

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page 1 of 19

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
 - 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
 - 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
 - 7) For programming language papers, credit may be given to any other program based on equivalent concept.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **2** of **19**

Q No.	Answer	marks	Total marks
1-a	Molecular weight:	1	2
	It is the sum of atomic weights of all elements present in a compound.		
	Equivalent weight :	1	
	Equivalent weight = molecular weight/ valency.		
1-b	Partial Pressure:		2
	Partial pressure of a component gas is the pressure that would be exerted by	1	
	that component gas if it alone was present in the same volume and at the same		
	temperature as the gas mixture.		
	Vapor pressure :		
	It is the pressure exerted by vapor on the surface of liquid at equilibrium	1	
	conditions.		
	OR		
	It is the absolute pressure at which the liquid and its vapour are in equilibrium		
	at a given temperature.		
1-c	$^{0}\text{F}=1.8\ ^{0}\text{C} +32$		2
	$105 = 1.8 * {}^{0}C + 32$		
	$^{0}C = 40.56$	1	
	$^{0}\text{F}=1.8\ ^{0}\text{C} +32$		
	$240 = 1.8 *^{0}C + 32$		
	$^{0}C = 115.56$	1	
1-d	Large scale industries:	½ mark	2
	1.Deepak Fertilizers	each for	
	2. Reliance Industries	any 4	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **3** of **19**

jeet eot	de .(17200)		raye 3 01 17
	3. Supreme petrochem		
	4. Vinati Organics		
	5. Tata Consultancy		
	6. Godrej Soaps		
1-e	Basic unit: These are the units for the basic quantities such as Mass, Length,	1	2
	Time and Temperature		
	Derived unit: These are the units obtained by multiplying and dividing basic	1	
	units or which are derived from basic units.		
1-f	Distillation:-	2	2
	Distillation is an operation in which the components of a liquid mixture are		
	separated using thermal energy. It depends upon the difference in boiling		
	points of the individual components. The difference in vapour pressure of the		
	components of a liquid mixture at the same temperature is responsible for		
	separation by distillation.		
1-g	Excess reactant: It is the reactant added in excess quantity than the theoretical	1	2
	requirement.		
	Limiting reactant: It is the reactant which is added in limited quantity or that	1	
	disappears first in a chemical reaction.		
1-h	Catalytic cracking thermal cracking: Thermal decomposition of alkane is	2	2
	known as thermal cracking. If cracking is carried out in presence of catalyst, it		
	is called catalytic cracking, which requires less temperature.		
1-i	Specific gravity of liquid:	2	2
	It is the ratio of density of a liquid to density of water at 4 ⁰ C		
1-j	Principle of mercury thermometer: All liquids expand with rise in	2	2
	temperature and this volumetric expansion of liquid is proportional to rise in		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **4** of **19**

	temperature.		
1-k	Conversion is the ratio of the amount of reactant reacted to the initial amount	1	2
	of the reactant		
	Yield of a desired product is the ratio of the quantity of the desired product	1	
	actually obtained to its quantity maximally obtainable.		
1-1	Unit operations in chemical engineering :	½ mark	2
	1. Size reduction	each for	
	2. Size separation or screening	any 4	
	3. Mixing		
	4. Filtration		
	5. Sedimentation		
	6. Extraction		
	7. Distillation		
	8. Drying		
	9. Crystallization		
2-a	Personal protective equipments used in Chemical industries :	1 mark	4
	The purpose of PPE is to provide a safety barrier a hazard and the body of a	each for	
	person working in a hazardous environment.	any 4	
	1) Hard hat: It is used for protection of head		
	2) Safety goggles: It is used for protection of eye		
	3)Safety shoes: It is used for protection of legs and foot		
	4)work clothes: It is used for protection of whole body		
	5)Ear muff: It is used for protection of ear		
	6)Ear plug: It is used for protection of ear		
	7)Guard cuff's: It is used for protection of body		
	8)Face Shield: It is used for protection of face		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION

Model Answer

Subject code :(17206) Page **5** of **19**

3			5
2-b	Packed column:		4
		1 mark each	
	Ball mill:		
	Centrifugal pump		
	Screen		

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code:(17206) Page 6 of 19 2-c **Bob and tape Method** 2 Tape Highest point reached by liquid Liquid-Distance to be measured after tape is taken out of tank Bob (weight) 1) Bob and tape is the most simple direct liquid level measurement 2 devices. 2) It is consist of a bob (Weight) suspended from a tape marked in centimeter and meter. 3) Bob is lowered to the bottom of a tan or vessel containing liquid. 4) The liquid in the tank wets the part of the tape that is dipped into the pool of liquid. 5) The bob and tape assembly is then removed from the tank and a reading of liquid level is made by noting the point on the tape reached by the liquid.

