathbf{2} \\ & 2 \end{aligned}$
	g)	State Planck's Hypothesis Statement Planck's Hypothesis: Planck's proposed the quantum theory for explanation of energy distribution in a black body radiation. According to this theory energy is not emitted or absorbed continuously but in a discrete units or packets called photon or quanta. The photons are electrically neutral and traveled with speed of light i.e. the radiation considers as shower of photons. The energy E associated with photon is directly proportional to frequency of light.	$\begin{aligned} & \mathbf{2} \\ & 2 \end{aligned}$
	h)	An X-ray tube is operated at 50 kV . What will be the wavelength of x -rays emitted in it? Formula with substitution Answer with unit Given : $\begin{array}{ll} \begin{array}{l} \mathrm{V}=50 \mathrm{kV} \end{array} & =50 \times 10^{3} \mathrm{~V} \\ \lambda=? \\ & \lambda \\ & =12400 / \mathrm{V} \\ & =12400 / 50 \times 10^{3} \\ \boldsymbol{\lambda} & =\mathbf{0 . 2 4 8} \mathbf{A}^{\mathbf{0}}=\mathbf{0 . 2 4 8} \mathbf{\times 1 \mathbf { 1 0 } ^ { - \mathbf { 1 0 } } \mathbf { m }} \end{array}$	$\begin{aligned} & \mathbf{2} \\ & 1 \\ & 1 \end{aligned}$
	i)	State two points of differentiation between spontaneous emission and stimulated emission. Two points	$\begin{aligned} & \mathbf{2} \\ & 2 \end{aligned}$

SUMMER- 18 EXAMINATION
Subject Name: Applied Physics
Model Answer
Subject Code:
17210

SUMMER- 18 EXAMINATION

Subject Name: Applied Physics Model Answer Subject Code:			17210
$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l} \hline \text { Sub } \\ \text { Q. } \\ \text { N. } \end{array}$	Answer	Marking Scheme
1	k)	Define nanometer \& nanoparticle. Each definition Nanometer: A nanometer is a billionth of a meter. Nanoparticle: Nanoparticles are particles whose dimensions(any one or many) are between 1 and 100 nanometres (nm). State two properties of nanoparticle. Any two properties i. Mechanical property. ii. Structural property. iii. Thermal property. iv. Electric property. v. Magnetic property. vi. Optical property.	$\begin{aligned} & \mathbf{2} \\ & 1 \end{aligned}$ $\begin{aligned} & \mathbf{2} \\ & 2 \end{aligned}$

SUMMER- 18 EXAMINATION

SUMMER- 18 EXAMINATION

	SUMMER- 18 EXAMINATION		
Subject Name: Applied Physics	Model Answer	Subject Code:	17210

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{array}{\|l} \hline \text { Sub } \\ \text { Q. } \\ \text { N. } \end{array}$	Answer	Marking Scheme
2.	b)	Network is balanced means points B and D are at equal potential. This is possible if , (P.D. across AB) $=$ (P.D. across AD) and (P.D. across BC) $=$ (P.D. across DC) Using Ohm's law, $\begin{align*} & \mathrm{I}_{1} \mathrm{R}_{1}=\mathrm{I}_{2} \mathrm{R}_{4} \tag{1}\\ & \mathrm{I}_{1} \mathrm{R}_{2}=\mathrm{I}_{2} \mathrm{R}_{3} \tag{2} \end{align*}$ Dividing equation (1) by (2) we get $\begin{aligned} \frac{\mathrm{I}_{1} R_{1}}{I_{1} R_{2}} & =\frac{I_{2} R_{4}}{I_{2} R_{3}} \\ \frac{R_{1}}{R_{2}} & =\frac{R_{4}}{R_{3}} \end{aligned}$ This is the balancing condition of Wheatstone's network. Obtain the expression for equivalent capacitance of capacitors are connected in parallel combination. Well Labeled Diagram Explanation \& Substitution Final Expression	$\begin{aligned} & 4 \\ & 2 \\ & 1 \\ & 1 \end{aligned}$

SUMMER- 18 EXAMINATION
Subject Name: Applied Physics
Model Answer
Subject Code:
17210

