MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION
(Autonomous)
(ISO/IEC - 27001-2005 Certified)

## Model Answer: Summer 2018

## Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

| Que. No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 1 |  | Attempt any TEN of the following: |  | 20 |
|  | (a) <br> Ans. | Define Mechanical Advantage (MA) and Velocity Ratio (VR). Mechanical Advantage: It is the ratio of the load (W) lifted by the machine to the effort (P) applied to lift the load. It is denoted by M.A. $M \cdot A \cdot=\frac{W}{P}$ | 1 |  |
|  |  | Velocity Ratio: It is the ratio of distance travelled by effort (y) to distance travelled by load (x). $V . R .=\frac{y}{x}$ | 1 | 2 |
|  | (b) Ans. | Define effort and state its SI units. <br> Effort: The force applied to overcome the resistance or to lift the load is known as effort. <br> S. I. Unit : N, kN | 1 1 | 2 |
|  | (c) <br> Ans. | Define ideal machine. <br> Ideal Machine: It is the machine whose efficiency is $100 \%$ and in which friction is zero. | 2 | 2 |
|  | (d) Ans. | Define force and state its SI units. <br> Force: It is an external agency either push or pulls which changes or tends to change the state of rest or of uniform motion of a body, upon which it acts. <br> S. I. Unit of force - N, kN | $1$ | 2 |



| Que. No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 1 | (i) <br> Ans. <br> (j) <br> Ans. <br> (k) <br> Ans. <br> (I) <br> Ans. | State relation between resultant and equilibrant. <br> Equilibrant is always equal in magnitude, opposite in direction and collinear to the resultant. <br> Define angle of repose. <br> Angle of repose is defined as the angle made by the inclined plane with the horizontal plane at which the body placed on an inclined plane is just on the point of moving down the plane, under the action of its own weight. <br> State advantages of friction. <br> 1) One can walk easily on rough surface than smooth surface. <br> 2) Moving vehicle on road can be stopped suddenly by applying brakes. <br> 3) One can hammer nail into wall. <br> 4) One can easily hold pen, pencil and can write on paper. <br> State VR of screw jack and give the meaning of each terms used in it. $\text { V.R. }=\frac{2 \pi \mathrm{~L}}{\mathrm{p}} \quad \text { OR } \quad \text { V.R. }=\frac{2 \pi R}{\mathrm{p}}$ <br> Where, <br> V.R. = Velocity Ratio <br> p = Pitch of the screw <br> L = Length of handle <br> R = Radius of effort wheel | 1 <br> 2 <br> 1 each <br> (any <br> two) <br> 1 <br> 1 | $2{ }^{2} 8$ |



| Que. No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 2 | (c) <br> Ans. <br> (d) <br> Ans. | A screw jack has pitch of 5 mm and length of lever as 150 mm . An effort required to lift a load of 80 kN is 500 N . Calculate the efficiency and state the type of machine. $\begin{aligned} & \text { V.R. }=\frac{2 \pi \mathrm{~L}}{\mathrm{p}}=\frac{2 \times \pi \times 150}{5} \\ & \text { V.R. }=188.495 \\ & \text { MA }=\frac{\mathrm{W}}{\mathrm{P}}=\frac{80000}{500}=160 \\ & \eta \%=\frac{\mathrm{MA}}{\mathrm{VR}} \times 100 \% \\ & \quad=\left(\frac{160}{188.495}\right) \times 100 \\ & \mathrm{P}=84.883 \% \\ & \% \eta=84.883 \% \end{aligned}$ <br> Type of machine : <br> As $\% \eta=84.883 \%>50 \%$, machine is Reversible machine <br> Find the orthogonal component of the following forces. <br> (1) 300 N acting NE <br> (2) 500 N acting $30^{\circ}$ West of South <br> (3) 25 N due South and <br> (4) 50 N due North <br> 1) 300 N acting NE $\begin{array}{rlrl} \mathrm{Fx} & =\mathrm{F} \cos \theta & \mathrm{~F}_{\mathrm{y}} & =\mathrm{F} \sin \theta \\ & =300 \mathrm{X} \cos 45 \\ & =212.132 \mathrm{~N} & & =300 \mathrm{X} \cos 4 \\ & =212.132 \mathrm{~N} \end{array}$ <br> (2) 500 N acting $30^{\circ}$ West of South $\begin{aligned} \mathrm{Fx} & =\mathrm{F} \cos \theta & \mathrm{Fy} & =\mathrm{F} \sin \theta \\ & =500 \mathrm{X} \cos 60 & & =500 \mathrm{X} \sin 60 \\ & =250 \mathrm{~N} & & =433.012 \mathrm{~N} \end{aligned}$ | 1 <br> 1 <br> 1 <br> 1 | $4{ }^{4}$ |


