

(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Winter 2017

Subject: Engineering Mechanics

Important Instructions to Examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	(a) Ans.	Attempt any TEN of the following : Define Simple Machine. Simple Machine: It is a device used in lifting a heavy load applied at one point by applying comparatively smaller force called effort applied at another convenient point.	02	(20) 02
	(b) Ans.	Define Mechanical Advantage. Mechanical Advantage: It is the ratio of the load (W) lifted by the machine to the effort (P) applied to lift the load.	02	02
	(c) Ans.	Define Ideal Effort. Ideal Effort: It is the ratio of actual load to velocity ratio of machine.	02	02
	(d) Ans.	Define Statics and Dynamics.Statics: It is the branch of applied mechanics which deals with forces and their action on bodies at rest.Dynamics: It is the branch of applied mechanics which deals with forces and their action on bodies in motion.	01 01	02

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	(e) Ans.	Define force and write its S.I. unit. Force: It is an external agency either push or pulls which changes or	01	
		tends to change the state of rest or of uniform motion of a body, upon which it acts.	01	02
		S. I. Unit of force – Newton (N)	UI	
	(f) Ans.	State principle of transmissibility of forces. Principle of transmissibility of forces : It states that, "if a force acts at a point on a rigid body, it is assumed to act at any other point on the line of action of force within the same body".	02	02
	(g)	State Bow's Notation. Where it is used?		
	Ans.	Consider a force of 100 N is acting on a body. In this method, capital letters P & Q are marked on both side of line of action of force. A force of 100 N is now read as PQ as shown below in space diagram. To represent a force of 100 N graphically, pq is drawn parallel to PQ as shown in vector diagram.	01	
		F = 100 N SPACE DIA.		02
		$\begin{array}{c} P \longrightarrow P \\ \downarrow \qquad 4 \text{ cm} \\ \downarrow \qquad VECTOR DIA. \end{array}$		
		SCALE = 1 cm = 25 N		
		Use: Bow's notation is used in graphical method to indicate the force.	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	(h) Ans.	Define free body and free body diagram. Free Body: In statics, for considering the equilibrium of the bodies under any system of forces, each body is separated from its surrounding; such body is known as a free body.	01	02
	(i)	 Free Body Diagram: If all active and reactive forces acting on free body are shown in the diagram such diagram is known as free body diagram. List the conditions of equilibrium for co-planer non-concurrent forces. 	01	
	Ans.	 Σ Fx = 0 i. e. Algebric sum of all the forces along X-axis must be equal to zero. Σ Fy = 0 i. e. Algebric sum of all the forces along Y-axis must be equal to zero. 	02	02
	(j)	 3) Σ M = 0 i. e. Algebric sum of moment of all the forces about any point must be equal to zero. Define angle of repose. 		
	Ans.	Angle of repose : It is defined as the angle made by the inclined plane with the horizontal plane at which the body placed on an inclined plane is just on the point of moving down the plane, under the action of its own weight.	02	02

