Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q. No.	Sub Q.N.	Answers	Marking Scheme
$\mathbf{1 .}$	a)	Attempt any NINE of the following : Define i) Angular Displacement ii) Angular Velocity Each definition Angular displacement: - It is the angle through which the radius vector turns when the particle in circular motion moves from one position to other. OR It is defined as the angle subtended by the radius vector when a particle in circular motion moves from one position to other. Angular velocity: - The rate of change of angular displacement with respect to time is called as angular velocity. b) C) State Newton's second law of motion. Newton's second law of motion: The rate of change of momentum of a body is proportional to the applied force and takes place in the direction of the force. Define ultrasonic waves and infrasonic waves. Each definition Ultrasonic waves:- The sound waves having frequency more than 20kHz are called as ultrasonic waves. Infrasonic waves:- :- The sound waves having frequency less than 20Hz are called as ultrasonic waves.	$\mathbf{1 8}$

SUMMER - 18 EXAMINATION

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Q. } \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { Sub } \\
& \text { Q. N. }
\end{aligned}
$$ \& Answers \& Marking Scheme

\hline 1. \& d)
e)

f)

g)
g)

h) \& \begin{tabular}{l}
If the crack is on the surface of job, then which method is used?

If the crack is on the surface of job, then Liquid Penetrant Testing (LPT) method is used.

"X-rays are specifically used to detect the position of bullet inside human body". Give reason.

The penetration power of x-rays through muscle, bone and bullet is different. Due to this we can find the exact position of bullet inside the human body.

State inverse square law of photometry. Write its mathematical formula.

Law

Formula

Statement: "The intensity of illumination of a surface due to a point source of light is inversely proportional to the square of distance of the surface from the source."

E $\propto 1 / \mathrm{r}^{2}$

Define photoelectric effect.

Photoelectric effect:- When light of suitable frequency is incident on metallic surface, electrons are emitted from the metal surface is called photoelectric effect.

State any two engineering applications of X-rays.

Each application

1) X- rays are used to detect the cracks in the body of aero plane or motor car.

2) X- rays are used to detect the manufacturing defects in rubber tyres or tennis ball in quality control.

3) X - rays are used to detect flows or cracks in metal jobs.

4) X- rays are used to distinguish real diamond from duplicate one.

5) X- rays are used to detect smuggling gold at airport and docks (ship) yard.

6) X-rays are used to detect cracks in the wall.

7) X- ray radiography is used to check the quality of welded joints.

Any Relevant application

 \&

2

2

2

\hline 2

1

1

\hline
\end{tabular}

\hline
\end{tabular}

SUMMER - 18 EXAMINATION

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers		Marking Scheme
1.	i)	Define kinetic energy. State its equation \& SI unit. Definition Equation and SI unit Kinetic energy:- The energy possed by the body due to its motion is called kinetic energy. $\mathrm{E}=1 / 2 \mathrm{mv}^{2}$ S.I.Unit:- Joules State any two factors affecting indoor lighting system. Each factor Factors affecting indoor lighting 1) Efficiency of the source 2) Utilization factor 3) Maintenance factor 4) Space to height ratio 5) Glare effect		2
	k)	The photoelectric work function of a certain metal is 2.5 eV . Calculate its threshold frequency if Planck's constant is $6.625 \times 10^{-34} \mathrm{~J}$-sec. Formula \& substitution Answer with unit Given: $\begin{aligned} & \text { Wo }=2.5 \mathrm{eV}=2.5 \times 1.6 \times 10^{-19} \mathrm{~J} \\ & v_{\mathrm{o}}=? \\ & \mathrm{~h}=6.625 \times 10^{-34} \mathrm{~J}-\mathrm{sec} \end{aligned}$ We have, $\begin{aligned} & \mathrm{Wo}=\mathrm{h} v_{\mathrm{o}} \\ & v_{\mathrm{o}}=\mathrm{Wo} / \mathrm{h} \\ & \mathrm{v}_{\mathrm{o}}=2.5 \times 1.6 \times 10^{-19} / 6.625 \times 10^{-34} \\ & \mathbf{v}_{\mathbf{o}}=\mathbf{0 . 6 0 3 7} \times \mathbf{1 0}^{15} \mathbf{H z} . \end{aligned}$		2 1 1
	1)	A ball is thrown with a velocity of $55 \mathrm{~m} / \mathrm{sec}$ making an angle of 38^{0} with the horizontal. Calculate the range covered by the ball. Formula \& substitution Answer with unit Given:		2

