Important Instructions to Examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1		Attempt any TEN of the following :		(20)
	(a) Ans.	Define Simple Machine. Simple Machine: It is a device used in lifting a heavy load applied at one point by applying comparatively smaller force called effort applied at another convenient point.	02	02
	(b) Ans.	Define Mechanical Advantage. Mechanical Advantage: It is the ratio of the load (W) lifted by the machine to the effort (P) applied to lift the load.	02	02
	(c) Ans.	Define Ideal Effort. Ideal Effort: It is the ratio of actual load to velocity ratio of machine.	02	02
	(d) Ans.	Define Statics and Dynamics. Statics: It is the branch of applied mechanics which deals with forces and their action on bodies at rest.	01	02
		Dynamics: It is the branch of applied mechanics which deals with forces and their action on bodies in motion.	01	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1.	(k) (l) Ans.	Define cone of friction. Cone of friction: The resultant reaction S makes an angle ϕ with normal reaction R as shown for given set of axes XY . Y-axis If X axis is rotated about Y axis, the resultant reaction S will also rotate. The line of action of action of S will always lie on surface of right circular cone whose vertex angle is equal to 2ϕ. This cone is known as cone of friction. The pitch of a double start square threaded screw is 10 mm . Determine the velocity ratio. Velocity Ratio is given by - $\mathrm{VR}=2 \pi \mathrm{~L} / \mathrm{np} \quad \mathrm{OR} \quad \mathrm{VR}=2 \pi \mathrm{R} / \mathrm{np}$ Where, $\mathrm{L}=$ Length of handle $\mathrm{R}=$ Radius of effort wheel $\mathrm{P}=$ pitch of screw (Note: The data given in this question is insufficient. If students try to attempt, give appropriate marks.)	02	02 02

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	(c)	A double purchase crab used in a laboratory has following dimensions : Diameter of load drum $=\mathbf{1 6 0} \mathbf{~ m m}$ Length of the handle $=\mathbf{3 6 0} \mathbf{~ m m}$ No. of teeth on pinions $=20$ and 30 No. of teeth on spur wheel $=75$ and 90 When tested it was found that an effort of $90 \mathbf{N}$ was required to lift a load of 1800 N and an effort of 135 N was required to lift a load of 3150 N . Determine : (i) Law of machine (ii) Probable effort to lift a load of $\mathbf{4 5 0 0} \mathbf{N}$ $\mathrm{VR}=\frac{2 \mathrm{~L} \times \mathrm{N}_{1} \times N_{3}}{d \times N_{2} \times N_{4}}=\frac{2 \times 360 \times 75 \times 90}{160 \times 20 \times 30}=50.625$ Using law of machine $\mathrm{P}=\mathrm{mW}+\mathrm{C}$ Putting values of load and effort $\begin{aligned} & 90=m(1800)+C----(i) \\ & 135=m(3150)+C---(i i) \end{aligned}$ Solving simultaneous equations $\mathrm{m}=0.033$ Putting value of m in eqn (i) $\begin{aligned} & 90=(0.033 \times 1800)+\mathrm{C} \\ & \mathrm{C}=30.6 \mathrm{~N} \end{aligned}$ Hence, Law of machine $\mathrm{P}=(0.033) \mathrm{W}+30.6 \mathrm{~N}---(i i i)$ Using, eqn. (iii) $\begin{aligned} & \mathrm{P}=(0.033) \mathrm{W}+30.6 \mathrm{~N} \\ & \mathrm{P}=(0.033 \times 4500)+30.6 \\ & \mathrm{P}=179.1 \mathrm{~N} \end{aligned}$ Resolve the force of $\mathbf{1 2 0} \mathbf{N}$ acting from origin to point $(-3,4)$ along \mathbf{x} and y axis.	01 01 01 01	04

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline \multirow[t]{13}{*}{2.} \& \multirow[t]{9}{*}{(d)} \& \& \& \multirow{13}{*}{04}

