

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Summer 2017

Subject: Engineering Mechanics

Sub. Code: 17204

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.
 - _____

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	a) Ans.	Answer any TEN of the following : Explain the term law of machine. The relation between the load lifted (W) and the effort applied (P) is known as the law of machine. This relationship, when plotted on a graph results in a straight line as shown below. The equation of this straight line is – P = (mW + c)N	1	20
		$ \begin{array}{c} \uparrow \\ $	1	
		c = Intercept on y axis = effort required to start the machine		2
	b)	How will you find whether machine is reversible or not?		
	Ans.	By calculating the efficiency of machine, we can decide whether the machine is reversible or not. If $\eta < 50\%$ machine is non-reversible i.e. self-locking machine. If $\eta > 50\%$ machine is reversible.	2	2

Model Answer: Summer 2017

Subject: Engineering Mechanics

Sub. Code: 17204

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.1	c)	State VR of Simple axle & wheel.		
	Ans.	VR of Simple axle & Wheel = D/d		
		Whether, D = Diameter of Effort Wheel		
		d = Diameter of load drum	2	2
	d) Ans.	Differentiate between statics & dynamics.		
	Ans.	<u>Statics</u> is the branch of applied mechanics which deals with forces & their action on bodies at rest.	1	2
		<u>Dynamics</u> is the branch of applied mechanics which deals with forces & their action on bodies in motion.	1	
	e)	What is Unit Newton force?		
	Ans.	Unit Newton force is that force which when acts on a body of mass		
		1 Kg produces an acceleration of 1 m/sec ² in it.		
		a = 1m/sec ²	2	
		m=1kg F=1N	2	2
	f)	State parallelogram law of forces. Derive the equations for magnitude & direction of resultant force.		
	Ans.	Parallelogram of forces states, "If two forces acting at & away from		
		point be represented in magnitude & direction by the two adjacent	1	
		sides of parallelogram, then the diagonal of the parallelogram passing		
		through the point of intersection of the two forces, represents the		
		resultant in magnitude & direction.		
		A A COSO		
		Let's consider two concurrent forces P & Q acting at & away from O		
		as shown in Fig Let these two forces be represented in magnitude &		
		direction by two adjacent sides OA & OB of the parallelogram		
		OACB. Thus the line joining O & C represents the resultant R in		
		magnitude & direction, according to law.		
		Draw CD perpendicular to meet OA produced.		
		Draw AC parallel to OB & $OB = AC = Q$		

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers		Marks	Total Marks
Q.1		OA = P & OC = R			
		$AD = Q \cos \Theta \& CD = Q \sin \Theta$			
		In right angled triangle ODC,			
		$OC^2 = OD^2 + DC^2 = (OA + AD)^2 + DC^2$			
		$= (P+Q\cos\Theta)^2 + (Q\sin\Theta)^2$			
		$= P^2 + Q^2 \cos^2 \Theta + 2 PQ \cos \Theta + Q^2 \sin^2 \Theta$			
		$= P^2 + Q^2 (\cos^2 \Theta + \sin^2 \Theta) + 2 PQ \cos \Theta$			
		$R^{2} = P^{2} + Q^{2} + 2 PQ \cos \Theta - \dots - (\cos^{2} \Theta + \sin^{2} \Theta = 1)$			
				1/2	
		$R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta} \qquad \qquad \text{ Magnitude of}$	R		
		Let, Θ = Angle between the two forces P & Q.			
		If P, Q & Θ are known, the magnitude of R can be found out.			2
		Let R make an angle α with the direction of P.			
		In right angle triangle ODC,			
		$\tan \alpha = \frac{CD}{OD} = \frac{CD}{OA + AD} = \frac{Q\sin\theta}{P + Q\cos\theta}$			
		$\alpha = \tan^{-1} \left(\frac{Q \sin \theta}{P + Q \cos \theta} \right)$		1⁄2	
		$(P+Q\cos\theta)$ Direction of R			
	g)	State Varignon's theorem.			
	Ans.	Varignon's theorem states, " The algebraic sum of moment	s of all	1	
		forces about any point is equal to moment of resultant about t	he same	Ĩ	
		point".			2
		Let, $\sum MF_A = Algebraic$ sum of moments of all forces about po	int A		
		$MR_A = Moment of Resultant about point A$		1	
		Then, $\sum MF_A = MR_A$			
	h)	What are the limitations of Lami's theorem?			
	Ans.	1) This theorem is applicable only for three forces.		43.5	-
		2) This theorem is applicable when forces are concurrent.		1M each	2
		3) This theorem is applicable only when body is in equilibrium		(any	
		4) This theorem is not applicable for non-concurrent force syst	em.	two)	
		1			

