Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline \multirow[t]{7}{*}{Q. 1} \& \begin{tabular}{l}
c) \\
Ans.
\end{tabular} \& \begin{tabular}{l}
State VR of Simple axle \& wheel. \\
VR of Simple axle \& Wheel = D/d \\
Whether, D = Diameter of Effort Wheel \\
d = Diameter of load drum
\end{tabular} \& 2 \& 2 \\
\hline \& \multirow[t]{2}{*}{\begin{tabular}{l}
d) \\
Ans.
\end{tabular}} \& \begin{tabular}{l}
Differentiate between statics \& dynamics. \\
Statics is the branch of applied mechanics which deals with forces \& their action on bodies at rest.
\end{tabular} \& 1 \& 2 \\
\hline \& \& Dynamics is the branch of applied mechanics which deals with forces \& their action on bodies in motion. \& 1 \& \\
\hline \& \begin{tabular}{l}
e) \\
Ans.
\end{tabular} \& \multirow[t]{4}{*}{\begin{tabular}{l}
What is Unit Newton force? \\
Unit Newton force is that force which when acts on a body of mass 1 Kg produces an acceleration of \(1 \mathrm{~m} / \mathrm{sec}^{2}\) in it.
\[
\begin{gathered}
\xrightarrow{a}=2 \mathrm{~m} / \mathrm{sec}^{2} \\
m=1 \mathrm{~kg} \rightarrow F=1 \mathrm{~N}
\end{gathered}
\] \\
State parallelogram law of forces. Derive the equations for magnitude \& direction of resultant force. \\
Parallelogram of forces states, "If two forces acting at \& away from point be represented in magnitude \& direction by the two adjacent sides of parallelogram, then the diagonal of the parallelogram passing through the point of intersection of the two forces, represents the resultant in magnitude \& direction. \\
Let's consider two concurrent forces P \& Q acting at \& away from O as shown in Fig.. Let these two forces be represented in magnitude \& direction by two adjacent sides OA \& OB of the parallelogram OACB. Thus the line joining \(\mathrm{O} \& \mathrm{C}\) represents the resultant R in magnitude \& direction, according to law. \\
Draw CD perpendicular to meet OA produced. \\
Draw AC parallel to OB \& \(\mathrm{OB}=\mathrm{AC}=\mathrm{Q}\)
\end{tabular}} \& \multirow{4}{*}{2

1} \& \multirow{4}{*}{2}

\hline \& f) \& \& \&

\hline \& Ans. \& \& \&

\hline \& \& \& \&

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 1	i)			
		Differentiate between resuitant \& equilibrant.		
	Ans.	Resultant Equilibrant		
		1) Resultant is a single force 1) Equilibrant is a single force which can produce the same which when acts with other effect on the body as it is produced by all forces acting together.		
		$2)$ It is donated by R. 2) It is denoted by E.		
		$\begin{array}{l}\text { 3) It causes displacement of } \\ \text { body. }\end{array}$ 3) It keeps the body at rest.		
		4) The set of forces which causes the displacement of a body are called as components of a resultant or component forces. 4) The set of forces which keeps the body at rest are called as components of a equilibrant or equilibrant forces.	1M	2
		5)	each (any two)	
	$\begin{gathered} \text { j) } \\ \text { Ans. } \end{gathered}$	What are the two advantages of friction? 1) One can walk easily on rough surface than smooth surface. 2) Moving vehicle on road can be stopped suddenly by applying brakes. 3) One can hammer nail into wall. 4) One can easily hold pen, pencil \& can write on paper.	1 M each (any two)	2
	k) Ans.	Define angle of repose. Angle of repose is defined as the angle made by the inclined plane with the horizontal plane at which the body placed on an inclined plane is just on the point of moving down the plane, under the action of its own weight.	1	

