Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 1	(d) Ans.	State principle of transmissibility of force. Principle of Transmissibility of Force: It states that if a force acts at a point on a rigid body, it is assumed to act at any other point on the line of action of force within the same body.	2	2
	(e) Ans.	State statics \& dynamics. Statics: It is the branch of applied mechanics which deals with forces and their action on bodies at rest.	1	2
		Dynamics: It is the branch of applied mechanics which deals with forces and their action on bodies in motion.	1	
	(f)	Define a force \& state it's SI unit.		
	Ans.	Force: It is an external agency either push or pulls which changes or tends to change the state of rest or of uniform motion of a body, upon which it acts.	1	2
		S. I. Unit of force - N, kN	1	
	(g) Ans.	Explain space diagram \& vector diagram. Space diagram: It is the diagram in which number of forces acting on body is drawn in space to a suitable scale and naming the spaces in order by Bow's notation.	1	2
		Vector diagram: It is the diagram in which the forces are taken to a suitable scale and drawn parallel to their respective lines of action of the forces drawn in space diagram by maintaining the same order as it was maintained in space diagram.	1	
	(h) Ans.	Define Lami's theorem. Lami's Theorem: It states that, if three forces acting at a point on a body keep it at rest, then each force is proportional to the sin of the angle between the other two forces.	2	2
		As per Lami's theorem, $\frac{P}{\sin \alpha}=\frac{Q}{\sin \beta}=\frac{R}{\sin \gamma}$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(i) Ans.	State different types of beams with sketch. Following are the different types of beams: (i) Simply supported beam (ii) Cantilever beam (iii) Over hanging beam (iv) Fixed Beam (v) Continuous beam Define cone of friction. Cone of friction: The resultant reaction S makes an angle ϕ with normal reaction R as shown for given set of axes XY. If X axis is rotated about Y axis, the resultant reaction S will also rotate. The line of action of action of S will always lie on surface of right circular cone whose vertex angle is equal to 2ϕ. This is known as cone of friction.	1 each (any two)	2

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(b)	Resolve a force of 100 N into two directions $40^{\circ} \& 50^{\circ}$ on either side of it acting on $+{ }^{\mathrm{ve}} \mathbf{x}$-axis.		
	Ans.			
		Using Sine rule:		
		$\begin{aligned} & \mathrm{F}_{1}=\frac{\mathrm{F} \times \sin \alpha}{\sin (\alpha+\beta)}=\frac{100 \times \sin 50}{\sin (40+50)} \\ & \mathrm{F}_{1}=76.6 \mathrm{~N} \end{aligned}$	1	
		$F_{2}=\frac{F \times \sin \beta}{\sin (\alpha+\beta)}=\frac{100 \times \sin 40}{\sin (40+50)}$	1	
		$\mathrm{F}_{2}=64.28 \mathrm{~N}$	1	4
	(c)	A force of 2500 N acts on a bracket. Find moment of this force at ' A '. (Fig. 1).		
	Ans.	Fig. 1 FBD	1	
		$\begin{aligned} & \mathrm{M}_{\mathrm{A}}=-(2500 \times \sin 30 \times 200)+(2500 \times \cos 30 \times 150) \\ & \mathrm{M}_{\mathrm{A}}=74759.53 \text { N.mm (Clockwise) } \end{aligned}$	$\begin{aligned} & 2 \\ & 1 \end{aligned}$	4

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answer \& Marks \& Total Marks \\
\hline Q. 3 \& (e)