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model A	Answers	Marks	Total Marks
Q.1	i)	Differentiate between resultant &	z equilibrant.		WILLING
	Ans.		•		
	1115	Resultant	Equilibrant		
		1) Resultant is a single force	1) Equilibrant is a single force		
		which can produce the same	which when acts with other		
		effect on the body as it is	forces brings the set of forces &		
		produced by all forces acting	body in equilibrium.		
		together. 2) It is donated by R.	2) It is denoted by E.		
		3) It causes displacement of	3) It keeps the body at rest.		
		body.	s) it keeps the body at lest.		
		4) The set of forces which	4) The set of forces which keeps		
		causes the displacement of a	the body at rest are called as		
		body are called as components	components of a equilibrant or		
		of a resultant or component	equilibrant forces.	111	
		forces.		1M each	2
		5)		(any	
			1Q	two)	
			/	,	
		/	7 R		
			~		
			$\rightarrow P$		
			Where,		
		<u> </u>	P & Q = Forces		
		~	R = Resultant		
		I	E = Equilibrant		
	j)	What are the two advantages of f	riction?		
	Ans.	1) One can walk easily on rough su	rface than smooth surface.		
		• •	be stopped suddenly by applying		2
		brakes.	be stopped suddenly by apprying	1 M	-
				each	
		3) One can hammer nail into wall.		(any	
		4) One can easily hold pen, pencil a	& can write on paper.	two)	
	k)	Define angle of repose.			
	Ans.	Angle of repose is defined as the	angle made by the inclined plane		
		• •	h the body placed on an inclined		
			g down the plane, under the action		
		of its own weight.		1	

Model Answer: Summer 2017

Subject: Engineering Mechanics

No.Que.Model AnswersQ.1Image: Model AnswersQ.1Image: Model AnswersImage: Display the second	Marks 1	Marks 2
Ans. Ans. Relation between coefficient of friction & angle of repose is given $\mu = \tan \alpha$ Where, $\mu = \text{Coefficient of friction & } \alpha = \text{Angle of repose.}$ Calculate & show the centroid of circle of 50 mm diameter. Ans. $\overline{x} = \overline{y} = \frac{d}{2} = \frac{50}{2} = 25mm$ n) Differentiate between centroid & centre of gravity.		
Ans. $\overline{x} = \overline{y} = \frac{d}{2} = \frac{50}{2} = 25mm$ n) Differentiate between centroid & centre of gravity.		2
n) Differentiate between centroid & centre of gravity.	1	2
	1	
Ans. Centroid :- It is defined as the point through which the entire area a plane figure is assumed to act, for all positions of the lamina. e. g. Triangle, Square	of 1	2
Centre of Gravity :- It is defined as the point through which the whole weight of the body is assumed to act, irrespective of the position of a body. e.g. Cone, Cylinder.		