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **7** of **19**

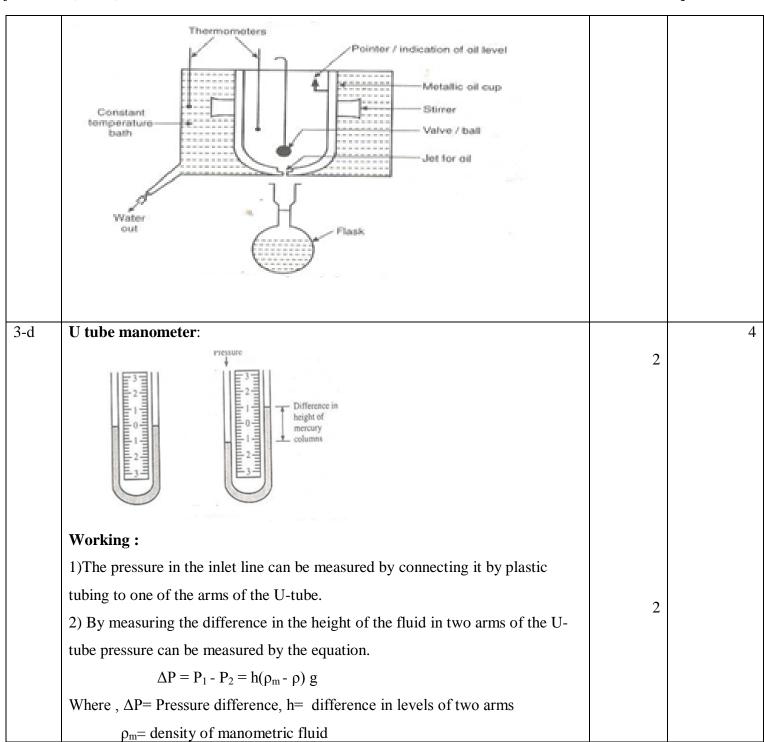
2-d	Modes of heat transfer are:	4	4
	Conduction		
	Convection		
	Radiation		
	1. Conduction: It is the transfer of heat without the movement of particles.		
	Eg: heating of a metal rod		
	2. Convection: It is the transfer of heat within a fluid by the actual		
	migration of particles of hot fluid with cold fluid because of change of		
	density of molecules of fluid by application of heat.		
	Eg. Boiling of liquid		
	3. Radiation: It is the transfer of heat through space by electromagnetic		
	waves. When radiation passes through matter, it is transmitted, reflected		
	or absorbed.		
	Eg. Transport of energy from the sun to earth.		
2-е	Screening: It is a method of separating solid particles according to size alone	4	4
	by means of screens of known aperture. Sieves and screens are used industrially		
	for the separation of solid particles according to their sizes, for production of		
	closely graded materials and for carrying out size analysis. In industrial		
	screening, solids are dropped on a screening surface. The material retained on		
	the screen surface are called oversize material, while materials passing through		
	screen are called undersize particle. A single screen can make the separation of		
	material into two fractions.		
2-f	Uses of Sulfuric acid:	1 mark	4
	a) It is used as a dehydrating agent drying agent acidifying agent and	each for	
	neutralizing agent.	any 4	
	b) It is used in the manufacture of fertilizer.		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **8** of **19**

,			-933
	c) Sulphuric acid is used for pickling iron and steel before galvanizing.		
	d) It is used in processing metals.		
	e) It is used in the manufacture of lead acid batteries.		
3-a	Molecular weight of H ₂ SO ₄	2	4
	=(1*2)+32+(16*4)		
	=98		
	Molecular weight of KMnO ₄		
	=39+55+(16*4)	2	
	=158		
3-b	Basis: 500 ml solution.		4
	Weight of solute = 20 gm	1	
	Molecular weight of NaOH = 40		
	Gram moles of solute = $20/40 = 0.5$	1	
	Molarity = Gram moles/ Volume of solution in lit	1	
	0.5/0.5 = 1 M		
	Normality = gram equivalent of solute/ volume of solution in lit	1	
	= 0.5/0.5 = 1N		
3-c	Redwood Viscometer:	4	4