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \text { N. } \end{aligned}$	Answer	Marking Scheme
2.	c)	Resultant Capacitance when three Condensers are Connected in parallel : Consider three condensers $\mathrm{C}_{1}, \mathrm{C}_{2} \& \mathrm{C}_{3}$ are connected in parallel between two points AB with potential difference of V volt. When condenser are connected in parallel the total potential difference across each condenser remains the same V and the charge on each condenser gets divided into three parts $Q_{1}, Q_{2} \& Q_{3}$ which depends on values of capacitor $\begin{equation*} \mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3} \tag{1} \end{equation*}$ But $C=\frac{Q}{V}$ Therefore, $\mathrm{Q}=\mathrm{CV}$ Charge on C_{1} is $\mathrm{Q}_{1}=\mathrm{C}_{1} \mathrm{~V}$ Charge on C_{2} is $\mathrm{Q}_{2}=\mathrm{C}_{2} \mathrm{~V}$ Charge on C_{3} is $\quad \mathrm{Q}_{3}=\mathrm{C}_{3} \mathrm{~V}$ Substituting above values in equation (1) $\begin{aligned} & \mathrm{CV}=\mathrm{C}_{1} \mathrm{~V}+\mathrm{C}_{2} \mathrm{~V}+\mathrm{C}_{3} \mathrm{~V} \\ & \mathrm{CV}=\mathrm{V}\left(\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}\right) \\ & \mathrm{C}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \end{aligned}$ Area of parallel plate condenser is $1.6 \mathbf{m}^{\mathbf{2}}$ and distance between the two plates is $\mathbf{1 . 2}$ mm . Dielectric constant of the material between the two plates is 3.Find capacitance of the condenser. ($\varepsilon_{0}=8.85 \times 10^{-12}$) Formula and substitution Answer with unit Given:- $\begin{aligned} & \mathrm{A}=1.6 \mathrm{~m}^{2} \\ & \mathrm{~d}=1.2 \mathrm{~mm}=1.2 \times 10^{-3} \mathrm{~m} \end{aligned}$	4 2 2

SUMMER- 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code:
17210

SUMMER- 18 EXAMINATION

Subject Code:
17210

Q. No.	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \text { N. } \end{aligned}$	Answer	Marking Scheme
2.	f)	Plot and explain I -V characteristics of a PN junction diode. Diagram Explanation In forward bias mode P-type of semiconductor is connected to positive terminal and N type of semiconductor is connected to negative terminal of battery. As voltage increases current starts flowing through diode. When the voltage applied across PN junction reaches to $0.7 \mathrm{~V}(\mathrm{Si})$ the current flows through the diode i.e. the diode start conducting current as shown above. In reverse bias mode P-type of semiconductor is connected to negative terminal and N type of semiconductor is connected to positive terminal of battery. In this current produced is due to minority charge carriers. This current is called leakage current. As the reverse biased voltage is increased at a critical voltage V_{BR}, the reverse current through the diode increases sharply. Most of the diodes have breakdown voltage more than 50 V .	$\begin{aligned} & \hline 4 \\ & 2 \\ & 2 \end{aligned}$

SUMMER- 18 EXAMINATION

Subject Name: Applied Physics
Model Answer
Subject Code:
17210

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. } \\ & \text { N. } \end{aligned}$	Answer	Marking Scheme
3.	a)	Attempt any FOUR of the following: Draw the energy band diagram for conductor , semiconductor \& insulator. Three Diagrams with label Conductor: Semiconductor: Insulator:	$\begin{aligned} & \hline \mathbf{1 6} \\ & 4 \\ & 4 \end{aligned}$

SUMMER- 18 EXAMINATION
Subject Name: Applied Physics
Model Answer
Subject Code:
17210

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{gathered}
\text { Q. } \\
\text { No. }
\end{gathered}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q. } \\
& \text { N. }
\end{aligned}
$$ \& Answer \& Marking Scheme