Model Answer: Summer 2017

-

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	Que.	Answer any FOUR of the following :		16
	a)	The velocity ratio of a certain machine is 50. Determine the effort required to lift a load of 1500 N if the efficiency of the machine is 40%.		
	Ans.	$\%\eta = \frac{MA}{VR}X100$		
		$40 = \frac{MA}{50} X 100$ $MA = 20$	2	
		$But, MA = \frac{W}{P}$		4
		$20 = \frac{1500}{P}$ $P = 75N$	2	
	b)	Certain machine has a law of machine $P = 0.025 W + 20 N$, with		
	Ans.	 VR = 60. Calculate its efficiency at a load of 1 KN. 1) Using Law of machine 		
		P = (0.025 W + 20) N. = ((0.025 X 1000) + 20) N Putting W = 1000 N = 45 N	2	
		2) $MA = \frac{W}{P} = \frac{1000}{45} = 22.222$		4
		$ \begin{array}{l} \text{MAT} P 45 \\ \text{P} 45 \\ \text{W} \eta = \frac{MA}{VR} X100 = \frac{22.222}{60} X100 \\ \text{W} \eta = 37.036\% \end{array} $	2	
	c)	In a lifting machine, a load of 10 KN is raised by effort of 300 N. If the efficiency is 75%. Calculate MA & VR, if the machine lifts a load by effort of 550 N. Find the law of machine.		
	Ans.	$MA = \frac{W}{P} = \frac{10000}{300} = 33.33$ MA		
		$\% \eta = \frac{MA}{VR} X100$ $VR = 44.44$	1	

Model Answer: Summer 2017

Subject: Engineering Mechanics

Sub. Code: 17204

Que.	Sub.	Model Answers	Marks	Total
No. Q.2	Que.			Marks
×		Law of machine is –		
		P = mW + C 300 = m(10000) + c (1)	1	
		500 = m(10000) + c = (1) 550 = m(20000) + c = (2)	1	
		Subtracting equation (1) from (2)		
		m = 0.025	1	
		Putting value of m in equation (1),		4
		300 = (0.025 X 10000) + C		
		C = 50 N		
		Hence, law of machine is, $P = (0.025)W + 50 N$	1	
		Thence, raw of machine is, $\Gamma = (0.025)W + 30 W$		
	d)	In a differential axle & wheel, the dia. of wheel is 400 mm & that		
		of axle is 100 mm & 80 mm, if an effort of 50 N can lift a load of		
		1500 N, find VR & efficiency of the machine.		
	Ans.	(1) VR of differential axle & wheel is given by -		
		$VR = \frac{2D}{d_1 - d_2} = \frac{2X400}{100 - 80}$		
			2	
		VR = 40		
		1500		4
		$M.A. = \frac{1500}{50} = 30$		
		$\%\eta = \frac{M.A.}{M.A.} X100 = \frac{30}{10} X100$		
		$\%\eta = \frac{V}{V.R.}X100 = \frac{\sigma}{40}X100$		
		$\%\eta = 75\%$	2	
	e)	A screw jack has effort wheel dia of 200 mm & pitch is 5 mm.		
		Find VR, if load of 1000 N is lifted by an effort of 250 N. Find the		
		efficiency of a machine.		
	Ans.	1) VR of simple screw jack is given by –		
		-D		
		$VR = \frac{\pi D}{p}$		
		$p = \pi X 200$		
		$VR = \frac{\pi X 200}{5}$		
			2	
		VR = 125.66		

Model Answer: Summer 2017

Subject: Engineering Mechanics

<u></u>	C1			T-4 1
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.2	Que.	²⁾ $MA = \frac{W}{P} = \frac{1000}{250} = 4$	1	Warks
		3) $\%\eta = \frac{M.A.}{V.R.} X100 = \frac{4.0}{125.66} X100$ $\%\eta = 3.183\%$	1	4
	f)	In a Westion's pulley block, the radius of the smaller wheel is $\frac{3}{4}$ than that of a larger wheel. What load is lifted by the pulley block with an effort of 100 N at an efficiency of 50 %.		
	Ans.	Let, $\mathbf{r} = \mathbf{Radius}$ of smaller wheel		
		$\mathbf{R} = \mathbf{R}$ adius of larger wheel		
		d = Diameter of smaller wheel		
		D = Diameter of bigger wheel		
		$r = \frac{3}{4}R$ $d = 3 D$		
		$\frac{\alpha}{2} = \frac{3}{4}X\frac{\alpha}{2}$		
		$\frac{d}{2} = \frac{3}{4} X \frac{D}{2}$ $d = \frac{3}{4} D$		
		$VR = \frac{2D}{D-d} = \frac{2D}{D-\frac{3}{4}D} = \frac{2}{1-\frac{3}{4}} = 8$	2	
		$\%\eta = \frac{MA}{VR}X100$		
		$50 = \frac{MA}{8} X100$		4
		MA = 4 But, $MA = \frac{W}{P}$		
		$4 = \frac{W}{100}$		
		W = 400N	2	