Ans. \& | $\text { 3) } \begin{aligned} & \mathrm{R}=\sqrt{\sum \mathrm{F}_{\mathrm{x}}^{2}+\sum \mathrm{F}_{\mathrm{y}}^{2}} \\ &=\sqrt{\left(240 \cos \left(\frac{\theta}{2}\right)\right)^{2}+0} \\ & \mathrm{R}^{2}=\left(240 \cos \left(\frac{\theta}{2}\right)\right)^{2} \\ & \mathrm{R}=\left(240 \cos \left(\frac{\theta}{2}\right)\right) \\ & 60=\left(240 \cos \left(\frac{\theta}{2}\right)\right) \\ &\left(\frac{\theta}{2}\right)=\cos ^{-1}\left(\frac{60}{240}\right)=75.522 \\ & \theta=2 \times 75.522 \\ & \theta=151.04^{\circ} \end{aligned}$ |
| :--- |
| Find the resultant of all forces shown in Fig. 2. Mark it's position \& direction on sketch. |
| Resolving all forces $\begin{aligned} \sum \mathrm{F}_{\mathrm{x}} & =-(150)-\left(800 \times \cos 50^{\circ}\right)+\left(500 \times \cos 40^{\circ}\right) \\ & =-(281.21) \mathrm{N} \\ \sum \mathrm{~F}_{\mathrm{y}} & =+\left(800 \times \sin 50^{\circ}\right)+\left(500 \times \sin 40^{\circ}\right)-(600) \\ & =+(334.23) \mathrm{N} \end{aligned}$ $\begin{aligned} & \mathrm{R}=\sqrt{\left(\sum \mathrm{F}_{\mathrm{x}}\right)^{2}+\left(\sum \mathrm{F}_{\mathrm{y}}\right)^{2}}=\sqrt{(281.21)^{2}+(334.23)^{2}} \\ & \mathrm{R}=436.79 \mathrm{~N} \end{aligned}$ | \& 1

1
1
1
1
1
1 \& 4

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 3	(f)	Since, $\sum \mathrm{F}_{\mathrm{x}}=-\mathrm{ve}$ and $\sum \mathrm{F}_{\mathrm{y}}=+\mathrm{ve}, \mathrm{R}$ liesin $2^{\text {nd }}$ quadrant. Let, θ be the angle made by R with horizontal. $\begin{aligned} & \theta=\tan ^{-1}\left\|\frac{\sum \mathrm{~F}_{\mathrm{y}}}{\sum \mathrm{~F}_{\mathrm{x}}}\right\|=\tan ^{-1}\left\|\frac{334.23}{281.21}\right\| \\ & \theta=49.92^{\circ} \text { with negative x axis. } \end{aligned}$ Fig. Location of Resultant Five parallel forces of $10,20,30,50 \& 80 \mathrm{kN}$ are acting on a beam. Distances of forces from 10 kN force are $1 \mathrm{~m}, 2 \mathrm{~m}, 3 \mathrm{~m} \& 5 \mathrm{~m}$. Forces 20 \& 50 kN are acting downward \& other acting upward. Find resultant in magnitude, direction \& position w.r. to 10 kN force graphically.	1 1	4