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline \multirow[t]{8}{*}{Q. 2} \& \& Answer any FOUR of the following : \& \& 16 \\
\hline \& a) \& The velocity ratio of a certain machine is \(\mathbf{5 0}\). Determine the effort required to lift a load of \(1500 \mathbf{N}\) if the efficiency of the machine is \(40 \%\). \& \& \\
\hline \& Ans. \& \[
\begin{aligned}
\& \% \eta=\frac{M A}{V R} \times 100 \\
\& 40=\frac{M A}{50} \times 100 \\
\& M A=20
\end{aligned}
\] \& 2 \& \\
\hline \& \& \[
\begin{aligned}
\& B u t, M A=\frac{W}{P} \\
\& 20=\frac{1500}{P} \\
\& P=75 \mathrm{~N}
\end{aligned}
\] \& 2 \& 4 \\
\hline \& b)
Ans. \& \begin{tabular}{l}
Certain machine has a law of machine \(P=0.025 \mathrm{~W}+20 \mathrm{~N}\), with VR \(=\mathbf{6 0}\). Calculate its efficiency at a load of 1 KN . \\
1) Using Law of machine
\end{tabular} \& \& \\
\hline \& \& \begin{tabular}{l}
\[
\begin{aligned}
\mathrm{P} \& =(0.025 \mathrm{~W}+20) \mathrm{N} . \\
\& =((0.025 \mathrm{X} 1000)+20) \mathrm{N} \text {------------- Putting W }=1000 \mathrm{~N} \\
\& =45 \mathrm{~N}
\end{aligned}
\] \\
2)
\end{tabular} \& 2 \& \\
\hline \& \& \[
\begin{aligned}
\& M A=\frac{W}{P}=\frac{1000}{45}=22.222 \\
\& \% \eta=\frac{M A}{V R} X 100=\frac{22.222}{60} \times 100 \\
\& \% \eta=37.036 \%
\end{aligned}
\] \& 2 \& 4 \\
\hline \& c)

Ans. \& In a lifting machine, a load of 10 KN is raised by effort of $\mathbf{3 0 0} \mathbf{N}$. If the efficiency is 75%. Calculate MA \& VR, if the machine lifts a load by effort of 550 N . Find the law of machine.

$$
\begin{aligned}
& M A=\frac{W}{P}=\frac{10000}{300}=33.33 \\
& \% \eta=\frac{M A}{V R} X 100 \\
& V R=44.44
\end{aligned}
$$ \& 1 \&

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	d) Ans. e) Ans.	Law of machine is - $\begin{aligned} & P=m W+C \\ & 300=m(10000)+c-----(1) \\ & 550=m(20000)+c-----(2) \end{aligned}$ Subtracting equation (1) from (2) $\mathrm{m}=0.025$ Putting value of m in equation (1), $\begin{aligned} & 300=(0.025 \times 10000)+C \\ & \mathrm{C}=50 \mathrm{~N} \end{aligned}$ Hence, law of machine is, $\mathrm{P}=(0.025) \mathrm{W}+50 \mathrm{~N}$ In a differential axle \& wheel, the dia. of wheel is $400 \mathrm{~mm} \&$ that of axle is $100 \mathrm{~mm} \& 80 \mathrm{~mm}$, if an effort of 50 N can lift a load of 1500 N , find VR \& efficiency of the machine. (1) VR of differential axle \& wheel is given by - $\begin{aligned} & V R=\frac{2 D}{d_{1}-d_{2}}=\frac{2 X 400}{100-80} \\ & V R=40 \\ & M \cdot A \cdot=\frac{1500}{50}=30 \\ & \% \eta=\frac{M \cdot A \cdot}{V \cdot R .} X 100=\frac{30}{40} X 100 \\ & \% \eta=75 \% \end{aligned}$ A screw jack has effort wheel dia of $200 \mathrm{~mm} \&$ pitch is $5 \mathbf{~ m m}$. Find VR, if load of 1000 N is lifted by an effort of $\mathbf{2 5 0} \mathrm{N}$. Find the efficiency of a machine. 1) VR of simple screw jack is given by - $\begin{aligned} & V R=\frac{\pi D}{p} \\ & V R=\frac{\pi X 200}{5} \\ & \mathrm{VR}=125.66 \end{aligned}$		4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 2	f) Ans.	2) $M A=\frac{W}{P}=\frac{1000}{250}=4$ 3) $\begin{aligned} & \% \eta=\frac{M . A .}{V . R .} X 100=\frac{4.0}{125.66} X 100 \\ & \% \eta=3.183 \% \end{aligned}$ In a Westion's pulley block, the radius of the smaller wheel is $3 / 4$ than that of a larger wheel. What load is lifted by the pulley block with an effort of 100 N at an efficiency of 50%. $\begin{aligned} & \text { Let, } \mathrm{r}=\text { Radius of smaller wheel } \\ & \mathrm{R}=\text { Radius of larger wheel } \\ & \mathrm{d}=\text { Diameter of smaller wheel } \\ & \mathrm{D}=\text { Diameter of bigger wheel } \\ & r=\frac{3}{4} R \\ & \frac{d}{2}=\frac{3}{4} X \frac{D}{2} \\ & d=\frac{3}{4} D \\ & V R=\frac{2 D}{D-d}=\frac{2 D}{D-\frac{3}{4} D}=\frac{2}{1-\frac{3}{4}}=8 \\ & \% \eta=\frac{M A}{V R} X 100 \\ & 50 \end{aligned}$	1 1 2 2	$4{ }^{4} 80$