Model Answer: Summer 2017

Subject: Engineering Mechanics

Sub. Code: 17204

Que. Sub. No. Que.	Model Answers	Marks	Total Marks
Q.3	Answer any FOUR of the following :		16
a)	Find the components of the force 100 KN (push) acting at 270° with x axis. $\frac{+y}{4}$ F= 100KN		
Ans.	$ \begin{array}{c c} & & & & & \\ & & & +\pi & & -\pi & & \\ & & & & F = 100 \text{ KN} & & \\ & & & & -y & & \\ & & & & -y & & \\ \end{array} $		
	$Fx = F \cos \theta = 100X \cos 90$ Fx = 0N	2	
	$F_{X} = 6N$ $F_{Y} = F \sin \theta = 100X \sin 90$ $F_{Y} = 100N$	2	4
b)	What are the components of 60 N force acting horizontal in two directions on either side, at an angle of 30° each?		
Ans.	7 ^{F2}		
	$\beta = 30^{\circ} F = 60 N$ $\alpha = 30^{\circ} F1$		
	$F_1 = \frac{F\sin\alpha}{\sin(\alpha + \beta)} = \frac{60\sin 30}{\sin(30 + 30)} = 34.64N$	2	4
	$F_2 = \frac{F\sin\beta}{\sin(\alpha+\beta)} = \frac{60\sin 30}{\sin(30+30)} = 34.64N$	2	
c)	Find the algebraic sum of moment of all forces shown in Fig. 1 about the point C.		

Model Answer: Summer 2017

Subject: Engineering Mechanics

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que.Sub.No.Que.	Model Answers	Marks	Total Marks
Q.3 e) Ans.	Find the angle between two equal forces P, if the resultant is also equal to P.	2	4
f) Ans.	$\theta = 120^{\circ}$ Find the resultant of all the forces as shown in Fig. 2. Mark its position & direction on a sketch. $R_{436.79N} = 436.79N$ $R_{436.79N} = 436.79N$	1	

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.3		3) Since $\sum Fx$ is -ve & $\sum Fy$ is +ve,		
		R lies in Second quadrant	1	
		4) Position of Resultant		
				4
		$\theta = \tan^{-1} \left \frac{\sum Fy}{\sum Fx} \right = \tan^{-1} \left \frac{334.23}{281.21} \right $	1	
		$\theta = 49.92^{\circ}$		
Q.4		Answer any FOUR of the following :		16
	a)	Find the resultant & magnitude & direction of the forces acting on a regular pentagon shown in Fig. 3		
		2KN $44KN$ 2KN $6KN$ 72^{0} 8KN Paoblem Fig. Fig. 3		
	Ans.	1) Resolving all forces $\sum Fx = 8 + 6\cos 36 + 4\cos 72 - 2\cos 72 = +13.47kN$ $\sum Fy = 6\sin 36 + 4\sin 72 + 2\sin 72 = +9.23kN$	1	
		2) Magnitude of Resultant		
		$R = \sqrt{(\Sigma Fx)^2 + (\Sigma Fy)^2} = \sqrt{(13.47)^2 + (9.23)^2}$	-	
		$R = \frac{16.33kN}{k}$	1	4
		3) Since $\sum Fx$ is +ve & $\sum Fy$ is +ve,		
		R lies in First quadrant	1	
		4) Position of Resultant		
		$\theta = \tan^{-1} \left \frac{\sum Fy}{\sum Fx} \right = \tan^{-1} \left \frac{9.23}{13.47} \right $		
		$\theta = 34.42^{\circ}$	1	