| Que. No. | Sub. Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 2 | (e) <br> Ans. | (3) $25 \mathbf{N}$ due South $\begin{array}{rlrl} \text { Fx } & =\mathrm{F} \cos \theta & \mathrm{Fy} & =\mathrm{F} \sin \theta \\ & =25 \mathrm{X} \cos 270 \\ & =0 \mathrm{~N} & & =25 \mathrm{X} \sin 270 \\ & =-25 \mathrm{~N} \end{array}$ <br> (4) $\mathbf{5 0} \mathbf{N}$ due North $\begin{aligned} \mathrm{Fx} & =\mathrm{F} \cos \theta & \mathrm{Fy} & =\mathrm{F} \sin \theta \\ & =50 \mathrm{X} \cos 90 & & =50 \mathrm{X} \sin 90 \\ & =0 \mathrm{~N} & & =50 \mathrm{~N} \end{aligned}$ <br> Define couple and state any four properties of couple. <br> Couple: Two equal, unlike, parallel, non-collinear forces form a couple. <br> Properties of couple : <br> 1) The resultant of the forces of a couple is zero. <br> 2) The moment of a couple is equal to the product of one of the force and arm of couple. <br> 3) Moment of a couple about any point is constant. <br> 4) A couple can be balanced only by another couple of equal and opposite moment. <br> 5) Two or more couples are said to be equal when they have same sense and moment. <br> 6) Any number of coplanar couples can be represented by a single couple, the moment of which is equal to the algebraic sum of the moment of all the couples. | 2 <br> $1 / 2$ each <br> (any <br> four) | 4 |


| Que. No. | Sub. Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 2 | (f) | Calculate the resultant in magnitude, direction and position with respect to $30 \mathbf{N}$ force for the parallel forces system as shown in fig (I). |  |  |
| Q. 3 | Ans. | Fig. (I) |  |  |
|  |  | Magnitude of resultant $\begin{aligned} \mathrm{R} & =\Sigma \mathrm{F} \\ & =+30-40+70-60 \\ \mathrm{R} & =0 \mathrm{~N} \end{aligned}$ | 4 | 4 |
|  |  | Attempt any FOUR: |  | 16 |
|  | (a) | Four forces act on a bar as shown in fig (II). Determine their resultant in magnitude and direction, if $A B=2 m, B C=2 m$, $C D=3 \mathrm{~m}$. |  |  |
|  | Ans. |  |  |  |
|  |  |  |  |  |


| Que. No. | Sub. <br> Que. | Model Answers | Marks | Total <br> Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 3 | (b) <br> Ans. | 1) Resolving all forces ( $\uparrow+\mathrm{ve}, \downarrow$-ve, $\rightarrow+\mathrm{ve}, \leftarrow$-ve) $\begin{aligned} & \sum \mathrm{F}_{\mathrm{x}}=-10 \cos 45-25 \cos 60-50=-69.572 \mathrm{~N} \\ & \sum \mathrm{~F}_{\mathrm{y}}=-10 \sin 45-20-25 \sin 60=-48.721 \mathrm{~N} \end{aligned}$ <br> 2) Magnitude of Resultant $\begin{aligned} & \mathrm{R}=\sqrt{\left(\sum \mathrm{F}_{\mathrm{x}}\right)^{2}+\left(\sum \mathrm{F}_{\mathrm{y}}\right)^{2}}=\sqrt{(69.572)^{2}+(48.721)^{2}} \\ & \mathrm{R}=84.935 \mathrm{~N} \end{aligned}$ <br> 3) Since $\sum F_{x}$ is -ve $\& \sum F_{y}$ is -ve, <br> R lies in III quadrant <br> 4) Position of Resultant $\begin{aligned} & \theta=\tan ^{-1}\left\|\frac{\sum \mathrm{~F}_{\mathrm{y}}}{\sum \mathrm{~F}_{\mathrm{x}}}\right\|=\tan ^{-1}\left\|\frac{48.721}{69.572}\right\| \\ & \theta=35.00^{\circ} \text { with negative 'x' axis } \end{aligned}$ <br> Calculate the resultant of force system as shown in fig (III). <br> Fig. (III) | 1 <br> 1 <br> 1 | 4 |