Que.	Sub.	Model Answers	Marks	Total
Que. <u>No.</u> 1.	Sub. Que. (k)	Model Answers Define cone of friction. Cone of friction: The resultant reaction S makes an angle ϕ with normal reaction R as shown for given set of axes XY. Y-axis S R S XY. Y-axis X -axis	Marks 02	02
	(l) Ans.	 If X axis is rotated about Y axis, the resultant reaction S will also rotate. The line of action of action of S will always lie on surface of right circular cone whose vertex angle is equal to 2φ. This cone is known as cone of friction. The pitch of a double start square threaded screw is 10 mm. Determine the velocity ratio. 		
		Velocity Ratio is given by - $VR = 2\pi L / np$ OR $VR = 2\pi R / np$ Where, L = Length of handle R = Radius of effort wheel P = pitch of screw	02	02
		(Note : The data given in this question is insufficient. If students try to attempt, give appropriate marks.)		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2		Attempt any FOUR of the following :		(16)
	(a)	State Reversibility of a machine. Define self locking machine. State the conditions for reversibility and self locking.		
	Ans.	Reversibility of a machine : Sometimes a machine is capable of doing some work in reverse direction, even after the effort is removed. Such a machine is called the reversible machine and the action of such a machine is known as Reversibility of a machine.	01	
		Self-locking machine: A machine which is not capable of doing work in reverse direction after the effort is removed is called self locking machine.	01	04
		Conditions for reversibility of machine : $\eta \% > 50 \%$	01	
		Conditions for Self locking machine : $\eta \% < 50 \%$	01	
	(b)	A Weston differential pulley consists of a lower block and a upper block. The upper block has two pulleys, one of which has a radius of 125 mm and other has a radius of 115 mm. If the efficiency of the machine is 40%, calculate the effort required to raise a load of 1500 N.		
	Ans.	$D = 2R = 2 \times 125 = 250mm$ $d = 2r = 2 \times 115 = 230mm$ $VR = \frac{2D}{D-d} = \frac{2 \times 250}{250 - 230} = 25$ % $\eta = \frac{MA}{VR} \times 100$	02	
		$40 = \frac{MA}{25} \times 100$ $MA = 10$ W		04
		$ \begin{array}{c} \vdots \\ P \\ 10 = \frac{1500}{P} \\ \hline P = 150N \end{array} $	02	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	(c)	A double purchase crab used in a laboratory has following		
		dimensions :		
		Diameter of load drum = 160 mm		
		Length of the handle = 360 mm		
		No. of teeth on pinions = 20 and 30		
		No. of teeth on spur wheel = 75 and 90		
		When tested it was found that an effort of 90 N was required to		
		lift a load of 1800 N and an effort of 135 N was required to lift a load of 3150 N. Determine :		
		(i) Law of machine		
		(i) Probable effort to lift a load of 4500 N		
	Ans.	$VR = \frac{2L \times N_1 \times N_3}{d \times N_2 \times N_4} = \frac{2 \times 360 \times 75 \times 90}{160 \times 20 \times 30} = 50.625$	01	
		Using law of machine P = mW + C		
		P – Inw + C Putting values of load and effort		
		90 = $m(1800) + C$ (i)		
		135 = m(3150) + C(ii)		
		Solving simultaneous equations		
		m = 0.033		
		Putting value of m in eqn (i)	01	
		$90 = (0.033 \times 1800) + C$	01	
		C = 30.6 N		04
		Hence, Law of machine		
		P = (0.033) W + 30.6 N (iii)	01	
		Using, eqn. (iii)		
		P = (0.033) W + 30.6 N		
		$P = (0.033 \times 4500) + 30.6$		
		P = 179.1 N	01	
	(d)	Resolve the force of 120 N acting from origin to point (-3, 4) along x and y axis.		

Que.	Sub.	Model Answers	Marks	Tota Mork
No. 2.	Que. (e)	3) Position of resultant		Mark 04
		Let x be the perpendicular distance of the resultant from point A.		
		Using Varignon's theorem of moment		
		$\Sigma M_{F_{A}} = M_{R_{A}}$		
		$60 \sin 60 \times 100 = \mathbf{R} \times \mathbf{x}$		
		$60 \sin 60 \times 100 = 34.64 \times x$	02	
		x = 150 mm from point A.		
		The resultant must be located at a perpendicular distance of 150 mm from point A		
		on upper side of A so as to produce the clockwise moment about point A		
		(Note: The position of resultant with respect to Point B and C (i.e. x) will change according to forces taken in order.)		
	f)	Define moment of force. State its SI unit. Define couple and write its types.		
	Ans.	Moment of force: It is rotational effect produced by a force on a body on which it acts. It is equal to the magnitude of the force multiplied by	01	
		the perpendicular distance of the point from the line of action of force.S. I. Unit of moment: N-m, kN-m, kN-mm	01	04
		Couple: Two equal, unlike, parallel, non-collinear forces form a couple.	01	
		Types of couple :		
		1) Clockwise couple	01	
		2) Anticlockwise couple		

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
<u>3.</u>	Que.	Attempt any FOUR of the following		(16)
	(a) Ans.	State parallelogram law of forces and write equations for magnitude and direction of resultant force.		
		Parallelogram law of forces:		
		It states, "If two forces acting at and away from the point be represented in magnitude and direction by adjacent sides of a parallelogram, then the diagonal of the parallelogram passing through the point of intersection of the two forces represents the resultant in magnitude and direction."	01	
		$\begin{array}{c} B \\ Q \\ R \\ Q \\ Q$	01	04
		Equation for magnitude of resultant force:		
		$R = \sqrt{P^2 + Q^2 + 2P.Q.\cos\theta}$	01	
		Equation for direction of resultant force:		
		$\alpha = \tan^{-1} \left(\frac{Q \sin \theta}{P + Q \cos \theta} \right)$	01	
	(b)	Forces of 2, 4, 6 and 8 kN act on regular pentagon as shown in Fig. No.1 Find analytically the resultant in magnitude and direction.		
		2 kN 2 kN -72° 8 kN		
		Fig No. 1		