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que.	Sub.	Model Answers	Marks	Total
No.	Que.			Marks
Q.4	b)	Six parallel forces of magnitude 1000 N, 1500 N, 1800 N, 2000 N, 2400 N, 2700 N are acting at 1, 3, 5, 7, 8 m from the first force. Forces 1 st , 3 rd , & 5 th are acting upwards while other acting vertically downwards. Find the resultant force analytically.		
	Ans.	1000N 1800N 2400N 1000N 1800N 4 100N 5m 7m 8m 7m 8m 1500N 2700N		
		1) Magnitude of Resultant $R = +1000 - 1500 + 1800 - 2000 + 2400 - 2700 = -1000 N$ $= 1000 N (\Psi)$ - ve sign indicates Resultant acts vertically downwards. 2) Position of Resultant Considering Varignon's theorem of moment & taking moment of all forces @ about 1000 N force. Let, R acts at x distance from 1000 N force. $\Sigma M_F = M_R$ (1000 X 0) + (1500 X 1) - (1800 X 3) = R X x + (2000 X 5) - (2400 X 7) + (2700 X 8) 10900 = 1000 X x x = 10.9 m Hence, R must be located at 10.9 m distance from 1000 N force, so as to produce clockwise moment.	2	4
	c) Ans.	Write any four properties of a couple. 1) The resultant of the forces of a couple is zero. 2) T he moment of a couple is equal to the product of one of the force & arm of couple. 3) Moment of a couple about any point is constant. $ \begin{array}{c} P \\ P \\$		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

Model Answer: Summer 2017

Subject: Engineering Mechanics

Model Answer: Summer 2017

Subject: Engineering Mechanics

Model Answer: Summer 2017

Subject: Engineering Mechanics

Model Answer: Summer 2017

Subject: Engineering Mechanics

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5	Que.	Answer any FOUR of the following :		16
	a) Ans.	A horizontal force P as shown in Fig. 7 keeps the weight of 100 N in equilibrium. Find the magnitude P & tension in the string T.		
		$T = \frac{1}{80^{\circ}}$ $P = \frac{0}{100^{\circ}}$ $= \frac{90+80}{100^{\circ}}$ $= 170^{\circ}$ $W = 100N$ $W = 100N$		
		Fig. 7 Using Lami's theorem, $\frac{W}{\sin 100^{\circ}} = \frac{T}{\sin 90^{\circ}} = \frac{P}{\sin 170^{\circ}}$ $\frac{100}{\sin 100^{\circ}} = \frac{T}{\sin 90^{\circ}} = \frac{P}{\sin 170^{\circ}}$		
		Using term (1) and (2) $\frac{100}{\sin 100^{\circ}} = \frac{T}{\sin 90^{\circ}}$		
		$T = 100X \frac{\sin 90^{\circ}}{\sin 100^{\circ}}$ T = 101.54 N Using term (1) and (3) $\frac{100}{\sin 90^{\circ}} = \frac{P}{\sin 170^{\circ}}$	2	
		$P = 100X \frac{\sin 170^{\circ}}{\sin 100^{\circ}}$ P = 17.63 N	2	4

Model Answer: Summer 2017

Subject: Engineering Mechanics

ue. Si	NIODEL Answers	Marks	Total Marks
<u>Io. Q</u> 0.5 I A	 A sphere of weight 400 N rests in a groove of smooth inclin surfaces which are making 60° & 30° inclination to the horizontal. Find the reactions at the contact surfaces. 	the	Mark 4
A	concentrated load of 15 KN & 20 KN at 1m & 2m from left ha support respectively. It carries UDL of 10 KN/m from the rig end. Determine reactions at the support.	nd	