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 3	e) Ans. f) Ans.	Find the angle between two equal forces P, if the resultant is also equal to P. Using Law of parallelogram of forces $\begin{aligned} & R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta \\ & P^{2}=P^{2}+P^{2}+2 P P \cos \theta \\ & P^{2}=P^{2}+P^{2}+2 P^{2} \cos \theta \\ & P^{2}=P^{2}(1+1+2 \cos \theta) \\ & 1=2(1+\cos \theta) \\ & \frac{1}{2}=(1+\cos \theta) \\ & 0.5-1=\cos \theta \\ & \cos ^{-1}(-0.5)=\theta \\ & \theta=120^{\circ} \end{aligned}$ Find the resultant of all the forces as shown in Fig. 2. Mark its position \& direction on a sketch. Pcoblem Fig. Fig. 2 1) Resolving all forces $\begin{aligned} & \sum F x=-150-800 \cos 50+500 \cos 40=-281.21 N \\ & \sum F y=800 \sin 50+500 \sin 40-600=+334.23 N \end{aligned}$ 2) Magnitude of Resultant $\begin{aligned} & R=\sqrt{\left(\sum F x\right)^{2}+\left(\sum F y\right)^{2}}=\sqrt{(-281.21)^{2}+(334.23)^{2}} \\ & R=436.79 \mathrm{~N} \end{aligned}$	2	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4	b) Ans. c) Ans.	Six parallel forces of magnitude $1000 \mathrm{~N}, 1500 \mathrm{~N}, 1800 \mathrm{~N}, 2000 \mathrm{~N}$, $2400 \mathrm{~N}, 2700 \mathrm{~N}$ are acting at $1,3,5,7,8 \mathrm{~m}$ from the first force. Forces $1^{\text {st }}, 3^{\text {rd }}, \& 5^{\text {th }}$ are acting upwards while other acting vertically downwards. Find the resultant force analytically. 1) Magnitude of Resultant $\begin{aligned} \mathrm{R} & =+1000-1500+1800-2000+2400-2700=-1000 \mathrm{~N} \\ & =1000 \mathrm{~N}\left({ }^{(}\right) \end{aligned}$ - ve sign indicates Resultant acts vertically downwards. 2) Position of Resultant Considering Varignon's theorem of moment \& taking moment of all forces @ about 1000 N force. Let, R acts at x distance from 1000 N force. $\begin{array}{cc} \sum \mathrm{M}_{\mathrm{F}} & =\mathrm{M}_{\mathrm{R}} \\ (1000 \mathrm{X} \mathrm{0})+(1500 \mathrm{X} \mathrm{1})-(1800 \mathrm{X} \mathrm{3}) & =\mathrm{R} \mathrm{X} \mathrm{x} \\ +(2000 \mathrm{X} \mathrm{5})-(2400 \mathrm{X} \mathrm{7})+(2700 \mathrm{X} 8) & \\ 10900=1000 \mathrm{X} \mathrm{x} \\ \mathrm{x}=10.9 \mathrm{~m} & \end{array}$ Hence, R must be located at 10.9 m distance from 1000 N force, so as to produce clockwise moment. Write any four properties of a couple. 1) The resultant of the forces of a couple is zero. 2) T he moment of a couple is equal to the product of one of the force \& arm of couple. 3) Moment of a couple about any point is constant. $\begin{aligned} & \text { Moment of a couple }=P \times a \\ & \text { Moment of a couple about } C^{\prime} \\ & \\ & =P \times A C-P \times B C \\ & \\ & =P(A B+B C)-P \times B C \\ & \\ & =P(A B)+P(B C)-P(B C \\ & \end{aligned} \begin{aligned} & P(A B)=P \times a \end{aligned}$ $\begin{aligned} \text { Moment of a couple about ' } D^{\prime} & =-P \times A D+P \times B D=-P \times A D+P \times(A D+A B \\ & =-P(A D)+P(A D)+P(A B) \\ & =P(A B)=P \times a \end{aligned}$	2	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 4		4) A couple can be balanced only by another couple of equal \& opposite moment. (a) (b) Moment of couple $=P \times a$) 5) Two or more couples are said to be equal when they have same sense \& moment. 6) Any number of coplanar couples can be represented by a single couple, the moment of which is equal to the algebraic sum of the moment of all the couples. Moment $=5 \times 1$ $=5 \mathrm{~N} . \mathrm{m}$) (b) Moment $=2 \times 1$ (c) Moment $=3 \times 3$ $=9 \mathrm{~N} . \mathrm{m}$) Moment $=8 \times 2$ $=16 \mathrm{~N} . \mathrm{m}$	1 M each (any four)	4