SUMMER - 18 EXAMINATION

SUMMER - 18 EXAMINATION

SUMMER - 18 EXAMINATION

SUMMER - 18 EXAMINATION

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
2.	f)	6. Post cleaning: After inspection the surface of the specimen is cleaned \& the specimen can be used for its intended purpose. Attempt any FOUR of the following : State the requirements of good acoustics of building. (any four points) Any four Requirements of good acoustics: 1. The sound produced should be clear \& should be uniformly distributed through out the hall. 2. The sound produced should be heard at all points in the hall sufficiently loudly. 3. The sound produced should not overlap. 4. There should not be focusing of sound. 5. There should not be any dead spot or silence zones in the hall. 6. The reverberation time should have proper value. 7. The echelon effect should be absent. 8. The external sound should not enter the hall. 9. There should be no resonance within the building. Any other relevant requirement. Explain principle, construction and working of Bunsen's photometer. Principle Diagram Construction Working Principle:- It works on the principle of photometry. OR If two source of light of illuminating powers $I_{1} \& I_{2}$ are kept at a distance r_{1} and r_{2} from a screen then the intensities of illumination at a point on the screen due to two source are $\frac{I_{1}}{I_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}$	16 $\begin{aligned} & 4 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$

SUMMER - 18 EXAMINATION

$\begin{aligned} & \mathrm{Q} . \\ & \mathrm{No.} \end{aligned}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	Marking Scheme
3.	b)	Construction- It consists of a white paper called screen with a grease spot at its center. This screen is mounted centrally in a wooden box. The grease spot is easily differentiated from rest of the screen because most of the light transmits through grease spot than the rest of the screen. Two mirrors are adjusted in inclined position on either side of the screen such that both sides of the screen can be seen at a time. The box is provided with two co-axial windows. The box is mounted on a vertical stand of adjustable height. An observer can watch the screen through central window. Working: The two sources of intensity $I_{1} \& I_{2}$ are placed at a distance $r_{1} \& r_{2}$ from the screen respectively. Position of source are adjusted such that image of the grease spot seen in two mirrors is equally bright. Then the luminous intensities of 2 sources can be compared using relation $\frac{I_{1}}{I_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}$ The same procedure is repeated by changing the position of two sources. State any four characteristics of photoelectric effect. Any four characteristics 1) A metal emits electrons only when the incident (light) radiation has frequency greater than critical frequency $\left(v_{0}\right)$ called threshold frequency. Threshold frequency is different for different metals. 2) Photoelectric current is directly proportional to intensity of light and independent of frequency. 3) The velocity of photoelectron is directly proportional to the frequency of light. 4) For a given metal surface, stopping potential is directly proportional to the frequency and is not dependent on intensity light. 5) The rate of emission of photoelectrons from the photocathode is independent of its temperature i.e. photoelectric emission is different from thermionic emission. 6) The process is instantaneous. i) The energy of X-ray spectrum is 4.4 eV . Find its wavelength. (Given : Planck's constant, $h=6.63 \times 10^{-34} \mathrm{~J}$-sec; speed of light, $c=3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$) Formula \& substitution Answer with unit Given: $\mathrm{E}=4.4 \mathrm{eV}=4.4 \times 1.6 \times 10^{-19} \mathrm{~J}, \lambda=$? $\begin{aligned} & \mathrm{E}=\mathrm{hv}=\mathrm{hc} / \boldsymbol{\lambda} \\ & \boldsymbol{\lambda}=\mathrm{hc} / \mathrm{E}=\left(6.63 \times 10^{-34}\right) \times\left(3 \times 10^{8}\right) /\left(4.4 \times 1.6 \times 10^{-19}\right) \\ & \boldsymbol{\lambda}=\mathbf{2 . 8 2 5} \times \mathbf{1 0}^{-7} \mathbf{~ m .} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$ 2 1