Model Answer: Summer 2017

Subject: Engineering Mechanics

0110	Sub.		 	Total
Que. No.	Que.	Model Answers	Marks	Marks
Q.5		1) Equivalent point load and it's position Equivalent point load = Intensity of udl X span of udl = 10 X 2 = 20 KN Position from equivalent point load from RA = 1 m + 1 m+ Span of udl / 2 = 2 + (2/2) = 3 m 2) Applying equilibrium conditions $\Sigma Fy = 0$ ($\uparrow + ve \downarrow \sqrt{-ve}$) and $\Sigma M = 0$ ($\overline{\uparrow} + ve \downarrow \overline{\uparrow} - ve$)		
		$\Sigma Fy = 0$ RA - 15 - 20 - 20 + RB = 0 RA + RB = 55 KN(1) $\Sigma M_A = 0$ Taking moment of all forces @ point A	1	4
		(RA x 0) + (15 X 1) + (20 X 2) + (20 X 3) - (RB X 4) = 0 RB = 28.75 KN Putting value of RB in eqn. (1) RA + 28.75 = 55 RA = 26.25 KN	1	
	d)	A parcel weighing 200 N is just on the point of moving horizontally by a force of 52 N. What is coefficient of friction?		
	Ans.	Motion A^R $F = \mathcal{U} \cdot R$ W = 200 N		
		For limiting equilibrium $\sum Fy = 0 \qquad (\uparrow + ve \downarrow \sqrt{-ve}) \\ + R - W = 0 \\ R = W = 200 N \\ R = 200 N$	2	
		$\Sigma Fx = 0 (\rightarrow + \mathbf{ve}, \leftarrow -\mathbf{ve}) \\ + P - F = 0 \\ 52 = \mu R \\ 52 = \mu X 200$		

Model Answer: Summer 2017

Subject: Engineering Mechanics

ue.	Sub.	Model Answers	Marks	Total
о.	Que.	Model Allsweis	Marks	Marks
9.5		$\mu = \frac{52}{200}$		
		$\mu = \frac{1}{200}$	2	4
		$\mu = 0.26$	4	-
	e)	Find the value of W if the body is in limiting equilibrium. See		
		Fig. 8.		
	Ans.	-		
	All5.	Motion 500 cos 30 = 433.012 N 500N R 500sin 30 = 250N. M = 0.25 W		
		For limiting equilibrium		
		$\sum Fy = 0 (\downarrow + ve \downarrow - ve)$		
		+ R - W - 250 = 0 (1)	1	
		R = W + 250 (1)		
		$\Sigma Fx = 0 (\rightarrow + ve_{j} \leftarrow -ve)$		
		$\sum Fx = 0 + F - 433.012 = 0$		
		F = 433.012 N		4
		But, $F = \mu R$		
		433.012 = 0.25 X R	1	
		R = 433.012 / 0.25	1	
		R = 1732.048		
		Putting value of R in equation (1)		
			2	
		1732.048 = W + 250	2	
		W = 1482.048 N		
	f)	A 200 N block is at rest on a 30° incline. The coefficient of friction between block & the incline is 0.20. Compute the value of a horizontal force P that causes motion to impend up the incline.		
	Ans.	Consider inclined plane as x-x axis and perpendicular to it as y-y axis.		
		For limiting equilibrium		
		$\Sigma F y = 0$		
		$ ^{2} Fy = 0$ + R - 173.205 - (0.5) P = 0		
		R = 173.205 + (0.5) P (1)	2	

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.5		Motion A^{R} Px = P cos 30 = (0.866) P F = 4.R H = 0.20 Py = P sin 30 = 200 sin 30 = 100 N W = 200 N W = 200 N		
		$\Sigma Fx = 0$ + (0.866) P - F - 100 = 0 + (0.866) P = (0.20 X (173.205+0.5 P) + 100Putting value of R P = 175.77 N	2	4
Q.6		Answer any FOUR of the following :		
	a)	A L section consists of two legs 100 mm X 20 mm each with 120 mm as overall depth.		
	Ans.	$\frac{120}{mm} = \frac{120}{20mm} = \frac{120}{100mm} = \frac{120}{100mm} = \frac{100}{100mm} = $	1	
		1) Area calculation $A_1 = 100 \times 20 = 2000 \text{ mm}^2$ $A_2 = 100 \times 20 = 2000 \text{ mm}^2$ $A = A_1 + A_2 = 4000 \text{ mm}^2$ 2) Position of x ⁻ $X_1 = 100 / 2 = 50 \text{ mm}$ $X_2 = 20 / 2 = 10 \text{ mm}$	1	