\hline \& \& \& \&

\hline \& \& $$
F=120 N^{(-3,4)}
$$ \& \&

\hline \& \& \& \&

\hline \& \& $$
(0,0)
$$ \& \&

\hline \& \& Origin \& \&

\hline \& \& \& \&

\hline \& \& $$
\begin{aligned}
& \theta=\tan ^{-1}\left|\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right|=\tan ^{-1}\left|\frac{4-0}{3-0}\right|=53.13^{\circ} \\
& F x=-F \cos \theta=-120 \cos 53.13^{0}=-72 \mathrm{~N}
\end{aligned}
$$ \& 01
$11 / 2$ \&

\hline \& \& $$
F y=F \sin \Theta=120 \sin 53.13^{\circ}=95.99 \mathrm{~N}
$$ \& $11 / 2$ \&

\hline \& (e)

Ans. \& | Three forces $40 \mathrm{~N}, 60 \mathrm{~N}$ and 80 N act along three sides of an equilateral triangle of sides 100 mm each taken in order. Find the magnitude and position of resultant force. |
| :--- |
| (Note: The point at which position of Resultant is to be find is not mentioned) | \& \&

\hline \& \& \& \&

\hline \& \& | 1) Resolving all forces - $\begin{aligned} & \Sigma \mathrm{Fx}=+40 \cos 60+60 \cos 60-80=-30 \mathrm{~N} \\ & \Sigma \mathrm{Fy}=+40 \sin 60-60 \sin 60=-17.320 \mathrm{~N} \end{aligned}$ |
| :--- |
| 2) Magnitude of Resultant $\begin{aligned} & \mathrm{R}=\sqrt{\left(\sum \mathrm{Fx}\right)^{2}+\left(\sum \mathrm{Fy}\right)^{2}} \\ & \mathrm{R}=\sqrt{(-30)^{2}+(-17.320)^{2}} \end{aligned}$ | \& 01 \&

\hline \& \& $$
\mathrm{R}=34.640 \mathrm{~N}
$$ \& 01 \&

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3.	(b) ${ }_{\text {Ans. }}$	$\begin{aligned} & \sum F_{x}=8+6 \cos 36^{0}+4 \cos 72^{\circ}-2 \cos 72^{0} \\ & \sum F_{x}=13.47 \mathrm{kN} \\ & \sum F_{y}=6 \sin 36^{0}+4 \sin 72^{\circ}+2 \sin 72^{\circ} \\ & \sum F_{y}=9.23 \mathrm{kN} \\ & \mathrm{R}=\sqrt{\sum F_{x}^{2}+\sum F_{y}^{2}} \\ & \mathrm{R}=\sqrt{13.47^{2}+9.23^{2}} \\ & R=16.33 \mathrm{kN} \\ & \tan \theta=\frac{\sum F_{y}}{\sum F_{x}}=\frac{9.23}{13.47} \\ & \theta=\tan ^{-}(0.6852) \\ & \theta=34.42^{\circ} \end{aligned}$ A concurrent force system is shown in Fig. No. 2 Find graphically the resultant of this force system.	01 01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(c) (d) Ans.	3) Hinged beam Find analytically the reaction at supports as shown in Fig.No.5. Fig. No. 5 $\Sigma M_{A}=0$ Taking moment of all forces @ point A $\begin{aligned} & -\mathrm{R}_{\mathbf{B}} \times 9+5 \times 2+5 \times 5=0 \\ & 35=9 R_{B} \\ & \begin{array}{l} R_{B}=3.88 \mathrm{kN} \\ \sum F y=0 \\ R_{A} \sin \alpha-5-5+\mathrm{R}_{B}=0 \\ R_{A} \sin \alpha=6.12 \mathrm{kN} \\ \sum F x=0 \\ R_{A} \cos \alpha-8.66=0 \\ R_{A} \cos \alpha=8.66 \mathrm{kN} \\ \alpha=\tan ^{-1}\left\|\frac{R_{A} \sin \alpha}{R_{A} \cos \alpha}\right\|=\tan ^{-1}\left\|\frac{6.12}{8.66}\right\|=34.99^{\circ} \end{array} \end{aligned}$ Substituting the value of α in $\begin{aligned} & R_{A} \sin \alpha=6.12 \mathrm{kN} \\ & R_{A}=10.68 \mathrm{kN} \\ & \mathrm{R}_{B}=3.88 \mathrm{kN} \end{aligned}$	${ }^{1 / 2}$	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4.	(e)	An electric light fixture weighing 15 N hangs from ' C ' by two strings $A C$ and $B C$. The string $A C$ is inclined at 60° to the horizontal and $B C$ at 45^{0} to the vertical as shown in fig.No. 6 Using Lami's theorem determine forces in string AC and BC. Fig. No. 6 Free body diagram Applying Lami's theorem, $\begin{aligned} & \frac{15}{\sin 75^{0}}=\frac{T_{A C}}{\sin 135^{0}}=\frac{T_{B C}}{\sin 150^{\circ}} \\ & \frac{15}{\sin 75^{0}}=\frac{T_{A C}}{\sin 135^{0}} \\ & T_{A C}=\frac{15}{\sin 75^{0}} \times \sin 135^{0} \\ & T_{A C}=10.98 N \\ & \frac{15}{\sin 75^{0}}=\frac{T_{B C}}{\sin 150^{\circ}} \\ & T_{B C}=\frac{15}{\sin 75^{0}} \times \sin 150^{\circ} \\ & T_{B C}=7.76 \mathrm{~N} \end{aligned}$	01	04

