SUMMER - 16 EXAMINATION

Subject Code: 17207

Que. No.	Sub. Que.	Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept.	Marks	Total

SUMMER - 16 EXAMINATION
Subject Code: 17207
Model Answer
Page No: 2/13

SUMMER - 16 EXAMINATION

Subject Code: 17207
Model Answer
Page No:3/ 13

SUMMER - 16 EXAMINATION
Model Answer

Page No: 4/13

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
1)	h)	State the principle of photometry. Principle Principle of photometry:- If two source of light of illuminating powers $I_{1} \& I_{2}$ are kept at a distance r_{1} and r_{2} from a screen then the intensities of illumination at a point on the screen due to two source are as below. $\frac{I_{1}}{I_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}$	2	2
	i)	Define threshold frequency and stopping potential. Each definition Threshold frequency: It is the minimum frequency of incident light at which emission just begins.	1	2
	j)	Stoping potential:- It is the negative potential at which photoelectric current becomes zero. State the range of wavelength of X-ray. Range Wavelength of X-ray :- 10^{-10} to $10^{-11} \mathrm{~m}$.	2	2
	k)	State photoelectric effect.		
			2	2
		Photoelectric effect:- When light of suitable frequency is incident on metallic surface, electrons are emitted from the metal surface is called photoelectric effect.		
	1)	State Newton's third law of motion with equation. Statement Equation Newton's third law of motion: For every action there is an equal reaction.	$\begin{array}{\|l} 1 \\ 1 \end{array}$	2

SUMMER - 16 EXAMINATION
Subject Code: 17207
Model Answer
Page No: 5/13

SUMMER - 16 EXAMINATION

SUMMER - 16 EXAMINATION

Model Answer
Page No: 7/13
Subject Code: 17207
—

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
2)	d)	$\begin{aligned} & a=\frac{0.164 \times 5000}{3 \times 3500} \\ & \mathbf{a}=\mathbf{0 . 0 7 8 0} \text { O.W.U. } \end{aligned}$ Explain the working of Bunsen's photometer with help of a neat ray diagram. Principle Diagram Construction Working Principle:- It works on the principle of photometry. OR If two source of light of illuminating powers $\mathrm{I}_{1} \& \mathrm{I}_{2}$ are kept at a distance r_{1} and r_{2} from a screen then the intensities of illumination at a point on the screen due to two source are $\frac{I_{1}}{I_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}$ Construction- It consists of a white paper called screen with a grease spot at its center. This screen is mounted centrally in a wooden box. The grease spot is easily differentiated from rest of the screen because most of the light transmits through grease spot than the rest of the screen. Two mirrors are adjusted in inclined position on either side of the screen such that both sides of the screen can be seen at a time. The box is provided with two co-axial windows. The box is mounted on a vertical stand of adjustable height. An observer can watch the screen through central window.	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	4

SUMMER - 15 EXAMINATION

Subject Code: 17207
Model Answer
Page No: 8/13

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Stepwise Solution \& Marks \& Total Marks

\hline 2) \& e)

f) \& | Working: |
| :--- |
| The two sources of intensity $\mathrm{I}_{1} \& \mathrm{I}_{2}$ are placed at a distance $\mathrm{r}_{1} \&$ r_{2} from the screen respectively. |
| Position of source are adjusted such that image of the grease spot seen in two mirrors is equally bright. |
| Then the luminous intensities of 2 sources can be compared using relation $\frac{I_{1}}{I_{2}}=\frac{r_{1}^{2}}{r_{2}^{2}}$ |
| The same procedure is repeated by changing the position of two sources. |
| Find minimum wavelength and maximum frequency of X-ray production by an X-ray tube work on 50 kV . |
| [Given $h=6.62 \times 10^{-34} \mathrm{Js}, \mathrm{e}=1.6 \times 10^{-19} \mathrm{C}$ and $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$) |
| Each formula |
| Each answer with unit |
| Given $\begin{aligned} & \mathrm{V}=50 \mathrm{kV}=50 \times 10^{3} \mathrm{~V} \\ & \mathrm{~h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s} \\ & \mathrm{e}=1.6 \times 10^{-19} \mathrm{C} \\ & \mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s} \end{aligned}$ |
| We have, $\begin{aligned} & \lambda_{\text {min }}=\frac{h c}{e V} \\ & \lambda_{\text {min }}=\frac{\left(6.62 \times 10^{-34}\right)\left(3 \times 10^{8}\right)}{\left(1.6 \times 10^{-19}\right)\left(50 \times 10^{3}\right)} \\ & \lambda_{\text {min }}=\mathbf{0 . 2 4 8} \mathbf{~ x ~ 1 0} \\ & \lambda_{\text {min }}=\mathbf{0 . 2 4 8} \mathbf{~ m} . \\ & f=\frac{c}{\lambda_{\text {min }}} \\ & f=\frac{\left(3 \times 10^{8}\right)}{\left(0.248 \times 10^{-10}\right)} \\ & f=\mathbf{1 2 0} \mathbf{x 1 0 1 7} \mathbf{H z} \end{aligned}$ | \& \[

