# 17204

# 16172 3 Hours / 100 Marks

Seat No.

Instructions: (1) All Questions are *compulsory*.

- (2) Answer each next main Question on a new page.
- (3) Illustrate your answers with neat sketches wherever necessary.
- (4) Figures to the right indicate full marks.
- (5) Assume suitable data, if necessary.
- (6) Use of Non-programmable Electronic Pocket Calculator is permissible.
- (7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

|    |                                   |                                                                                                      | Marks |
|----|-----------------------------------|------------------------------------------------------------------------------------------------------|-------|
| 1. | Answer any TEN of the following : |                                                                                                      | 20    |
|    | (a)                               | Explain the term law of machine.                                                                     |       |
|    | (b)                               | How will you find whether machine is reversible or not ?                                             |       |
|    | (c)                               | State V.R. of simple axle & wheel.                                                                   |       |
|    | (d)                               | Differentiate between statics & dynamics.                                                            |       |
|    | (e)                               | What is Unit Newton force ?                                                                          |       |
|    | (f)                               | State parallelogram law & forces of derive the equations for magnitude direction of resultant force. | &     |
|    | (g)                               | State Varignon's theorem.                                                                            |       |
|    | (h)                               | What are the limitations of Lami's theorem ?                                                         |       |
|    | (i)                               | Differentiate between resultant & equilibrant.                                                       |       |
|    |                                   |                                                                                                      |       |

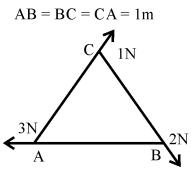
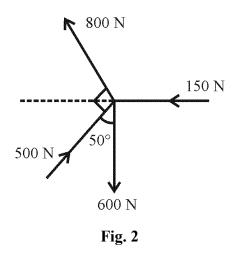
[1 of 8] P.T.O.

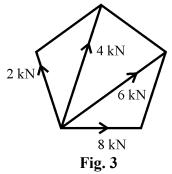
- (j) What are the two advantages of friction ?
- (k) Define Angle of repose.
- (1) What is the relation between coefficient of friction & angle of repose ?
- (m) Calculate & show the centroid of circle of 50 mm diameter.
- (n) Differentiate between centroid & centre of gravity.

- (a) The velocity ratio of a certain machine is 50. Determine the effort required to lift a load of 1500 N if the efficiency of the machine is 40%.
- (b) Certain machine has a law of machine P = 0.025 W + 20 N, with V.R. = 60.Calculate its efficiency at a load of 1 kN.
- (c) In a lifting machine, a load of 10 kN is raised by effort of 300 N. If the efficiency is 75%. Calculate MA & V.R., if the machine lifts 20 kN load by effort of 550 N. Find the law of machine.
- (d) In a differential axle & wheel, the dia. of wheel is 400 mm & that of axle are 100 mm & 80 mm, if an effort of 50 N can lift a load of 1500 N, find V.R. & efficiency of the machine.
- (e) A Screw Jack has effort wheel dia. of 200 mm & pitch is 5 mm. Find V.R., if load of 1000 N is lifted by an effort of 250 N. Find the efficiency of a machine.
- (f) In a Weston's Pulley block, the radius of the smaller wheel is <sup>3</sup>/<sub>4</sub> than that of larger wheel. What load is lifted by the pulley block with an effort of 100 N at an efficiency of 50% ?

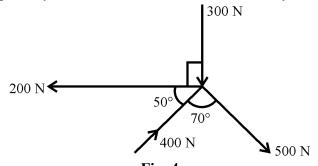
16

- (a) Find the components of the force 100 kN (push) acting at 270° with X-axis.
- (b) What are the components of 60 N force acting horizontal in two directions on other side, at an angle of 30° each ?
- (c) Find the algebraic sum of moments of all the forces shown in Fig. 1 about the point C.