			Marks	Total Marks

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 4	(d) Ans. (e) Ans.	A simply supported beam is of 10 m span. It has a udl of $25 \mathrm{kN} / \mathrm{m}$ throughout it's length \& point loads of $80 \mathrm{kN} \& 120 \mathrm{kN}$ at $3 \mathrm{~m} \& 8$ m from left support. Calculate support reactions by analytical method. $\begin{aligned} & \sum_{\mathrm{F}_{y}}=0 \\ & +\mathrm{R}_{A}-(25 \times 10)-80-120+\mathrm{R}_{\mathrm{B}}=0 \\ & \mathrm{R}_{A}+\mathrm{R}_{\mathrm{B}}=450 \mathrm{kN}-\cdots-(1) \\ & \sum_{\mathrm{A}}=0 \\ & \left(\mathrm{R}_{\mathrm{B}} \times 10\right)=(25 \times 10 \times 5)+(80 \times 3)+(120 \times 8)=0 \\ & \mathrm{R}_{\mathrm{B}}=245 \mathrm{kN}(\uparrow) \end{aligned}$ Putting value of R_{A} in equation (1) $\begin{aligned} & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{B}}=450 \\ & \mathrm{R}_{\mathrm{A}}+245=450 \\ & \mathrm{R}_{\mathrm{A}}=205 \mathrm{kN}(\uparrow) \end{aligned}$ Find support reactions for a beam shown in Fig. 3 by analytical method. Fig. 3	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(b) Ans. (c)	A block of 80 N is placed on a horizontal plane where the coefficient of friction is 0.25 . Find the force at 30° upto the horizontal to just move the block. $\begin{align*} & \sum \mathrm{F}_{\mathrm{x}}=0 \quad(\rightarrow+\mathrm{ve}, \leftarrow-\mathrm{ve}) \\ & (\mathrm{P} \times \cos 30)-\mathrm{F}=0 \\ & (\mathrm{P} \times \cos 30)-(\mu \times \mathrm{R})=0 \\ & (\mathrm{P} \times 0.866)-(0.25 \times \mathrm{R})=0 \\ & (\mathrm{P} \times 0.866)=(0.25 \times \mathrm{R}) \\ & \mathrm{R}=\left(\frac{0.866}{0.25}\right) \times \mathrm{P} \\ & \mathrm{R}=(3.464) \mathrm{P} \quad----(1) \tag{1} \end{align*}$ $\begin{aligned} & \sum \mathrm{F}_{\mathrm{y}}=0(\uparrow+\mathrm{ve}, \downarrow-\mathrm{ve}) \\ & \mathrm{R}+(\mathrm{P} \times \sin 30)-\mathrm{W}=0 \\ & (3.464 \times \mathrm{P})+(\mathrm{P} \times 0.5)-80=0 \\ & (3.964) \mathrm{P}=80 \\ & \mathrm{P}=20.18 \mathrm{~N} \end{aligned}$ A body of weight 400 N is placed on an inclined plane at an angle of 15° with the horizontal. If coefficient of friction is 0.14 , find the value of force to be applied parallel to plane just to prevent the body from sliding down.	1 1 1 1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5	(c) Ans. (d) Ans.	Consider inclined plane as $\mathrm{x}-\mathrm{x}$ axis \& perpendicular to it as y - y axis. $\begin{aligned} & \sum \mathrm{F}_{\mathrm{y}}=0 \\ & \mathrm{R}-(400 \times \cos 15)=0 \\ & \mathrm{R}=(400 \times \cos 15) \\ & \mathrm{R}=386.37 \mathrm{~N} \end{aligned}$ $\begin{aligned} & \sum \mathrm{F}_{\mathrm{X}}=0 \\ & \mathrm{P}+\mathrm{F}-(400 \times \sin 15)=0 \\ & \mathrm{P}+(\mu \times \mathrm{R})-(400 \times \sin 15)=0 \\ & \mathrm{P}+(0.14 \times 386.37)-(400 \times \sin 15)=0 \\ & \mathrm{P}=49.43 \mathrm{~N} \end{aligned}$ Find the horizontal force required to drag a body of weight 100 N along a horizontal plane. If the plane is raised gradually upto 15°, the body will begin to slide.	1 1 1 1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 5		Resolving all forces		
		$\sum \mathrm{F}_{\mathrm{x}}=(1)+\left(2 \times \cos 36^{\circ}\right)+\left(3 \times \cos 72^{\circ}\right)-\left(4 \times \cos 72^{\circ}\right)$		
		$=+(2.310) \mathrm{kN}$	1	
		$\begin{aligned} \sum \mathrm{F}_{\mathrm{y}} & =\left(2 \times \sin 36^{\circ}\right)+\left(3 \times \sin 72^{\circ}\right)+\left(4 \times \sin 72^{\circ}\right) \\ & =+(7.833) \mathrm{kN} \end{aligned}$		
		$\begin{aligned} & \mathrm{R}=\sqrt{\left(\sum \mathrm{F}_{\mathrm{x}}\right)^{2}+\left(\sum \mathrm{F}_{\mathrm{y}}\right)^{2}}=\sqrt{(2.310)^{2}+(7.833)^{2}} \\ & \mathrm{R}=8.17 \mathrm{kN} \end{aligned}$	1	
		Since, $\sum \mathrm{F}_{\mathrm{x}}=+$ ve \& $\sum \mathrm{F}_{\mathrm{y}}=+\mathrm{ve}, \mathrm{R}$ liesin $1^{\text {st }}$ quadrant. .		
		Let, θ be the angle made by R with horizontal. $\begin{aligned} & \theta=\tan ^{-1}\left\|\frac{\sum \mathrm{~F}_{\mathrm{y}}}{\sum \mathrm{~F}_{\mathrm{x}}}\right\|=\tan ^{-1}\left\|\frac{7.833}{2.310}\right\| \\ & \theta=73.57^{\circ} \text { with positive x axis. } \end{aligned}$	1	4
	(f)	Determine analytically the resultant of the coplanar parallel forces acting vertically upwards - (i) 40 N (ii) 20 N at 30 cm (iv) 60 N at 70 cm . All distances are measured from the first force towards right.		
	Ans.		1	