Subject: Engineering Mechanics

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
3.	(b) Ans.	$\sum F_x = 8 + 6\cos 36^\circ + 4\cos 72^\circ - 2\cos 72^\circ$	01	
		$\Sigma F_x = 13.47 \text{ kN}$ $\Sigma F_x = (-i\pi 2.0^9 + 4 - i\pi 72^9 + 2 - i\pi 72^9)$		
		$\sum F_{y} = 6\sin 36^{\circ} + 4\sin 72^{\circ} + 2\sin 72^{\circ}$ \Sigma F_{y} = 0.23 kN		
		$\sum F_y = 9.23 \text{ kN}$	01	
		$\mathbf{R} = \sqrt{\sum F_x^2 + \sum F_y^2}$		
		$R = \sqrt{13.47^2 + 9.23^2}$		04
		$\boxed{R = 16.33 \ kN}$	01	
		$\tan \theta = \frac{\sum F_y}{\sum F_x} = \frac{9.23}{13.47}$		
		$\theta = \tan^{-}(0.6852)$		
		$\boxed{\theta = 34.42^{\circ}}$	01	
		2 kN 4 kN		
		2 kN $4 kN$		
		70° 36° 72°		
		72° (36°) 72° ► 8 kN		
		A concurrent force system is shown in Fig. No.2 Find graphically		
	(c)	the resultant of this force system.		
		Y		
		600 N 400 N		
		50° 30°		
		X		
		1200 N		

Subject: Engineering Mechanics

Que.	Sub.	Model Answers	Marks	Total
No. 3.	Que. (d)	The resultant of a system of forces as shown in Fig. No. 3 is 500n and acts along X-axis towards the right. Find analytically the unknown force ' P ' and its inclination with X-axis.		Marks
		$x - \frac{\theta}{20^{\circ}} + \frac{45^{\circ}}{R} = 500 \text{ N}$		
		Fig. No. 3		
		$\sum F_x = 2000 \cos 45^\circ - 500 \cos 20^\circ - P \cos \theta - 500$		
		$\frac{1414.21 - 469.85 - P\cos\theta = 500}{P\cos\theta = 444.36}$ $\sum F_{v} = 2000\sin 45^{0} - 500\sin 20^{0} + P\sin\theta$	01	
		$\frac{ - - _{y}}{ 1414.21 - 171.01 + P \sin \theta} = 0$ $\frac{ P \sin \theta = -1243.2 }{ \theta = \tan^{-1} \left \frac{\sum F_{y}}{\sum F_{x}} \right } = \tan^{-1} \left \frac{1243.2}{444.36} \right $	01	04
		$\boxed{\frac{\theta = 70.28^{\circ}}{P = \frac{444.36}{\cos(70.28)}} = 1316.91N}$	01	
		$\frac{P = 1316.91N}{P = 1316.91N}$	01	
	(e)	Locate graphically the position of resultant for the parallel force system as shown in Fig. No.4 with respect to point 'A'.		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
		Fig. No. 4		

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(f)	Step 2)		
		Direction of resultant		
		<i>Positive</i> sign indicates of R that it acts vertially upwards		
		Step 3		
		Position of resultant		
		Taking moments of all forces about $4N$ force		
		$\Sigma M_{F_A} = (4 \times 0) - (6 \times 2) - (3 \times 3) - (2 \times 5)$		
		= -31 N.m	01	04
		$M_{R_A} = -Rx = -15x$		04
		Use varigon's theorem of moments		
		$\sum M_{F_A} = M_{R_A}$		
		-31 = -15x		
		x = 2.07 m	01	
		R= 15N upword, X= 2.06 m from 4 N force on right side		
		4 N 6 N 3 N 2 N		
		2 m 1 m 2 m		
		en 50,44 foreau la quarta 14,02 ino di segna 17 secondo 17,000 de la composición de la composición de la composición de		
		R = 15 N		
		4 N 6 N 3 N 2 N		
		A 2m 1m 2m	01	
		x = 2.07 m		