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que.		Model Answers	Marks	
Que. No. Q.6	Sub. Que. b) Ans.	$\overline{x} = \frac{A_1 x_1 + A_2 x_2}{A}$ $\overline{x} = \frac{(2000 X 50) + (2000 X 10)}{4000}$ $\overline{x} = 30mm$ 3) Position of y ⁻ y ₁ = 20 / 2 = 10 mm y ₂ = 20 + (100/2) = 70 mm $\overline{y} = \frac{A_1 y_1 + A_2 y_2}{A}$ $\overline{y} = \frac{(2000 X 10) + (2000 X 70)}{4000}$ $\overline{y} = 40mm$ Find the centroidal position of shaded area with respect to AB. See Fig. 9	Marks 1	Total Marks
	Ans.	ч.		
		1) Area calculation $A_1 = 100 \text{ X } 500 = 50000 \text{ mm}^2$ $A_2 = \frac{1}{2} \text{ X } 20 \text{ X } 500 = 5000 \text{ mm}^2$ $A = A_1 - A_2 = 45000 \text{ mm}^2$ 2) Paritian of u^-	1	
		2) Position of x ⁻ $X_1 = 100 / 2 = 50 \text{ mm}$ $X_2 = 80 + (2/3) \text{ X } 20 = 93.333 \text{ mm}$	1	

Model Answer: Summer 2017

Subject: Engineering Mechanics

ue. Sub.	Model Answers	Marks	Total
No. Que.			Marks
2.6	$\overline{x} = \frac{A_1 x_1 - A_2 x_2}{A}$ $\overline{x} = \frac{(50000 \times 50) - (5000 \times 93.333)}{45000}$ $\overline{x} = 45.185 mm$ Hence, Centroidal position of shaded area with respect to AB = 45.185 mm	2	4
c)	Locate centroid of shaded area. See Fig. 10 $ \int_{100}^{100} \int_{100}^{1$		
Ans.	1) Let, Fig. 1 – Quarter circle and Fig. 2 – Triangle Area Calculation		
	$A_{1} = \frac{\pi r^{2}}{4} = \frac{\pi (100)^{4}}{4} = 7853.981 mm^{2}$ $A_{2} = \frac{1}{2}bh = \frac{1}{2}X100X100 = 5000 mm^{2}$ $A = A_{1} - A_{2} = 2853.981 mm^{2}$	1	
	2) \overline{x} calculation $x_1 = \frac{4r}{3\pi} = \frac{4X100}{3\pi} = 42.441mm$ $x_2 = \frac{b}{3} = \frac{100}{3} = 33.333mm$ $\overline{x} = \frac{A_1x_1 - A_2x_2}{A} = \frac{(7853.981X42.441) - (5000X33.333)}{2853.981}$ $\overline{x} = 58.397mm$	11/2	