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(b) Ans.	(1) Area calculation $\begin{aligned} & \mathrm{a}_{1}=10 \times 50=500 \mathrm{~mm}^{2} \\ & \mathrm{a}_{2}=60 \times 10=600 \mathrm{~mm}^{2} \\ & \mathrm{a}=\mathrm{a}_{1}+\mathrm{a}_{2}=1100 \mathrm{~mm}^{2} \end{aligned}$ (2) \bar{x} calculation As given figure is symmetric @ y axis, $\begin{aligned} & \bar{x}=\frac{60}{2} \\ & \bar{x}=30 \mathrm{~mm}(\text { from OA on line of symmetry }) \end{aligned}$ (3) \bar{y} calculation $\begin{aligned} & \mathrm{y}_{1}=10+\left(\frac{50}{2}\right)=35 \mathrm{~mm} \\ & \mathrm{y}_{2}=\left(\frac{10}{2}\right)=5 \mathrm{~mm} \\ & \bar{y}=\frac{\left(\mathrm{a}_{1} \times \mathrm{y}_{1}\right)+\left(\mathrm{a}_{2} \times \mathrm{y}_{2}\right)}{\mathrm{a}}=\frac{(500 \times 35)+(600 \times 5)}{1100} \\ & \overline{\mathrm{y}}=18.64 \mathrm{~mm}(\text { from OB on line of symmetry }) \end{aligned}$ A retaining wall of height 5.2 m has one side vertical. The top width is 0.8 m \& bottom width is 3.2 m , find centroid.	1	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(c) Ans. (d)	$\begin{gathered} \hline \text { Let, Quarter circle }=\text { Fig. }(1) \& \\ \text { Triangle }=\text { Fig. }(2) \end{gathered}$ (1) Area calculation $\begin{aligned} & \mathrm{a}_{1}=\frac{\pi \times r^{2}}{4}=\left(\frac{\pi \times 200^{2}}{4}\right)=31415.926 \mathrm{~mm}^{2} \\ & \mathrm{a}_{2}=\frac{1}{2} \times 200 \times 200=20000 \mathrm{~mm}^{2} \\ & \mathrm{a}=\mathrm{a}_{1}-\mathrm{a}_{2}=11415.926 \mathrm{~mm}^{2} \end{aligned}$ (2) $\overline{\mathrm{x}}$ calculation $\begin{aligned} & x_{1}=\left(\frac{4 \times \mathrm{r}}{3 \times \pi}\right)=\left(\frac{4 \times 200}{3 \times \pi}\right)=84.883 \mathrm{~mm} \\ & x_{2}=\left(\frac{1}{3} \times \mathrm{b}\right)=\left(\frac{1}{3} \times 200\right)=66.667 \mathrm{~mm} \\ & \overline{\mathrm{x}}=\frac{\left(\mathrm{a}_{1} \times \mathrm{x}_{1}\right)-\left(\mathrm{a}_{2} \times \mathrm{x}_{2}\right)}{\mathrm{a}}=\frac{(31415.926 \times 84.883)-(20000 \times 66.667)}{11415.926} \\ & \overline{\mathrm{x}}=116.796 \mathrm{~mm}(\text { fromOA }) \end{aligned}$ (3) \bar{y} calculation $\begin{aligned} & y_{1}=\left(\frac{4 \times \mathrm{r}}{3 \times \pi}\right)=\left(\frac{4 \times 200}{3 \times \pi}\right)=84.883 \mathrm{~mm} \\ & y_{2}=\left(\frac{1}{3} \times \mathrm{b}\right)=\left(\frac{1}{3} \times 200\right)=66.667 \mathrm{~mm} \\ & \overline{\mathrm{y}}=\frac{\left(\mathrm{a}_{1} \times y_{1}\right)-\left(\mathrm{a}_{2} \times y_{2}\right)}{\mathrm{a}}=\frac{(31415.926 \times 84.883)-(20000 \times 66.667)}{11415.926} \\ & \overline{\mathrm{y}}=116.796 \mathrm{~mm}(\text { from OB }) \end{aligned}$ A right circular cone of base diameter $100 \mathrm{~mm} \&$ height 200 mm is placed on the base of hemisphere of same diameter. Find C.G.	1 1112 $11 / 2$	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(d) Ans.	Let, Cone = Fig. (1) \& Hemi-sphere = Fig.(2) (1) Volume calculation $\begin{aligned} & \mathrm{V}_{1}=\frac{1}{3} \times \pi \times \mathrm{r}^{2} \times \mathrm{h}=\frac{1}{3} \times \pi \times 50^{2} \times 200=523598.776 \mathrm{~mm}^{3} \\ & \mathrm{~V}_{2}=\frac{2}{3} \times \pi \times \mathrm{r}^{3}=\frac{2}{3} \times \pi \times 50^{3}=261799.388 \mathrm{~mm}^{3} \\ & \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}=785398.164 \mathrm{~mm}^{3} \end{aligned}$ (2) \bar{x} calculation As fig. is symmetric @ y-y axis, $\begin{aligned} & \bar{x}=\frac{100}{2} \\ & \bar{x}=50 \mathrm{~mm}(\text { from } \mathrm{OA}) \end{aligned}$ (3) \bar{y} calculation $\begin{aligned} & y_{1}=r+\left(\frac{h}{4}\right)=50+\left(\frac{200}{4}\right)=100 \mathrm{~mm} \\ & y_{2}=r-\left(\frac{3 \times r}{8}\right)=50-\left(\frac{3 \times 50}{8}\right)=31.25 \mathrm{~mm} \\ & \bar{y}=\frac{\left(V_{1} \times y_{1}\right)+\left(V_{2} \times y_{2}\right)}{V}=\frac{(523598.776 \times 100)+(261799.388 \times 31.25)}{785398.164} \\ & \bar{y}=77.083 \mathrm{~mm}(\text { from OB }) \end{aligned}$	$1{ }^{1}$	4

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
Q. 6	(e) Ans.	A frustum of a solid circular cone is of top dia. 30 cm \& bottom dia. 60 cm of height 50 cm . Find C.G. of the frustum. Let, Full cone as Fig. 1 and cut cone as Fig. 2 1) Figure is symmetric @y-y axis and hence, $\overline{\mathrm{x}}=$ Maximum horizontal dimension $/ 2$ $\begin{aligned} & =60 / 2 \\ & \overline{\mathrm{x}}=30 \mathrm{~cm}(\text { from } \mathrm{y} \text { axis }) \end{aligned}$ $\mathrm{h}_{1}=50 \mathrm{~cm}, \mathrm{~h}_{2}=$ Height of cut cone In triangle, ABE and CDE $\begin{aligned} & \frac{h}{60}=\frac{h_{2}}{30} \\ & h=\frac{60}{30} h_{2} \\ & h=2 h_{2} \\ & h_{1}+h_{2}=h \\ & h_{1}+h_{2}=2 h_{2} \\ & h_{1}=2 h_{2}-h_{2} \\ & h_{1}=1 h_{2} \\ & 50=1 h_{2} \\ & h_{2}=50 \mathrm{~cm} \\ & h=50+50=100 \mathrm{~cm} \end{aligned}$	1	