Que. No.	Sub. Que.		Model Ans	swers	Marks	Total Marks
Q. 4	240.	Atten	npt any FOUR of the following	:		(16)
	(a)	Differentiate equilibrant from resultant.				
	Ans.	Sr. No	Resultant	Equilibrant		
		1	Resultant is a single force which can produce the same effect on the body as it is produced by all forces acting together	Equilibrant is a single force which when acts with other forces brings the set of forces & body in equilibrium		
		2	It is donated by R	It is donated by E	01 mark	
		3	It causes displacement of body.	It keeps the body at rest	each (any four)	04
		4	The set of forces which causes the displacement of a body are called as components of a resultant or component forces.	The set of forces which keeps the body at rest are called as components of a equilibrant or equilibrant forces.		
		5		0		
				P P P & Q = Forces R = Resultant E = Equilibrant		
	(b)	State theor	-	m. List limitation of Lami's		
	Ans.	body	's Theorem : It states that, 'if thr keep it at rest, then each force is between the other two forces'.	• •	01	

Que.	Sub. Que	Model Answers	Marks	Total Marks
<u>No.</u> 4.	Que. (c)	An electric light fixture weighing 15N hangs from 'C' by two strings AC and BC. The string AC is inclined at 60° to the horizontal and BC at 45° to the vertical as shown in fig.No.6 Using Lami's theorem determine forces in string AC and BC.		Marks
	Ans.	Fig. No. 6 T_{BC} T_{BC}	01	
		Free body diagram Applying Lami's theorem, $\frac{15}{\sin 75^0} = \frac{T_{AC}}{\sin 135^0} = \frac{T_{BC}}{\sin 150^0}$ $\frac{15}{\sin 75^0} = \frac{T_{AC}}{\sin 135^0}$	01	04
		$T_{AC} = \frac{15}{\sin 75^{\circ}} \times \sin 135^{\circ}$ $\frac{T_{AC} = 10.98N}{\frac{15}{\sin 75^{\circ}}} = \frac{T_{BC}}{\sin 150^{\circ}}$	01	
		$T_{BC} = \frac{15}{\sin 75^0} \times \sin 150^0$ $\boxed{T_{BC} = 7.76N}$	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(f)	A simply supported beam of 4 m span is loaded with an u.d.l. of 5 kN/m for 2 m from left end and a point load of 30kN at 1m from right end .Find the support reactions using graphical method.		
	Ans.			
		10 KN 30 KN		
		R _A 1 m - 1 m - 1 m - 1 m - R _B [P Q R S are Bow's notation]	02	
		2 11 to go 3 11 to 10		04
		(a) Space diagram (Scale : 1 cm = 0.5 m)		
			02	
		R _A = 1.5 × 10 = 15 kN 		
		$R_{B} = 2.5 \times 10 = 25 \text{ kN}$ $Closer = 0 \text{ (pole)}$ $R_{A} = \text{length sp × scale}$ $= 1.5 \times 10 = 15 \text{ kN}$		
		$R_{A} = 1.5 \times 10 = 15 \text{ kN}$ $R_{B} = 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = 2.5 \times 10 = 25 \text{ kN}$ $R_{A} = \text{length sp} \times \text{scale}$ $= 1.5 \times 10 = 15 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$ $R_{B} = \text{length rs} \times \text{scale}$ $= 2.5 \times 10 = 25 \text{ kN}$		
		(b) Vector diagram (Scale : 1 cm = 10 kN)		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	2	Attempt of FOUR of the following:		(16)
	(a)	A body of weight 300N is lying on a rough horizontal plane having a coefficient of friction 0.3. Find the magnitude of force which can move the body, while acting at an angle of 25 ⁰ with the horizontal.		
	Ans.	Given: W= 300N, $\mu = 0.3, \theta = 25^{\circ}$ Find : P $\Sigma F_X = 0$ $P \cos \theta - F = 0$ $P \cos \theta - \mu R = 0$	01	
		$(:. F = \mu R = Friction \ factor)$ $P \cos 25 - 0.3R = 0$ $0.906P - 0.3R = 0$ $0.3R = 0.906P$ $\boxed{R = 3.021 \text{ P}}$ $\Sigma F_{Y} = 0$ $R + P \sin \theta - W = 0$ $3.021 \text{ P} + P \sin 25 - 300 = 0$ $\boxed{P = 87.12N}$	1 1/2	04
	b) Ans.	A body of weight 150N is resting on a rough horizontal plane and can be just moved by a force of 50 N applied horizontally. Find the coefficient of friction. Also find magnitude and direction of resultant reaction. Step 1		
		For limiting equilibrium $\sum F_x = 0$, and $\sum F_y = 0$ $\sum F_y = 0$ 50 - F = 0		
		$F = \mu R$ $W = 150 N$ $Motion$ $F = 0 N$ $W = 150 N$ $W = 150 N$		