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	b) Ans. c) Ans.	A sphere of weight 400 N rests in a groove of smooth inclined surfaces which are making $60^{\circ} \& 30^{\circ}$ inclination to the horizontal. Find the reactions at the contact surfaces. Using Lami's theorem, $\frac{400}{\sin 90}=\frac{R_{A}}{\sin 150}=\frac{R_{B}}{\sin 120}$ (1) (2) (3) Using term (1) and (2) $\begin{aligned} & \frac{400}{\sin 90}=\frac{R_{A}}{\sin 150} \\ & R_{A}=\frac{\sin 150}{\sin 90} \times 400 \\ & R_{A}=200 \mathrm{~N} \end{aligned}$	$\begin{aligned} & 2 \mathrm{M} \\ & \text { each } \\ & (\text { RA \& } \\ & \text { RB }) \end{aligned}$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	d) Ans.	1) Equivalent point load and it's position Equivalent point load = Intensity of udl X span of udl $\begin{aligned} & =10 \mathrm{X} 2 \\ & =20 \mathrm{KN} \end{aligned}$ Position from equivalent point load from RA $=1 \mathrm{~m}+1 \mathrm{~m}+\text { Span of } u d l / 2=2+(2 / 2)=3 \mathrm{~m}$ 2) Applying equilibrium conditions $\Sigma F y=0(\uparrow+\mathbf{v e}, \downarrow-\mathbf{v e}) \text { and } \Sigma \mathrm{M}=0((+\mathbf{v e}, \Gamma)-\mathbf{v e})$ $\Sigma \mathrm{Fy}=0$ $R A-15-20-20+R B=0$ $\text { RA + RB = } 55 \mathrm{KN} \text {-------(1) }$ $\Sigma \mathrm{M}_{\mathrm{A}}=0$ Taking moment of all forces @ point A $(\text { RA x } 0)+(15 \mathrm{X} 1)+(20 \times 2)+(20 \times 3)-(R B X 4)=0$ $\mathrm{RB}=28.75 \mathrm{KN}$ Putting value of RB in eqn. (1) $\begin{aligned} & \mathrm{RA}+28.75=55 \\ & \mathrm{RA}=26.25 \mathrm{KN} \end{aligned}$ A parcel weighing 200 N is just on the point of moving horizontally by a force of 52 N . What is coefficient of friction? Motion For limiting equilibrium $\begin{aligned} & \sum \mathrm{Fy}=0 \quad(1+\mathbf{v e}, \downarrow-\mathbf{v e}) \\ & +\mathrm{R}-\mathrm{W}=0 \\ & \mathrm{R}=\mathrm{W}=200 \mathrm{~N} \\ & \mathrm{R}=200 \mathrm{~N} \\ & \\ & \sum \mathrm{Fx}=0 \quad(\rightarrow+\mathbf{v e}, \leftarrow-\mathbf{v e}) \\ & +\mathrm{P}-\mathrm{F}=0 \\ & 52=\mu \mathrm{R} \\ & 52=\mu X 200 \end{aligned}$	1 1 1 1 1	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 5	Ans.	$\begin{aligned} & \mu=\frac{52}{200} \\ & \mu=0.26 \end{aligned}$ Find the value of \mathbf{W} if the body is in limiting equilibrium. See Fig. 8. For limiting equilibrium $\begin{aligned} & \Sigma \mathrm{Fy}=0 \quad(1+\mathbf{v e}, \sqrt{ }-\mathbf{v e}) \\ & +\mathrm{R}-\mathrm{W}-250=0 \\ & \mathrm{R}=\mathrm{W}+250 \quad----(1) \end{aligned}$ $\Sigma \mathrm{Fx}=0(\rightarrow+\mathrm{ve}, \leftarrow-\mathrm{ve})$ $+\mathrm{F}-433.012=0$ $\mathrm{F}=433.012 \mathrm{~N}$ But, $F=\mu R$ $433.012=0.25 \mathrm{X} \mathrm{R}$ $\mathrm{R}=433.012 / 0.25$ $\mathrm{R}=1732.048$ Putting value of R in equation (1) $\begin{aligned} & 1732.048=\mathrm{W}+250 \\ & \mathrm{~W}=1482.048 \mathrm{~N} \end{aligned}$ A 200 N block is at rest on a 30° incline. The coefficient of friction between block $\&$ the incline is 0.20 . Compute the value of a horizontal force P that causes motion to impend up the incline. Consider inclined plane as x-x axis and perpendicular to it as y - y axis. For limiting equilibrium $\begin{array}{\|l} \sum \mathrm{Fy}=0 \\ +\mathrm{R}-173.205-(0.5) \mathrm{P}=0 \\ \mathrm{R}=173.205+(0.5) \mathrm{P} \quad----(1) \end{array}$	$2{ }^{2}$	4