Que. No.	Sub. Que	Model Answers	Marks	Total Marks
5.	(b)	$50-\mu \mathrm{R}=0$		
		$\mu \mathrm{R}=50 \mathrm{~N}$		
		$\sum \mathrm{F}_{\mathrm{Y}}=0$		
		$\sum \mathrm{F}_{\mathrm{Y}}=0$		
		$\mathrm{R}-\mathrm{W}=0$		
		$\mathrm{R}-150=0$		
		$\mathrm{R}=150 \mathrm{~N}$	01	
		$\begin{aligned} \mu \mathrm{R} & =50 \\ \mu \times 150 & =50 \end{aligned}$		
		$\mu=0.33$		
		Step 2		
		To find the resultant reaction and direction,		
		For limiting equilibrium,		
		$\sum \mathrm{F}_{\mathrm{X}}=0$		
		$\mathrm{P}-F=0$		
		$F=P$		
		$F=50 \mathrm{~N}$	01	
		Resultant reaction,		04
		$\mathrm{S}=\sqrt{\mathrm{F}^{2}-R^{2}}$		
		$\mathrm{S}=\sqrt{50^{2}-150^{2}}$		
		S=158.11N	01	
		$\mu=\tan \phi$		
		$\phi=\tan ^{-}(\mu)$		
		$\phi=\tan ^{-}(0.33)$		
		$\phi=18.43^{\circ}$	01	
		Or		
		$\tan \phi=\frac{F}{R}$	Or	
		$\tan \phi=\frac{-}{R}$		
		$\tan \phi=\left(\frac{50}{}\right)$		
		$\tan \phi=(\overline{150})$	01	
		$\phi=18.43^{\circ}$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5.	(c) Ans.	Draw a neat sketch of ladder resting against smooth wall. Show all active and reactive forces. Elaborated notations used. Where, $\mu_{\mathrm{g}}=$ Coefficient of friction between the ladder and the ground. $\mu_{\mathrm{w}}=$ Coefficient of friction between the ladder and the wall. $\mathrm{R}_{\mathrm{g}}=$ Normal reaction at the ground. $\mathrm{R}_{\mathrm{w}}=$ Normal reaction at the wall. $\mathrm{F}_{\mathrm{g}}=$ Force of friction between the lader and the ground. $F_{w}=$ Force of friction between the lader and the wall. The force of friction between the ladder and wall is given by $\mathrm{F}_{\mathrm{w}}=\mu_{\mathrm{w}} \mathrm{R}_{\mathrm{w}}$ If the wall is smooth, $\mu_{\mathrm{w}}=0 \quad \therefore \mathrm{~F}_{\mathrm{w}}=0$	02	04