Subject: Engineering Mechanics

Que.	Sub.	Madal Anorran	Maulta	Total
No.	Que.	Model Answers	Marks	Marks
5.	(b)	$50 - \mu \mathbf{R} = 0$		
		$\mu R = 50 N$		
		$\sum F_{Y} = 0$		
		$\sum F_{Y} = 0$		
		R - W = 0 R - 150 = 0		
		$\overline{R = 150 \text{ N}}$	01	
		$\frac{R - 130 N}{\mu R} = 50$		
		$\mu \times 150 = 50$		
		$\mu = 0.33$		
		$\frac{\mu - 0.55}{\text{Step 2}}$		
		To find the resultant reaction and direction,		
		For limiting equilibrium,		
		$\Sigma F_{\rm X} = 0$		
		$\mathbf{P} - F = 0$		
		F = P		
		F = 50N	01	
		Resultant reaction,		04
		$S = \sqrt{F^2 - R^2}$		04
		$S = \sqrt{50^2 - 150^2}$		
		S = 158.11N	01	
		$\mu = \tan \phi$		
		$\phi = \tan^{-}(\mu)$		
		$\phi = \tan^{-}(0.33)$		
		$\phi = 18.43^{\circ}$	01	
		$\frac{\varphi - 10.45}{Or}$	VI	
			0	
		$\tan\phi = \frac{F}{R}$	Or	
		$\tan\phi = \left(\frac{50}{150}\right)$		
			01	
		$\phi = 18.43^{\circ}$		

Que.	Sub.	Model Answers	Marks	Total
<u>No.</u> 5.	Que. (c)	Draw a neat sketch of ladder resting against smooth wall. Show all active and reactive forces. Elaborated notations used.		Marks
	Ans.	Wall μ_{w} R_{w} H_{w}	02	
		Where, $\mu_g = \text{Coefficient of friction between the ladder and the ground.}$ $\mu_w = \text{Coefficient of friction between the ladder and the wall.}$ $R_g = \text{Normal reaction at the ground.}$ $R_w = \text{Normal reaction at the wall.}$ $F_g = \text{Force of friction between the lader and the ground.}$ $F_w = \text{Force of friction between the lader and the wall.}$ The force of friction between the ladder and wall is given by $F_W = \mu_w R_W$	01	04
		If the wall is smooth, $\mu_{\rm w}=0 \qquad \therefore F_{\rm W}=0$	01	

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
5.	(d)	A heavy stone of mass 500kg is on a hill slope of 60 ⁰ incline. If the coefficient of friction between ground and stone is 0.4 is the stone stable? Justify.		
	Ans.	Step 1) For limiting equilibrium, $\Sigma F_{X} = 0$, $R - W \cos \alpha = 0$ $R = 500 \times 9.811 \cos 60^{0}$ $\boxed{R = 2452.5 \text{ N}}$ Step 2) Friction force, $F = \mu R$ $F = 0.4 \times 2452.5$ $\boxed{F = 981N}$ (i) Step 3)	01	
		Component of weight down the plane $W \sin \alpha = 500 \times 9.81 \times \sin 60^{\circ}$ $\overline{W = 4247.85N}$ (ii)Comparing equation (i) and (ii) $W \sin \alpha > F$ Step 4)The stone will slide down the plane because of its own i.e.	01	04
	(e)	It will not be stable. For a certain machine the law is P = (0.08 W + 5) N. Calculate the effort required to lift a load of 5 kN. Also calculate maximum M.A. and identify the type of machine. V.R. of the machine is 20.	01	
	Ans.	Step 1) Effort requried to lift 5 kN load P = (0.08W+5)N $P = ((0.08 \times 5000)+5))$ P = 405N		
			01	