Model Answer: Summer 2017

Subject: Engineering Mechanics

	G 1	I		
Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6		3) \overline{y} calculation $y_1 = \frac{4r}{3\pi} = \frac{4X100}{3\pi} = 42.441mm$ $y_2 = \frac{b}{3} = \frac{100}{3} = 33.333mm$ $\overline{y} = \frac{A_1y_1 - A_2y_2}{A} = \frac{(7853.981X42.441) - (5000X33.333)}{2853.981}$ $\overline{y} = 58.397mm$ Hence, centroid (G) for given section lies at $G(\overline{x}, \overline{y})$	11/2	4
		= (58.397 mm from y axis & 58.397 mm from x axis)		
	d)	A solid cone of height 40 cm is placed on a cube of side 20 cm as shown in Fig. 11. Locate the position of CG with respect to tip of the cone.		
	Ans.	$\frac{1}{20}$		
		$V_{1} = 20X \ 20X \ 20 = 8000 cm^{3}$ $V_{2} = (1/3)\pi r^{2}h = (1/3)\pi (10)^{2} X \ 40 = 4188.79 cm^{3}$ $V = V_{1} + V_{2} = 12188.79 cm^{3}$ 3) \overline{y} calculation	1	
		y $y_1 = 40 + \frac{20}{2} = 50cm$ $y_2 = h_2 - \frac{h_2}{4} = 40 - \frac{40}{4} = 30cm$	1	

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que.	Sub.			Total
No.	Que.	Model Answers	Marks	Marks
Q.6		$\overline{y} = \frac{V_1 y_1 + V_2 y_2}{V}$ $\overline{y} = 43.126cm$	2	4
	e)	Find the centre of gravity of composite solid w.r.t. x & y axis. See Fig. 12.		
	Ans.	1) Figure is symmetric @ y-y axis and hence, $x^{-} = Maximum horizontal dimension /2$		
		= 400 / 2 = 200 mm 2) Volume Calculation	1	
		$V_{1} = \pi r_{1}^{2} h_{1} = \pi (200)^{2} X 500 = 62831853 mm^{3}$ $V_{2} = (4/3)\pi r_{2}^{3} = (4/3)\pi (150)^{3} = 14137167 mm^{3}$ $V = V_{1} + V_{2} = 76.96902 X 10^{6} mm^{3}$ 3) \overline{y} calculation	1	4
		$y_1 = \frac{500}{2} = 250mm$ $y_2 = 500 + 150 = 650mm$	1	
		$\overline{y} = \frac{V_1 y_1 + V_2 y_2}{V}$ $\overline{y} = 323.47mm$	1	

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	f)	A frustum of solid circular cone of top diameter 30 cm, bottom diameter 60 cm & height of 50 cm. Find the centre of gravity of the frustum.		
	Ans.	y Line ob Symmetry E h_2 h_2 h_1 = 50 cm r r r r r r r r		
		Let, Full cone as Fig. 1 & cut cone as Fig. 2 1) Figure is symmetric @ y-y axis and hence, x ⁻ = Maximum horizontal dimension /2 = 60 / 2 = 30 cm	1	
		$h_{1} = 50 \text{ cm}, h_{2} = \text{Height of cut cone}$ In triangle, ABE & CDE $\frac{h}{60} = \frac{h_{2}}{30}$ $h = \frac{60}{30}h_{2}$ $h = 2h_{2}$ $h_{1} + h_{2} = h$ $h_{1} + h_{2} = 2h_{2}$ $h_{1} = 2h_{2} - h_{2}$ $h_{1} = 1h_{2}$	1	
		$h_1 = h_2$ $50 = 1h_2$ $h_2 = 50cm$ h = 50 + 50 = 100cm		

Model Answer: Summer 2017

Subject: Engineering Mechanics

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
Q.6	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	2) Volume Calculation		
		$V_1 = (1/3)\pi r_1^2 h = (1/3)\pi (30)^2 X 100 = 30000\pi cm^3$	1	
		$V_{1} = (1/3)\pi r_{2}^{2}h_{2} = (1/3)\pi (15)^{2}X50 = 3750\pi cm^{3}$		
		$V = V_1 - V_2 = 26250\pi cm^3$		
		3) \overline{v} calculation		
		y y and and a		4
		$y_1 = \frac{h}{4} = \frac{100}{4} = 25cm$		
		$y_2 = h_1 + \frac{h_2}{4} = 50 + \left(\frac{50}{4}\right) = 62.5cm$		
		$\overline{y} = \frac{V_1 y_1 - V_2 y_2}{V}$		
		$\overline{y} = 19.64cm$	1	