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline \multirow[t]{7}{*}{Q. 6} \& \& Attempt any FOUR of the following: \& \& (16) \\
\hline \& (a) \& Find centroid of ISA \(90 \times 60 \times 8 \mathrm{~mm}\). \& \& \\
\hline \& Ans. \& Step 1) \& \& \\
\hline \& \& \[
\begin{aligned}
\& a_{1}=90 \times 8=720 \mathrm{~mm}^{2}, \\
\& a_{1}=52 \times 8=416 \mathrm{~mm}^{2}, \\
\& A=a_{1}+a_{1}=720+416
\end{aligned}
\] \& 01 \& \\
\hline \& \& \begin{tabular}{l}
\[
A=1136 \mathrm{~mm}^{2}
\] \\
Step 2)
\[
\begin{aligned}
\& x_{1}=\frac{8}{2}=4 \mathrm{~mm} \\
\& x_{2}=8+\frac{52}{2}=34 \mathrm{~mm}
\end{aligned}
\]
\end{tabular} \& 01 \& \\
\hline \& \& \begin{tabular}{l}
\[
\begin{aligned}
\& y_{1}=\frac{90}{2}=45 \mathrm{~mm}, \\
\& \mathrm{y}_{2}=\frac{8}{2}=4 \mathrm{~mm},
\end{aligned}
\] \\
Step 3)
\[
\begin{aligned}
\overline{\mathrm{x}} \& =\frac{a_{1} x_{1}+a_{2} x_{2}}{A} \\
\& =\frac{(720 \times 4)+(416 \times 34)}{1136}
\end{aligned}
\]
\end{tabular} \& \& 04 \\
\hline \& \& \[
\begin{aligned}
\& -\overline{\mathrm{x}}=14.98 \mathrm{~mm} \\
\& -\overline{\mathrm{y}}=\frac{a_{1} y_{1}+a_{2} y_{2}}{A} \\
\& =\frac{(720 \times 45)+(416 \times 4)}{1136} \\
\& \overline{\mathrm{y}}=29.98 \mathrm{~mm} \\
\& -\overline{\mathrm{x}}, \mathrm{y})=(14.98 \mathrm{~mm}, 29.98 \mathrm{~mm})
\end{aligned}
\] \& 01

01 \&

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	(b) Ans.	Find the centroid of plate shown in Fig. No. 7. Fig. No. 7 Step 1) $a_{1}=$ Area of rectangle $a_{1}=15 \times 30=450 \mathrm{~cm}^{2}$ $a_{2}=$ Area of semi-circle, $\begin{aligned} & \mathrm{a}_{2}=\frac{\pi \mathrm{R}^{2}}{2}=\frac{\pi \times 10^{2}}{2}=157.08 \mathrm{~cm}^{2} \\ & A=a_{1}-a_{2}=450-157.08=292.92 \mathrm{~cm}^{2} \end{aligned}$ Step 2) To find x $\begin{aligned} & x_{1}=\frac{15}{2}=7.5 \mathrm{~cm}, \\ & x_{2}=15-\frac{4 R}{3 \pi}=15-\frac{4 \times 10}{3 \pi}=10.76 \mathrm{~cm}, \\ & \overline{\mathrm{x}}=\frac{a_{1} x_{1}-a_{2} x_{2}}{A} \\ & =\frac{(450 \times 7.5)-(157.08 \times 10.76)}{292.92} \\ & =5.75 \mathrm{~cm} \\ & \overline{\mathrm{x}}=5.75 \mathrm{~cm} \\ & \overline{\mathrm{y}}=\frac{30}{2} \\ & \overline{\mathrm{y}}=15 \mathrm{~cm} \end{aligned}$ $G(\mathrm{x}, \mathrm{y})=(5.75 \mathrm{~cm}, 15 \mathrm{~cm})$	01 01 01 01	04