| Que. No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 3 | (c) <br> Ans. | 1) Resolving all forces ( $\uparrow+\mathrm{ve}, \downarrow$-ve, $\rightarrow+\mathrm{ve}, \leftarrow-\mathrm{ve}$ ) $\begin{aligned} & \sum \mathrm{F}_{\mathrm{x}}=+300 \cos 30-500 \cos 45+400 \cos 45=+189.096 \mathrm{~N} \\ & \sum \mathrm{~F}_{\mathrm{y}}=+300 \sin 30+500 \sin 45-200-400 \sin 45=+20.710 \mathrm{~N} \end{aligned}$ <br> 2) Magnitude of Resultant $\begin{aligned} & \mathrm{R}=\sqrt{\left(\sum \mathrm{F}_{\mathrm{x}}\right)^{2}+\left(\sum \mathrm{F}_{\mathrm{y}}\right)^{2}}=\sqrt{(189.096)^{2}+(20.710)^{2}} \\ & \mathrm{R}=190.226 \mathrm{~N} \end{aligned}$ <br> 3) Since $\sum F_{x}$ is $+v e \& \sum F_{y}$ is $+v e$, <br> $R$ lies in I quadrant <br> 4) Position of Resultant $\begin{aligned} & \theta=\tan ^{-1}\left\|\frac{\sum \mathrm{~F}_{\mathrm{y}}}{\sum \mathrm{~F}_{\mathrm{x}}}\right\|=\tan ^{-1}\left\|\frac{20.710}{189.096}\right\| \\ & \theta=6.25^{\circ} \text { with positive 'x' axis } \end{aligned}$ <br> Solve graphically Q. No. 3 (b). <br> $\therefore$ SPACE. DIAGRAM <br> VECTOR DIAGRAM $S C A L E=1 \mathrm{CM}=100 \mathrm{~N}$ | 1 <br> 1 <br> 1 <br> 1 <br> 2 <br> 2 | 4 |





\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks <br>
\hline Q. 4 \& (c)

Ans. \& | Analytical conditions of equilibrium for non-concurrent force system |
| :--- |
| 1) $\Sigma F x=0$ i. e. Algebric sum of all the forces along $X$-axis must be equal to zero. |
| 2) $\Sigma \mathrm{Fy}=0$ i. e. Algebric sum of all the forces along Y -axis must be equal to zero. |
| 3) $\Sigma \mathrm{M}=0$ i. e. Algebric sum of moment of all the forces about any point must be equal to zero. |
| A beam AB 6 m long rests on two supports 4 m apart the right hand end is over hanging by 2 m , the beam carries a udl of $4 \mathrm{kN} / \mathrm{m}$ over the entire span. Determine the reactions of supports. |
| 1) Equivalent point load and it's position |
| Equivalent point load = Intensity of udl X span of udl $\begin{aligned} & =4 \mathrm{X} 6 \\ & =24 \mathrm{KN} \end{aligned}$ |
| Position from $R_{A}=$ Span of udl $/ 2=6 / 2=3 \mathrm{~m}$ |
| 2) Applying equilibrium conditions $\begin{align*} & \Sigma \mathrm{Fy}=0(1+\mathbf{v e}, \downarrow-\mathbf{v e}) \text { and } \Sigma \mathrm{M}=0 \\ & \Sigma \mathrm{Fy}=0 \\ & \mathrm{R}_{\mathrm{A}}-24+\mathrm{R}_{\mathrm{C}}=0 \\ & \mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{C}}=24 \mathrm{KN}------(1) \tag{1} \end{align*}$ | \& 1 each (any three) \& 4 <br>