SUMMER - 18 EXAMINATION

\begin{tabular}{|c|c|c|c|}
\hline $$
\begin{aligned}
& \text { Q. } \\
& \text { No. }
\end{aligned}
$$ \& $$
\begin{aligned}
& \hline \text { Sub } \\
& \text { Q. N. }
\end{aligned}
$$ \& Answers \& Marking Scheme

\hline 3. \& d)

e) \& \begin{tabular}{l}
ii) Determine the operating voltage of an X-ray tube which emits X-rays of wavelength $0.38 \mathrm{~A}^{0}$.

Formula \& substitution

Answer with unit
$$
\begin{array}{ll}
\text { Given } & \lambda=0.38 \mathrm{~A}^{0}, \mathrm{~V}=? \\
\lambda & =12400 / \mathrm{V} \\
& \mathrm{~V}=12400 / \lambda \\
& \mathrm{V}=\mathbf{3 2 6 3 1 . 5} \text { volts. }
\end{array}
$$

Define echo, reverberation. State sabine's formula for reverberation time. Explain the terms used in it.

Each Definition

Formula with meaning

Echo: The echo is defined as the same sound heard again after an interval of $1 / 10$ th second due to reflection of the original sound from a surface which is at a distance greater than 16.5 m from the source of sound.

Reverberation: It is the persistence of sound due to multiple reflections in a hall even after the source of sound is cut-off.

Sabine's Formula:
$$
\begin{aligned}
t & =\frac{0.164 V}{A} \\
t & =\frac{0.164 V}{\Sigma a S}
\end{aligned}
$$

Where,

$\mathrm{t}=$ Reverberation time.

$\mathrm{V}=$ volume.

A = Total absorption.

$\mathrm{a}=$ Absorption coefficient.

S = Surface area.

 \&

2

1

1

4

1
2
\end{tabular}

\hline
\end{tabular}

SUMMER - 18 EXAMINATION

SUMMER - 18 EXAMINATION			Marking Scheme
	bject	Name: Applied Physics Model Answer Subject Code: 17207	
$\begin{array}{\|l\|} \hline \text { Q. } \\ \text { No. } \end{array}$	$\begin{aligned} & \text { Sub } \\ & \text { Q. N. } \end{aligned}$	Answers	
3.	f)	i) A stone is released with zero velocity from the top of the tower. If the stone reaches ground in 5 seconds, find the height of the tower. Formula \& substitution Answer with unit Given: $\mathrm{u}=0, \quad \mathrm{t}=5 \mathrm{sec}, \quad$ Height $=$ distance $=$? We have, $s=u t+1 / 2 g t^{2}$ $\begin{aligned} & \mathrm{s}=(0 \times 5)+1 / 2(9.8) \times(5)^{2} \\ & \mathbf{s}=\mathbf{1 2 2 . 5} \mathbf{~ m} . \end{aligned}$ ii) A body moves along a circular path of radius 60 cm at $\mathbf{3}$ revolutions / sec. Calculate its linear speed. Formula \& substitution Answer with unit $\text { Given: } \begin{aligned} \mathrm{r} & =60 \mathrm{~cm}=0.6 \mathrm{~m}, \mathrm{n}=3 \\ \mathrm{v} & =? \\ \mathrm{v} & =\mathrm{r} \omega=\mathrm{r}(2 \pi \mathrm{n}) \\ \mathrm{v} & =0.6 \times 2 \times 3.14 \times 3 \\ \mathbf{v} & =\mathbf{1 1 . 3 1} \mathbf{~ m} / \mathbf{s} . \end{aligned}$	2 1 1 $\begin{aligned} & 2 \\ & 1 \\ & 1 \end{aligned}$