Que. No.	Sub. Que	Model Answers	Marks	Total Marks
6.	(e)	A solid sphere of 18 cm in diameter is placed on the top of cylinder which is also 18 cm in diameter and 40 cm high such that their axes coincide. Find C.G. of the combination. $\overline{\mathrm{X}}=\frac{18}{2}=9 \mathrm{~cm}$ $V_{1}=\frac{4}{3} \pi r^{3}$ $V_{1}=\frac{1}{3} \times \pi \times 9^{2}$ $V_{1}=3053.63 \mathrm{~cm}^{3}$ $V_{2}=\pi r^{2} h=$ $V_{2}=\pi \times 9^{2} \times 40$ $V_{2}=10178.76 \mathrm{~cm}^{3}$ $y_{1}=40+\frac{18}{4}=40+9=49 \mathrm{~cm}$ $y_{2}=\frac{40}{2}=20 \mathrm{~cm}$ Step 3) $\begin{aligned} & \overline{\mathrm{y}}=\frac{V_{1} y_{1}+V_{2} y_{2}}{V_{1}+V_{2}} \\ & \overline{\mathrm{y}}=\frac{(3053.63 \times 49)+(10178.76 \times 20)}{3053.63+10178.76} \\ & \overline{\mathrm{y}}=\frac{353203.07}{13232.4} \\ & \overline{\mathrm{y}}=26.69 \mathrm{~cm} \\ & (\overline{\mathrm{x}}, \overline{\mathrm{Y}})=(9 \mathrm{~cm}, 26.69 \mathrm{~cm}) \end{aligned}$	01 01 01 01 01	04

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6.	(f) Ans.	The frustum of a cone has top diameter 30 cm and bottom diameter 60 cm with height 18 cm . Find the center of gravity of frustum. Step 1) $\overline{\mathrm{x}}=\frac{60}{2}=30 \mathrm{~cm}$ By similar triangles, $\begin{aligned} & \frac{h}{60}=\frac{h_{2}}{30} \\ & h=\left(\frac{60}{30}\right) \times h_{2} \\ & h=2 h_{2} \\ & h_{1}+h_{2}=h \\ & 18+h_{2}=2 h_{2} \\ & h_{2}=18 \mathrm{~cm} \end{aligned}$ Step 2) $V_{1}=$ Full volume of cone $\begin{aligned} & V_{1}=\frac{1}{3} \pi r_{1}^{2} h=\frac{1}{3} \times \pi \times 30^{2} \times 36 \\ & V_{1}=33929.2 \mathrm{~cm}^{3} \end{aligned}$ $V_{2}=V$ olume of cut cone $\begin{aligned} & V_{2}=\frac{1}{3} \pi r^{2} h_{2}=\frac{2}{3} \times \pi \times 15^{3} \times 18 \\ & V_{2}=4241.15 \mathrm{~cm}^{3} \\ & y_{1}=\frac{h}{4}=\frac{36}{4}=9 \mathrm{~cm} \\ & y_{2}=h_{1}+\frac{h_{2}}{4}=18+\frac{18}{4}=22.5 \mathrm{~cm} \end{aligned}$ Step 3) $\begin{aligned} \overline{\mathrm{y}} & =\frac{V_{1} y_{1}-V_{2} y_{2}}{V_{1}-V_{2}} \\ & =\frac{(33929.2 \times 9)-(4241.15 \times 22.5)}{33929.2-4241.15} \\ \overline{\mathrm{y}} & =7.0714 \mathrm{~cm} \end{aligned}$	01	04