$$
\begin{aligned}
& 1 \\
& 1
\end{aligned}
$$
\] \& 4

\hline
\end{tabular}

SUMMER - 15 EXAMINATION

Model Answer
Page No: 9/13
M

SUMMER - 15 EXAMINATION
Model Answer
Page No: 10/13

SUMMER - 15 EXAMINATION
Subject Code: 17207
Model Answer
Page No: 11/13

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	c)	4.Application of developer: A thin layer of developer is applied over the surface. The role of developer is to pull the trapped penetrant out of the crack this provides good visibility of crack. 5.Inspection \& evalution of defects: Surface of the specimen is seen under white light or ultraviolet or laser light. The crack can be visualized under light. 6. Post cleaning: After inspection the surface of the specimen is cleaned \& the specimen can be used for its intended purpose. A lamp of $\mathbf{3 0 0}$ candela is at a distance of $\mathbf{1 0} \mathbf{m}$ from a wall. Find the illuminance of the wall. Formula with substitution Answer with unit Given $\begin{aligned} & \mathrm{P}=300 \text { candela } \\ & \mathrm{r}=10 \mathrm{~m} \\ & \mathrm{I}=? \end{aligned}$ We have $\begin{aligned} & \mathrm{I}=\mathrm{P} / \mathrm{r}^{2} \\ & =300 /(10)^{2} \\ & \mathbf{I}=\mathbf{3} \mathbf{C d} / \mathbf{m}^{2} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	4

SUMMER - 15 EXAMINATION
Model Answer
Page No: 12/13
Subject Code: 17207
M

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	e)	Derive Einstein photoelectric equation. Einstein's Photoelectric Equation When radiations of suitable frequency is allowed to incident on surface of the metal plate, electrons are emmited from the surface atoms. The amount of energy of incident radiations (E) is used in 2 ways 1.To knock out the electron from the surface atom or make it free $=\left(\mathbf{W}_{\mathbf{0}}\right)$ 2.Remaining part of energy of incident photon is given to electron as K.E. $\begin{gathered} \mathrm{E}=\mathrm{W}_{0}+\mathrm{K} . \mathrm{E} . \\ \text { But } \mathrm{E}=\mathrm{h} v \\ \mathrm{~W}_{0}=\mathrm{h} v_{0} \\ \text { K.E. }=(1 / 2) m v^{2} \\ \mathrm{~h} v=\mathrm{h} v_{0}+(1 / 2) m v^{2} \\ (1 / 2) m v^{2}=\mathrm{h} v-\mathrm{h} v_{0} \\ (1 / 2) m v^{2}=\mathrm{h}\left(v-v_{0}\right) \end{gathered}$	4	4
	f)	Explain the production of X-rays using Coolidge tube with a neat labeled diagram. Diagram Explaination Principle: When fast moving electrons are suddenly stopped then X- rays are produced.	$\begin{aligned} & 2 \\ & 2 \end{aligned}$	4

SUMMER - 15 EXAMINATION
Subject Code: 17207
Model Answer
Page No: 13/13

Que. No.	Sub. Que.	Stepwise Solution	Marks	Total Marks
3)	f)	Working: When the cathode is heated by electric current it produced electron due to thermionic emissions. The beam of electron is then focused on the anode (target). The electrons from cathode are accelerated by applying of high voltage between cathode \& anode using step up transformer. When these fast moving electrons are suddenly stopped by tungsten anode, they lose their kinetic energy and x rays are produced from the target. Some amount of Kinetic energy is converted to large amount of heat. By controlling the filament current, the thermionic emission of electron hence intensity of X- rays can be controlled.		