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline Q. 4 \& \begin{tabular}{l}
(d) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
\[
\Sigma \mathrm{M}_{\mathrm{A}}=0
\] \\
Taking moment of all forces @ point A
\[
\begin{aligned}
\& \left(\mathrm{R}_{\mathrm{A}} \times 0\right)+(24 \mathrm{X} 3)-\left(\mathrm{R}_{\mathrm{C}} \mathrm{X} 4\right)=0 \\
\& 72=4 \mathrm{R}_{\mathrm{C}} \\
\& \mathrm{R}_{\mathrm{C}}=18 \mathrm{KN}
\end{aligned}
\] \\
Putting value of \(\mathrm{R}_{\mathrm{C}}\) in eqn. 1
\[
\begin{aligned}
\& \mathrm{R}_{\mathrm{A}}+18=24 \\
\& \mathrm{R}_{\mathrm{A}}=6 \mathrm{KN}
\end{aligned}
\] \\
A beam AB is loaded as shown in fig (VI). Calculate the reactions at \(A\) and \(B\). \\
RA \(\sin \alpha\) \\
Applying equilibrium conditions
\[
\Sigma \mathrm{M}_{\mathrm{A}}=0
\] \\
Taking moment of all forces @ point A \(\left(\mathrm{R}_{\mathrm{B}} \times 8\right)=(80 \sin 30 \times 3)+(40 \times 6)\)
\[
\left(\mathrm{R}_{\mathrm{B}} \times 8\right)=360
\]
\[
\mathrm{R}_{\mathrm{B}}=45 \mathrm{kN}
\]
\end{tabular} \& 1
1
1

1
$1 / 2$
1
1 \& 4 <br>
\hline
\end{tabular}



Model Answer: Summer 2018
Subject: Engineering Mechanics



| Que. <br> No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 5 | (b) <br> Ans. | A body of weight 300 N is resting on inclined plane making an angle of $30^{\circ}$ to the horizontal. A pull of 80 N applied parallel and up the plane. Calculate coefficient of friction and force of friction. <br> For limiting equilibrium $\begin{align*} & \Sigma \mathrm{Fx}=0 \\ & +\mathrm{P}+\mathrm{F}-\mathrm{W} \sin 30^{\circ}=0 \\ & +80+\mu \mathrm{R}-300 \sin 30^{\circ}=0 \\ & +\mu \mathrm{R}-70=0 \\ & \mu \mathrm{R}=70 \quad--------(\mathrm{i}) \tag{i} \end{align*}$ <br> $\Sigma \mathrm{Fy}=0$. <br> $+\mathrm{R}-\mathrm{W} \cos 30^{\circ}=0$ <br> $+\mathrm{R}-300 \cos 30^{\circ}=0$ <br> $+\mathrm{R}-259.81=0$ <br> $\mathrm{R}=259.81 \mathrm{~N}$ <br> From equation (i) <br> Coefficient of friction <br> $\mu \mathrm{R}=70$ <br> $\mu \times 259.81=70$ <br> $\mu=0.269$ <br> Force of friction $\begin{aligned} & \mathrm{F}=\mu \mathrm{R} \\ & \mathrm{~F}=0.269 \times 259.81 \\ & \mathrm{~F}=69.888 \mathrm{~N} \end{aligned}$ | 1 | 4 |