\hline 3. \& b)

c)

d) \& | The threshold frequency of a metal is $1.2 \times 10^{15} \mathrm{~Hz}$. If the light of frequency 1.5 x $10^{15} \mathrm{~Hz}$ is made incident on the metal plate, Calculate the maximum K.E. of the ejected photoelectron. ($\mathrm{h}=6.625 \times 10^{-34} \mathrm{~J}$-sec) |
| :--- |
| Formula and Substitution |
| Answer with unit |
| Given: |
| Required: |
| State four properties of X-rays. |
| Any four Properties |
| i. They are electromagnetic waves of very short wavelength |
| ii. They travel with speed of light. |
| iii. They affect photographic plates. |
| iv. They produce fluorescence in many substances. |
| v. They can be reflected or refracted under certain conditions. |
| vi. They are not deflected by magnetic or electric field. |
| vii. They have high penetrating power. |
| viii. They produce photoelectric effect. |
| ix. They are invisible to eyes. |
| x. X-ray kill some form of animal cell |
| Explain with the help of neat \& labeled diagram the working of He-Ne laser. |
| Each diagram |
| construction working | \& \[

$$
\begin{aligned}
& 2 \\
& 2
\end{aligned}
$$
\]

\hline
\end{tabular}

SUMMER- 18 EXAMINATION

Model Answer
Subject Code:
17210

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. } \\ & \text { N. } \end{aligned}$	Answer	Marking Scheme
3.	d)	Construction : 1. It consists of a quartz tube of about 80 cm length and 1.5 cm diameter. 2. The tube is filled with mixture of helium (He) and neon (Ne) gas. 3. The mixture consists of 90% helium atoms and 10% neon atoms. 4. At one end perfect reflector is fixed and at the other end partial reflector is fixed. Working : (1)When electric discharge is produced in the tube, He and Ne gas atoms are excited. Some excited levels of helium are close to some excited levels of neon. Therefore these excited helium atoms collide with excited atoms of neon and transfer the energy to neon atoms. (2) The actual lasing action is done by neon atoms. The neon atoms with extra energy from helium atom are forced to jump in ground state by emitting a photon. This produces the LASER light. The newly emitted photon triggers the next neon atom and increases the radiations. (3) Thus coherent, monochromatic, unidirectional LASER is produced by $\mathrm{He}-\mathrm{Ne}$ gas LASER The energy level diagram of He-Ne LASER is shown below.	

	SUMMER- 18 EXAMINATION	
Subject Name: Applied Physics	$\underline{\text { Model Answer }} \quad$	Subject Code:

$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \hline \text { Sub } \\ & \text { Q. } \\ & \text { N. } \end{aligned}$	Answer	Marking Scheme
3.	e) i)	State Einstein photo - electric equation of photo - electric emission with meaning of symbol. Equation Symbols $\mathrm{E}=\mathrm{h}\left(v-v_{0}\right)=\mathrm{hc}\left(1 / \lambda-1 / \lambda_{0}\right)$ $\mathrm{E}=$ Kinetic energy, $\mathrm{h}=$ Plank's constant,$v=$ Frequency of incident light , $v_{0}=$ Threshold frequency,$\lambda=$ wavelength of incident light,$\lambda_{0}=$ Threshold wavelength , $\mathrm{c}=$ velocity of light. State any two Engg. application of X-Rays. Each application. Application of X-rays: i) X - rays are used to detect the cracks in the body of aeroplane . ii) X - rays are used to detect the manufacturing defects in rubber tyres or tennis ball in quality control. iii) X - rays are used to detect flows or cracks in metal jobs iv) X- rays are used to distinguish real diamond from duplicate one. v) X- rays are used to detect smuggling gold at airport and docks (ship) yard. vi) X-rays are used to detect cracks in the wall. vii) X - ray radiography is used to check the quality of welded joints. State any four applications of nanomaterial in engineering field. Each application. Applications of nonmaterial in engineering field: 1. Data storage system - Semiconductor material in the form of film can be deposited on substrate to form the chip. 2. Use of nonmaterial in energy sector - The conventional energy sources like coal, fuel are depleting day by day, thus use of alternative energy source is inevitable. 3. Application in automobiles- High mechanical strength material but light in weight can be produced by using nanotechnology. Nano painting materials can be used to get uniform layer of coating on the vehicle body. 4. Application in consumer goods - Nanotechnology has wide applications in cosmetics, domestic's products and textiles. Using nanomaterial fiber, one can get comfort of cotton clothes. Note: Any other relevant application.	2