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	b) Ans.	$\begin{aligned} & \bar{x}=\frac{A_{1} x_{1}+A_{2} x_{2}}{A} \\ & \bar{x}=\frac{(2000 X 50)+(2000 X 10)}{4000} \\ & \bar{x}=30 \mathrm{~mm} \end{aligned}$ 3) Position of y^{-} $\begin{aligned} & \mathrm{y}_{1}=20 / 2=10 \mathrm{~mm} \\ & \mathrm{y}_{2}=20+(100 / 2)=70 \mathrm{~mm} \end{aligned}$ $\bar{y}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A}$ $\bar{y}=\frac{(2000 \times 10)+(2000 \times 70)}{4000}$ $\bar{y}=40 \mathrm{~mm}$ Find the centroidal position of shaded area with respect to AB. See Fig. 9 Considet, Fig, 1-Rectangle (ABCD) Fig. 2 - Triangle (CDE) 1) Area calculation $\mathrm{A}_{1}=100 \mathrm{X} 500=50000 \mathrm{~mm}^{2}$ $\mathrm{A}_{2}=1 / 2 \mathrm{X} 20 \mathrm{X} 500=5000 \mathrm{~mm}^{2}$ $\mathrm{A}=\mathrm{A}_{1}-\mathrm{A}_{2}=45000 \mathrm{~mm}^{2}$ 2) Position of x^{-} $\mathrm{X}_{1}=100 / 2=50 \mathrm{~mm}$ $\mathrm{X}_{2}=80+(2 / 3) \mathrm{X} 20=93.333 \mathrm{~mm}$	1	4