Fig. 1

- (d) Four forces of 30 N ↑, 40 N ↓, 70 N ↑ & 60 ↓ are acting in a series. Distances between the forces are 400 mm, 600 mm & 800 mm respectively. Find the moment of a couple.
- (e) Find the angle between two equal forces P, if their resultant is also equal to P.
- (f) Find the resultant of all the forces as shown in Fig. 2. Mark its position & direction on a sketch.

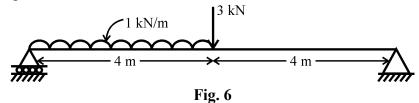



**P.T.O.** 

(a) Find the Resultant and Magnitude and direction of the forces acting on a regular pentagon shown in Fig. 3



- (b) Six parallel forces of magnitude 1000 N, 1500 N, 1800 N, 2000 N, 2400 N & 2700 N are acting at 1, 3, 5, 7, 8 m from the 1<sup>st</sup> force. Forces 1<sup>st</sup>, 3<sup>rd</sup> and 5<sup>th</sup> are acting upwards while other acting downwards. Find the resultant force analytically.
- (c) Write any four properties of a couple.
- (d) Find graphically the resultant of a concurrent force system. See Fig. 4






(e) Find the support reaction of the beam graphically. See Fig. 5 1 m 1 m 2 m 1 m 1 m 1 m



(f) Calculate reaction at roller support and hinge support by graphical method of Fig. 6



(a) A horizontal force P as shown in Fig. 7 keeps the weight of 100 N in equilibrium. Find the magnitude P and tension in the string T.

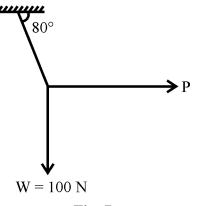



Fig. 7

- (b) A sphere of weight 400 N rests in a groove of smooth inclined surfaces which are making 60° & 30° inclination to the horizontal. Find the reactions at the contact surfaces.
- (c) A beam of span 4 m is simply supported at its ends. It carries concentrated load of 15 kN & 20 kN at 1 m & 2 m from left hand support respectively. It carries U.D.L. of 10 kN/m for 2 m from the right end. Determine reactions at the support.
- (d) A parcel weighing 200 N is just on the point of moving horizontally by a force of 52 N. What is the coefficient of friction ?

500 N

(e) Find the value of W if the body is in limiting equilibrium. See Fig. no. 8

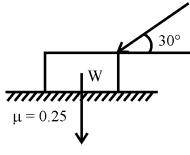
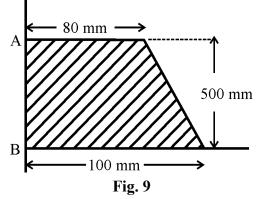
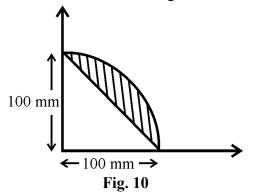
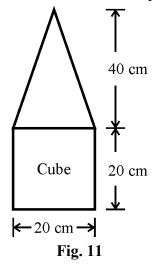




Fig. 8

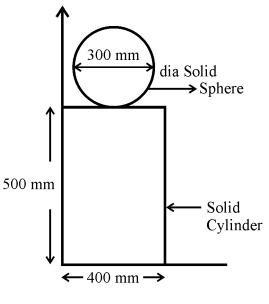

(f) A 200 N block is at rest on a 30° incline. The coefficient of friction between block and the incline is 0.20. Compute the value of a horizontal force P that cause motion to impend up the incline.

#### 17204


- (a) A L section consists of two legs 100 mm  $\times$  20 mm each with 120 mm as overall depth.
- (b) Find the Centroidal position of shaded area with respect to AB. See Fig. 9.



(c) Locate Centroid of Shaded Area. See Fig. 10




(d) A solid cone of height 40 cm is placed on a cube of side 20 cm as shown in Fig. 11. Locate the position of C.G. with respect to tip of the cone.



#### 17204

(e) Find the centre of gravity of composite solid w.r.t. *x* & y-axis. See Fig. 12.





(f) A frustum of solid circular cone of top diameter 30 cm, bottom diameter 60 cm and height of 50 cm. Find the centre of gravity of the frustum.

17204