| Que. No. | Sub. Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 5 | (c) <br> Ans. | A block weighing 50 N is resting on $30^{\circ}$ rough inclined plane. A force of 12 N parallel to plane is applied to the block up the plane and the block is just on the point of moving down the plane. Find the coefficient of friction. <br> For limiting equilibrium $\begin{align*} & \Sigma F x=0 \\ & +P+F-W \sin 30^{\circ}=0 \\ & +12+\mu R-50 \sin 30^{\circ}=0 \\ & +\mu \mathrm{R}-13=0 \\ & \mu \mathrm{R}=13 \quad--------- \text { (i) } \tag{i} \end{align*}$ <br> $\Sigma \mathrm{Fy}=0$. <br> $+\mathrm{R}-\mathrm{W} \cos 30^{\circ}=0$ <br> $+\mathrm{R}-50 \cos 30^{\circ}=0$ <br> $+\mathrm{R}-43.301=0$ <br> $\mathrm{R}=43.301 \mathrm{~N}$ <br> From equation (i) <br> Coefficient of friction <br> $\mu \mathrm{R}=13$ <br> $\mu \times 43.301=13$ <br> $\mu=0.30$ |  | 4 |


| Que. No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 5 | (d) <br> Ans. <br> (e) <br> Ans. | Draw neat \& labeled sketch of ladder friction. Show all forces acting on it. <br> (Note : 2 marks for sketch, 1 mark for active and reactive forces, 1 mark for labeling) <br> What do you understand by term 'Reversibility' of machine? Explain the difference between a reversible and a self-locking machine. <br> Sometimes a machine is capable of doing some work in the reverse direction, even after the effort is removed. Such a machine is called the reversible machine and the action of such a machine is known as 'reversibility' of the machine. <br> A machine which is capable of doing work in the reverse direction after the effort is removed is called the 'reversible' machine. A machine which is not capable of doing work in the reverse direction after the effort is removed is called the 'non-reversible' or 'selflocking' machine. <br> The machine which has efficiency greater than $50 \%$, ( $\eta>50 \%$ ) such a machine is called as 'reversible' machine. Whereas the machine which has efficiency less than $50 \%$, $(\eta<50 \%)$ such a machine is called as 'self-locking' or non-reversible machine. | 4 | $4{ }^{4}$ |






| Que. No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 6 | (d) <br> Ans. | A solid cone having base diameter 150 mm and height 150 mm is placed on top of cylinder of dia. 150 mm and height 200 mm such that axis are co-linear. Locate C.G. w.r.t. bottom. <br> As the given combination of solids is symmetric about $\mathrm{Y}-\mathrm{Y}$ axis $\therefore \bar{X}=\mathrm{x}_{1}=\mathrm{x}_{2}=\frac{150}{2}=75 \mathrm{~mm}$ <br> Fig. 1 - $\begin{aligned} \mathrm{V}_{1} & =\pi \mathrm{r}^{2} \mathrm{~h} \\ & =\pi(75)^{2} \times 200 \\ & =3.534 \times 10^{6} \mathrm{~mm}^{3} \\ \mathrm{y}_{1} & =\mathrm{h} / 2=200 / 2=100 \mathrm{~mm} \end{aligned}$ <br> Fig. 2 - $\begin{aligned} \mathrm{V}_{2} & =\frac{1}{3} \pi r^{2} h \\ & =\frac{1}{3} \pi(75)^{2} \times 150 \\ & =883.57 \times 10^{3} \mathrm{~mm}^{3} \\ \mathrm{y}_{2} & =200+\mathrm{h} / 4 \\ & =200+150 / 4 \\ & =237.5 \mathrm{~mm} \end{aligned}$ $\begin{aligned} \bar{Y} & =\frac{V_{1} y_{1}+V_{2} y_{2}}{V_{1}+V_{2}} \\ & =\frac{\left(3.534 \times 10^{6} \times 100\right)+\left(883.57 \times 10^{3} \times 237.5\right)}{\left(3.534 \times 10^{6}+883.57 \times 10^{3}\right)} \\ \overline{\mathrm{Y}} & =127.50 \mathrm{~mm} \text { from bottom } \end{aligned}$ | 1 | M |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  | 1 |  |
|  |  |  |  |  |
|  |  |  | 1 |  |