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	(e)	Step 2) Maximum M. A.		IVIAI KS
		$M.A. = \frac{1}{m} = \frac{1}{0.08}$ [Maximum M.A. = 12.5]	01	04
		Step 3) Type of machine $\eta_{max} = \frac{1}{m \times VR} X100 = \frac{1}{0.08 \times 20} X100$		
		$\frac{\eta_{\text{max}}}{\eta_{\text{max}} = 62.5\%} = 0.08 \times 20^{-1100}$ $(\eta_{\text{max}} = 62.5\%)$ Step 4)	01	
		$\eta_{max} = 62.5\% > 50\%$ Since the maximum efficiency is more then 50%, the machine Reversible.	01	
	(f)	The screw jack has a pitch of 3 mm and efficiency 28%. Find the effort required at the end of arm 360 mm to lift the load of 5 kN.		
	Ans.	Pitch = 3mm,		
		$\eta = 28\%,$		
		W = 5kN, L= 360 mm		
		$V.R. = \frac{2\pi L}{p} = \frac{2 \times \pi \times 360}{3}$	01	
		V.R.=753.98 MA= $\frac{W}{P} = \frac{5000}{P}$	01	
		$\eta\% = \frac{MA}{VR} \times 100\%$		04
		$28 = \left(\frac{\frac{5000}{P}}{753.98}\right)$	01	
		P = 23.68N $P = 23.68N$	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6		Attempt any FOUR of the following:		(16)
	(a)	Find centroid of ISA 90 x 60 x 8 mm.		
	(a) Ans.	Find centroid of ISA 90 x 60 x 8 mm. Step 1) $a_1 = 90 \times 8 = 720mm^2$, $a_1 = 52 \times 8 = 416mm^2$, $A = a_1 + a_1 = 720 + 416$ $\boxed{A = 1136mm^2}$ Step 2) $x_1 = \frac{8}{2} = 4mm$, $x_2 = 8 + \frac{52}{2} = 34mm$, $y_1 = \frac{90}{2} = 45mm$, $y_2 = \frac{8}{2} = 4mm$, Step 3) $\overline{x} = \frac{a_1x_1 + a_2x_2}{A}$ $= \frac{(720 \times 4) + (416 \times 34)}{1136}$ $\boxed{\overline{x} = 14.98mm}$	01 01 01	04
		$\bar{y} = \frac{a_1 y_1 + a_2 y_2}{A}$ $= \frac{(720 \times 45) + (416 \times 4)}{1136}$ $\bar{y} = 29.98mm$ $G(\bar{x}, \bar{y}) = (14.98mm, 29.98mm)$	01	

Que.	Sub.	Model Answers	Marks	Total Marks
No. 6.	Que. (b)	Find the centroid of plate shown in Fig. No. 7.		Marks
	Ans.	R=10 cm $20 cm$ $5 cm$ $5 cm$ $5 cm$ $Fig. No. 7$		
		Step 1)		
		$a_1 = Area \ of \ rectangle$		
		$a_1 = 15 \times 30 = 450 \text{ cm}^2$		
		$a_2 = Area \ of \ semi-circle,$		
		$a_{2} = \frac{\pi R^{2}}{2} = \frac{\pi \times 10^{2}}{2} = 157.08 cm^{2}$ $A = a_{1} - a_{2} = 450 - 157.08 = 292.92 cm^{2}$	01	
		Step 2)		
		To find x		
		$x_1 = \frac{15}{2} = 7.5 \ cm,$	01	04
		$x_{2} = 15 - \frac{4R}{3\pi} = 15 - \frac{4 \times 10}{3\pi} = 10.76 \ cm,$ $\bar{\mathbf{x}} = \frac{a_{1}x_{1} - a_{2}x_{2}}{A}$	01	
		$=\frac{(450\times7.5)-(157.08\times10.76)}{292.92}$ = 5.75 cm		
		$\overline{\mathbf{x}} = 5.75 \ cm$	01	
		$\overline{y} = \frac{30}{2}$		
		$\frac{\overline{y} = 15cm}{1}$		
		$G(\mathbf{x}, \mathbf{y}) = (5.75 \ cm, \ 15 \ cm)$		