(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION Model Answer

Subject code:(17206) Page 9 of 19

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **10** of **19**

	de .(17200)		- age 10 of 17
3-е	Oxidising Agents employed in chemical Industries:	2	4
	-Potassium Permanganate with sulphuric acid		
	- Potassium dichromate with sulphuric acid		
	Reducing Agents employed in chemical Industries:	2	
	- Fe + HCl or Zn + HCl		
	- Lithium aluminium hydride		
3-f	Pyrolysis:	2	4
	The decomposition of a compound by heat is called pyrolysis. Large alkane		
	molecules are broken down to give lower molecular weight alkanes, alkenes		
	and hydrogen.		
	Eg: When ethane is heated to 500 °C in the absence of air, it gives a mixture of		
	methane, ethylene and hydrogen.		
	$C_2H_6 \rightarrow C_2H_4 + CH_4 + H_2$		
	Cracking: Pyrolysis when applied to alkane is called cracking	2	
4-a	Principles by which solid mixture can be separated are:	1 mark	4
	1. Difference in size : Screening	each	
	2. Magnetic properties: Magnetic separation		
	3. Electrostatic properties: Electrostatic separation		
	4. Surface properties: Froth floatation		
4-b	Gas Absorption:	2	4
	-This operation is used to separate the components of gas mixture .		
	-It is carried out for the recovery or the removal of a soluble components of a		
	gas mixture depending upon the situation.		
	-Absorption is an operation in which a gas mixture is contacted with a liquid		
	-Absorption is an operation in which a gas mixture is contacted with a liquid		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **11** of **19**

Jeer co.	ue .(17200)	,	ago II oi I
	solvent for the purpose of dissolving a definite component of the gas mixture in		
	the liquid.		
	- Gas absorption is usually carried out in packed columns.		
	Example:		
	1) Absorption of ammonia from an air- ammonia mixture by water	2	
	2) Removal of hydrogen sulfide from naturally occurring hydrocarbon gases.		
4-c	Size reduction: It is an operation wherein large solid particles are subdivided	2	4
	to smaller ones.		
	It is carried out in industry to make it :	2	
	1. Easy handling		
	2. Easy transportation		
	3. Increase in reaction rate		
	4. For having intimate mixing of solid		
	5. To separate various ingredients.		
4-d	Block Diagram: A block diagram is the simplest form of presentation of the		4
	process.		
	Block diagrams are useful for presenting a process in a simplest form in	2	
	reports. In block diagrams, blocks or boxes represent various stages of the		
	process or equipment involved in the process, While lines joining the		
	boxes/blocks represent the streams that go between the block s. Such diagrams		
	are often used in survey studies to management, research summaries, process		
	proposals and to talk out a processing idea.		
	Process Flow Diagram: A process flow diagram is the road map of a		
	manufacturing process. This diagram gives the idea regarding the operations to	2	
	be performed on raw materials in a correct sequence from the raw material to		
	the finished product. It shows the arrangement of the equipment selected to		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **12** of **19** carry the process, all incoming and outgoing materials, utilities required for each operation, quantity of each stream, stream composition, heat added or removed to and from the process equipment and the operating conditions such as temperature and pressure. 4-е **Mercury thermometer: Construction:** 2 It consists of a glass stem having fine capillary and glass bulb. The bulb is at lower end of glass stem. Mercury is filled in the bulb; after filling, open end of capillary is sealed under vacuum so that no air is left in capillary. Sealed end Stem Mercury When the thermometer bulb gets heated after immersion in a bath 2 .The mercury expands much more than the glass and is therefore forced to rise up the stem to indicate the temperature .For each particular temperature, the mercury rises to a certain point in the stem. 4-f **Sulfonation reactions:** 2 It is the reaction with sulfuric acid to introduce sulfonic (SO₃H) group into a compound. $C_6H_6 + H_2SO_4 -----> C_6H_5SO_3H + H_2O$

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **13** of **19**

			age 13 of 17
	Benzene benzene		
	sulfonic acid		
	Chlorination: It refers to the process in which one or more chlorine atoms are		
	introduced into an organic compound.	2	
	Chlorination of methane: Chlorination of methane in presences of ultraviolet		
	light or at a temperature of 300 – 400 C results in the formation of polyhalogen		
	derivatives.		
	U.V.light		
	$CH_4 + Cl_2$ > $CH_3Cl + CH_2Cl_2 + CHCl_3 + CCl_4 + HCl$		
	300-400 C		
5-a	Rotameter		4
)- a	Rotanictei	2	7
	Perforated plate	2	
	f) Tapered glass tube		
	Scale Ploat		
			
	Flow		
	Working:		
	In Rotameter as flow varies, the float rises or falls, thus altering the flow		
	area, which is the annular space/opening between the float and tube. As the	2	
	flow increases, the float moves upward, thus increasing the area. At a given		
	flow rate, float stabilizes at a certain fixed position in the tube and at steady-		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **14** of **19**