| Que. No. | Sub. <br> Que. | Model Answers | Marks | Total Marks |
| :---: | :---: | :---: | :---: | :---: |
| Q. 6 | (e) <br> Ans. | On a solid inverted cone $\mathbf{2 0 0} \mathrm{mm}$ diameter and $\mathbf{6 0 0} \mathbf{m m}$ height a sphere of 300 mm diameter is placed co-axially, locate C.G. w.r.t. apex of cone. <br> As the given combination of solids is symmetric about $\mathrm{Y}-\mathrm{Y}$ axis $\therefore \bar{X}=\mathrm{x}_{1}=\mathrm{x}_{2}=\frac{300}{2}=150 \mathrm{~mm}$ <br> Fig. 1 - $\begin{aligned} \mathrm{V}_{1} & =\frac{1}{3} \pi r^{2} h \\ & =\frac{1}{3} \pi(100)^{2} \times 600 \\ & =6.283 \times 10^{6} \mathrm{~mm}^{3} \\ \mathrm{y}_{1} & =\mathrm{h}-\frac{\mathrm{h}}{4}=600-\frac{600}{4}=450 \mathrm{~mm} \end{aligned}$ <br> Fig. 2 - $\begin{aligned} \mathrm{V}_{2} & =\frac{4}{3} \pi r^{3}=\frac{4}{3} \pi(150)^{3}=14.137 \times 10^{6} \mathrm{~mm}^{3} \\ \mathrm{y}_{2} & =600+\mathrm{r}=600+150=750 \mathrm{~mm} \\ \overline{\mathrm{Y}} & =\frac{\mathrm{V}_{1} \mathrm{y}_{1}+\mathrm{V}_{2} \mathrm{y}_{2}}{\mathrm{~V}_{1}+\mathrm{V}_{2}} \\ & =\frac{\left(6.283 \times 10^{6} \times 450\right)+\left(14.137 \times 10^{6} \times 750\right)}{\left(6.283 \times 10^{6}+14.137 \times 10^{6}\right)} \\ \overline{\mathrm{Y}} & =657.69 \mathrm{~mm} \text { from bottom } \end{aligned}$ | $1{ }^{1}$ | 4 |

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline Q. 6 \& (f)
Ans. \& \begin{tabular}{l}
A right circular cone of base dia. 100 mm and height \(\mathbf{2 0 0} \mathbf{~ m m}\) is placed on the hemisphere of the same diameter. Calculate its C.G. \\
As the given combination of solids is symmetric about \(\mathrm{Y}-\mathrm{Y}\) axis
\[
\therefore \bar{X}=\mathrm{x}_{1}=\mathrm{x}_{2}=\frac{100}{2}=50 \mathrm{~mm}
\] \\
Fig. 1 -
\[
\begin{aligned}
\mathrm{V}_{1} \& =\frac{2}{3} \pi r^{3} \\
\& =\frac{2}{3} \pi(50)^{3} \\
\& =261.80 \times 10^{3} \mathrm{~mm}^{3} \\
\mathrm{y}_{1} \& =\mathrm{r}-\frac{3 \mathrm{r}}{8}=50-\frac{3 \times 50}{8}=31.25 \mathrm{~mm}
\end{aligned}
\] \\
Fig. 2 -
\[
\begin{aligned}
\mathrm{V}_{2} \& =\frac{1}{3} \pi r^{2} h=\frac{1}{3} \pi(50)^{2} \times 200=523.60 \times 10^{3} \mathrm{~mm}^{3} \\
\mathrm{y}_{2} \& =\mathrm{r}+\frac{h}{4}=50+\frac{200}{4}=100 \mathrm{~mm} \\
\bar{Y} \& =\frac{V_{1} y_{1}+V_{2} y_{2}}{V_{1}+V_{2}} \\
\& =\frac{\left(261.80 \times 10^{3} \times 31.25\right)+\left(523.60 \times 10^{3} \times 100\right)}{\left(261.80 \times 10^{3}+523.60 \times 10^{3}\right)}
\end{aligned}
\]
\end{tabular} \& 1

1
1

$1 / 2$
$1 / 2$
$1 / 2$ \& 4 <br>
\hline
\end{tabular}