Model Answer: Summer 2017

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	c) Ans.	$\begin{aligned} & \bar{x}=\frac{A_{1} x_{1}-A_{2} x_{2}}{A} \\ & \bar{x}=\frac{(50000 X 50)-(5000 X 93.333)}{45000} \\ & \bar{x}=45.185 \mathrm{~mm} \end{aligned}$ Hence, Centroidal position of shaded area with respect to AB $=45.185 \mathrm{~mm}$ Locate centroid of shaded area. See Fig. 10 1) Let, Fig. 1 - Quarter circle and Fig. 2 - Triangle Area Calculation $\begin{aligned} & A_{1}=\frac{\pi r^{2}}{4}=\frac{\pi(100)^{4}}{4}=7853.981 \mathrm{~mm}^{2} \\ & A_{2}=\frac{1}{2} b h=\frac{1}{2} X 100 \times 100=5000 \mathrm{~mm}^{2} \\ & A=A_{1}-A_{2}=2853.981 \mathrm{~mm}^{2} \end{aligned}$ $\begin{aligned} & \text { 2) } \bar{X} \text { calculation } \\ & x_{1}=\frac{4 r}{3 \pi}=\frac{4 X 100}{3 \pi}=42.441 \mathrm{~mm} \\ & x_{2}=\frac{b}{3}=\frac{100}{3}=33.333 \mathrm{~mm} \\ & \bar{x}=\frac{A_{1} x_{1}-A_{2} x_{2}}{A}=\frac{(7853.981 X 42.441)-(5000 \times 33.333)}{2853.981} \\ & \bar{x}=58.397 \mathrm{~mm} \end{aligned}$	 1 $11 / 2$ 1	4

\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
Que. \\
No.
\end{tabular} \& Sub. Que. \& Model Answers \& Marks \& Total Marks \\
\hline Q. 6 \& d)

Ans. \& | 3) \bar{y} calculation $\begin{aligned} & y_{1}=\frac{4 r}{3 \pi}=\frac{4 X 100}{3 \pi}=42.441 \mathrm{~mm} \\ & y_{2}=\frac{b}{3}=\frac{100}{3}=33.333 \mathrm{~mm} \\ & \bar{y}=\frac{A_{1} y_{1}-A_{2} y_{2}}{A}=\frac{(7853.981 X 42.441)-(5000 \times 33.333)}{2853.981} \\ & \bar{y}=58.397 \mathrm{~mm} \end{aligned}$ |
| :--- |
| Hence, centroid (G) for given section lies at $\mathrm{G}(\overline{x, y})$ $=(58.397 \mathrm{~mm}$ from y axis \& 58.397 mm from x axis $)$ |
| A solid cone of height 40 cm is placed on a cube of side 20 cm as shown in Fig. 11. Locate the position of CG with respect to tip of the cone. |
| 1) Volume Calculation $\begin{aligned} & V_{1}=20 \times 20 \times 20=8000 \mathrm{~cm}^{3} \\ & V_{2}=(1 / 3) \pi r^{2} h=(1 / 3) \pi(10)^{2} X 40=4188.79 \mathrm{~cm}^{3} \\ & V=V_{1}+V_{2}=12188.79 \mathrm{~cm}^{3} \end{aligned}$ |
| 3) \bar{y} calculation $\begin{aligned} & y_{1}=40+\frac{20}{2}=50 \mathrm{~cm} \\ & y_{2}=h_{2}-\frac{h_{2}}{4}=40-\frac{40}{4}=30 \mathrm{~cm} \end{aligned}$ | \& $11 / 2$ \& 4

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q. 6	f) Ans.	A frustum of solid circular cone of top diameter 30 cm , bottom diameter 60 cm \& height of 50 cm . Find the centre of gravity of the frustum. Let, Full cone as Fig. $1 \&$ cut cone as Fig. 2 1) Figure is symmetric @ y-y axis and hence, $\mathrm{x}^{-}=$Maximum horizontal dimension $/ 2$ $\begin{aligned} & =60 / 2 \\ & =30 \mathrm{~cm} \end{aligned}$ $\mathrm{h}_{1}=50 \mathrm{~cm}, \mathrm{~h}_{2}=$ Height of cut cone In triangle, $\mathrm{ABE} \& \mathrm{CDE}$ $\begin{aligned} & \frac{h}{60}=\frac{h_{2}}{30} \\ & h=\frac{60}{30} h_{2} \\ & h=2 h_{2} \\ & h_{1}+h_{2}=h \\ & h_{1}+h_{2}=2 h_{2} \\ & h_{1}=2 h_{2}-h_{2} \\ & h_{1}=1 h_{2} \\ & 50=1 h_{2} \\ & h_{2}=50 \mathrm{~cm} \\ & h=50+50=100 \mathrm{~cm} \end{aligned}$	1	