Que. No.	Sub. Que.		Model Ar	nswers	Marks	Total Marks
6.	(c)	State a	nd explain Varignon's theor	em of moments.		
	Ans.	It states point is Let, Σ^{2}	equal to moment of resultant	ents of all forces about point A	02	
		Then, i.e $F_1x_1 - Where,$	$\sum M_{F_{A}} = M_{R_{A}}$ + $F_{2}x_{2} + F_{3}x_{3} + \dots + F_{n}x_{n} =$ F_n is the forces from the	$= R \times x$	01	04
		x ₁ ,x ₂ ,x		istances of forces from the point A	01	
	d)	Compa	re the terms centroid and co	enter of gravity.		
	Ans.	Sr. No.	Centroid	Center of gravity		
		1	through which the entire	It is defined as the point through which the whole weight of the body is assumed to act, irrespective of the position of a body.		
		2	e. g. Triangle, Square	e. g. Cone, Cylinder.	01 mark each	04
		3	$\bar{\mathbf{x}} = \frac{a_1 x_1 + a_2 x_2 + a_3 x_3 + \dots + a_n x_n}{a_1 + a_2 + a_3 + \dots + a_n}$	$\bar{\mathbf{x}} = \frac{\mathbf{V}_{1}\mathbf{x}_{1} + \mathbf{V}_{2}\mathbf{x}_{2} + \mathbf{V}_{3}\mathbf{x}_{3} + \dots + \mathbf{V}_{n}\mathbf{x}_{n}}{\mathbf{V}_{1} + \mathbf{V}_{2} + \mathbf{V}_{3} + \dots + \mathbf{V}_{n}}$		
		4	$\overline{y} = \frac{a_1 y_1 + a_2 y_2 + a_3 y_3 + \dots + a_n y_n}{a_1 + a_2 + a_3 + \dots + a_n}$	$\bar{y} = \frac{V_1 y_1 + V_2 y_2 + V_3 y_3 + \dots + V_n y_n}{V_1 + V_2 + V_3 + \dots + V_n}$		

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	(e)	A solid sphere of 18 cm in diameter is placed on the top of cylinder which is also 18 cm in diameter and 40 cm high such that their axes coincide. Find C.G. of the combination. Line of symmetry 18 cm° (1) 18 cm° (2) 40 cm° (2)		
		$\bar{X} = \frac{18}{2} = 9 cm$ $V_1 = \frac{4}{3} \pi r^3$ $V_1 = \frac{1}{3} \times \pi \times 9^2$	01	
		$ \begin{bmatrix} V_1 = 3053.63 \ cm^3 \\ V_2 = \pi r^2 h = \\ V_2 = \pi \times 9^2 \times 40 \\ \hline V_2 = 10178.76 \ cm^3 \\ y_1 = 40 + \frac{18}{4} = 40 + 9 = 49 \ cm $	01	04
		$y_{2} = \frac{40}{2} = 20 \ cm$ Step 3) $\overline{y} = \frac{V_{1}y_{1} + V_{2}y_{2}}{V_{1} + V_{2}}$ $\overline{y} = \frac{(3053.63 \times 49) + (10178.76 \times 20)}{3053.63 + 10178.76}$	01	
		$\bar{y} = \frac{353203.07}{13232.4}$ $\bar{y} = 26.69cm$ $(\bar{X}, \bar{Y}) = (9cm, 26.69cm)$	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	(f)	The frustum of a cone has top diameter 30 cm and bottom diameter 60 cm with height 18 cm. Find the center of gravity of frustum.		
	Ans.	Step 1) $\bar{x} = \frac{60}{2} = 30 cm$ By similar triangles, $\frac{h}{60} = \frac{h_2}{30}$ $h = \left(\frac{60}{30}\right) \times h_2$ $h_1 + h_2 = h$ $18 + h_1 = 2 h_2$	01	
		$18 + h_2 = 2 h_2$ $\boxed{h_2 = 18cm}$ Step 2) $V_1 = \text{Full volume of cone}$ $V_1 = \frac{1}{3}\pi r_1^2 h = \frac{1}{3} \times \pi \times 30^2 \times 36$ $\boxed{V_1 = 33929.2 \ cm^3}$ $V_2 = V \text{olume of cut cone}$ $V_2 = \frac{1}{3}\pi r^2 h_2 = \frac{2}{3} \times \pi \times 15^3 \times 18$	01	04
		$V_{2} = \frac{3}{3} m h_{2} = \frac{3}{3} m h_{10} m^{3}$ $V_{2} = 4241.15 \ cm^{3}$ $y_{1} = \frac{h}{4} = \frac{36}{4} = 9 \ cm$ $y_{2} = h_{1} + \frac{h_{2}}{4} = 18 + \frac{18}{4} = 22.5 \ cm$	01	
		Step 3) $\vec{y} = \frac{V_1 y_1 - V_2 y_2}{V_1 - V_2}$ $= \frac{(33929.2 \times 9) - (4241.15 \times 22.5)}{33929.2 - 4241.15}$ $\vec{y} = 7.0714 cm$	01	