5-c	Flow sheet for manufacturing of H ₂ SO ₄ :	4	4
	properties to materials.		
	corrosion arising due to the presence of moisture and iv)providing definite		
	ii)making materials more suitable for handling and storage, iii)preventing		
	Drying operations may be carried out for i)reducing the transportation cost,		
	processed in dryer.		
	the solid phase to the gas phase. Usually a solid or nearly solid materials are		
	transferred from the gas phase to the solid phase and mass is transferred from		
	vapour. In this operation, heat and mass transfer occur simultaneously. Heat is		
	circulating hot air or gas over the material in order to carry away the water		
	by means of thermal energy. In this operation, moisture is removed by		
5-b	Drying: Drying is an operation in which the moisture of a substance is removed	4	4
	flow measurements of liquids and gases		
	state, it is recorded as rotameter reading from the scale provided. It is used for		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **15** of **19**

	LEGEND COOD DESCRIPTION B-1 BLOWER ADT-1 AIR DRYING TOWER BUN-1 SURNER WH-1 SURNER WH-1 SURNER HE-1 HEACTOR-CONVERTER HE-1 HEAT EXCHANGER AG-1 AIR COUBLE PIPE IST-1 INTERMEDIATE STORAGE TANK SO_2 O_2 N_2 MOLTEN SULPHUR SO_3 SO_2 (HE-1) WATER WHATER WHATER AIR PRODUCT SULPHUR SN-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1		
5-d	Normality:	1	4
	N = gmequivalent of solute/ volume of solution in liter		
	Molarity:	1	
	M = gmmole of solute/ volume of solution in liter		
	Molality:	1	
	Molality = gm moles of solute/ weight of solvent in kg		
	Boiling point:	1	
	It is the temperature at which vapour pressure equal to atmospheric pressure(
	the temperature at which liquid boils)		
	the temperature at which inquid bons)		
5-e	Dalton's law:	4	4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **16** of **19**

,				3
	partial pressures			
	$P=P_1+P_2+P_3$			
	where P is total pressure of gas mixture			
	Amagat's law:			
	Amagats law states that total volume	of a gas mixture is equal to the sum of		
	pure component volumes			
	$V = V_1 + V_2 + V_3$			
	where V is total volume of gas mixture	and V_1, V_2, V_3 are pure component		
	volumes.			
5-f	Sedimentation	Filtration	4	4
	Gravitational force is acting	Pressure force is acting		
	Sedimentation tanks or settling tanks	Filters are used		
	are used.			
	No filter medium is used	Filter medium is used		
6-a	Flow sheet for manufacturing of Nitr	ic acid:		4

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **17** of **19**

ojeci cou	raye 17 of 19					
	Se NO COOK C					
6-b	Unit Process and unit operation:		4	4		
	Unit process	Unit operation				
	Chemical changes takes place	Physical changes takes place,				
	Chemical reactions involved	no chemical reactions involved				
	Eg; oxidation, reduction, nitration,	Eg; drying, distillation, mechanical				
	sulphonation	separation				
6-c	2 atm pressure			4		
	1tm = 760 mm Hg		1			
	2 atm = 1520 mm Hg		1			
	1 atm= 101.325 KPa		1			
	2 atm = 202.65 KPa		1			

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **18** of **19**

			3
6-d	Force : A push or a pull is called force. F= ma	1/2	2
	Unit: Newton(N)	1/2	
	Pressure: It is force acting per unit area	1/2	
	Unit: N/m ²	1/2	
	Work: It is product of force acting on a body and the distance travelled by the	1/2	
	body in the direction of applied force		
	Unit: N.m or Joule	1/2	
	Power: It is work done per unit time	1/2	
	Unit: Watt(W)	1/2	
6-е	Basis: 200 kg NaCl and 600 kg KCl		4
	Total weight of mixture = 800 kg		
	Weight % of NaCl = (wt of NaCl/ Total wt)*100		
	= (200/800)* 100		
	= 25 %	1	
	Weight % of KCl = (wt of KCl/ Total wt)*100		
	= (600/800)* 100		
	= 75%	1	
	gmoles of NaCl = Weight/ mol.wt		
	= 200/58= 3.45		
	gmoles of KCl = Weight/ mol.wt		
	= 600/74.5 = 8.05		
	Total moles = $3.45+8.05 = 11.5$		
	Mol% of NaCl = (Moles of NaCl/Total mole)*100	1	
	= (3.45/11.5)* 100		
	= 30%		
	Mol% of KCl = (Moles of KCl/Total mole)*100		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER-15 EXAMINATION <u>Model Answer</u>

Subject code :(17206) Page **19** of **19**

	= (8.05/11.5)* 100	1	
	= 70. %		
	Note: The data given is wrong. If student used the wrong value, due consideration should be given.		
6-f	Volatility: It is the ratio of partial pressure of a component to mol fraction of	2	4
	that in liquid phase		
	Relative volatility: It is the ratio of volatility of more volatile component to	2	
	volatility of less volatile component		