17204

16117

3 Hours / 100 Marks
Seat No. \square

Instructions - (1) All Questions are Compulsory.
(2) Answer each next main Question on a new page.
(3) Illustrate your answers with neat sketches wherever necessary.
(4) Figures to the right indicate full marks.
(5) Assume suitable data, if necessary.
(6) Use of Non-programmable Electronic Pocket Calculator is permissible.
(7) Mobile Phone, Pager and any other Electronic Communication devices are not permissible in Examination Hall.

Marks

1. Attempt any TEN of the following: $\mathbf{2 0}$
a) Define velocity ratio and mechanical advantages in a simple machine.
b) Define ideal machine and ideal effort.
c) Define effort lost in friction with formula.
d) State principle of transmissibility of forces.
e) What is Bow's notation? Explain with a sketch.
f) Define statics and dynamics.
g) What is space diagram and vector diagram?
h) State Lami's theorem.
i) What is relation between resultant and equilibrant?
j) Define coefficient of friction and angle of repose.
k) List any four laws of friction.
1) State the formula of velocity ratio of differential axle and wheel with their meaning.

2. Attempt any FOUR of the following:

a) In a machine, an effort of 2 N lifted a load of 30 N . If the effort lost due to friction at this load is 0.5 N , find the VR and efficiency of the machine.
b) A Weston's differential pulley block has 16 and 15 cogs. An efforts of 600 N lifts a load of 15 kN . Find VR, MA and efficiency.
c) A screw jack has an effort wheel diameter of 300 mm and pitch is 6 mm . If a load of 1200 N is lifted by an effort of 200 N , find VR, MA and efficiency.
d) A machine has $\mathrm{VR}=25$ and law of machine is $\mathrm{P}=(0.01 \mathrm{~W}+5) \mathrm{N}$. Find MA, efficiency and effort lost in friction when load is 1000 N . Also state whether the machine is reversible or not.
e) In a differential axle and wheel, the diameter of wheel is 36 cm and that of axles are 9 cm and 6 cm . If the efficiency of machine is 80%, determine the load lifted by an effort of 100 N .
f) A load of 1 kN is lifted by an effort of 56 N and 2 kN is lifted by an effort of 96 N . Find effort required to lift a load of 3 kN .
3. Attempt any FOUR of the following:
a) Resolve each of the following forces into orthogonal components.
(i) 350 N acting South-West away.
(ii) 200 N acting North-East away
(iii) 40 N acting 40° West of South away.
(iv) 400 N acting due South away.
b) What are the components of 60 N force acting horizontal, in two directions on either side at an angle of 30° each?
c) Find the moment about point B as shown in Figure No. 1

Fig. No. 1
d) Find the resultant force and its direction if two forces 20 N and 40 N is acting along the adjacent sides of a parallelogram making an angle of 60°.
e) ABCD is a square of 2 m side. Along sides $\mathrm{AB}, \mathrm{CB}, \mathrm{DC}$ and AD the forces of $10,20,30$ and 40 N are acting respectively. Find resultant of forces from A.
f) Three parallel forces of magnitude $100 \mathrm{~N}, 200 \mathrm{~N}$ and 400 N are acting vertically upward at A, B and C such that $A B=2 \mathrm{~m}$ and $\mathrm{BC}=3 \mathrm{~m}$. Find the resultant force graphically.
4. Attempt any FOUR of the following:
a) Find the tensions in the string as shown in Figure No. 2

Fig. No. 2
b) A sphere of weight 400 N rests in a groove of smooth inclined surfaces which are making 60° and 30° inclination with horizontal. Find the reactions at the contact surfaces.
c) A body of weight 100 N is suspended by two strings of 4 m and 3 m lengths attached at the same horizontal level 5 m apart. Find the tensions in the strings.
d) A simply supported beam has a span of 4 m . Find the position of a concentrated load on it such that the left hand reaction is three times the right hand reaction.
e) A simply supported beam of span 10 m carries a centre load of 25 kN and a u.d. 1 of $25 \mathrm{kN} / \mathrm{m}$ throughout. Find support reaction.
f) Distinguish between resultant and equilibrant.
5. Attempt any FOUR of the following:
a) A body of weight 2000 N rests on a horizontal plane. If the coefficient of friction is 0.4 . Find the horizontal force required to move the body.
b) A block of 80 N is placed on a horizontal plane where the coefficient of friction is 0.25 . Find the force at 30° up the horizontal to just move the block.
c) A body of weight 600 N is resting on a rough inclined plane of 40°. If the $\mu=0.58$, what force is required to prevent the body from falling down the plane.
d) Find the horizontal force required to drag a body of weight 100 N along a horizontal plane. If the plane is raised gradually upto 15°, the body will begin to slide.
e) Calculate the magnitude and direction of resultant force of the force system as shown in Figure No. 3. Use Analytical method.

Fig. No. 3
f) Find the magnitude, direction and position of resultant force of four parallel like forces as shown in Figure No. 4. Use Graphical method.

Fig. No. 4
6. Attempt any FOUR of the following:
a) Find the centroid of L-section $90 \times 60 \times 8 \mathrm{~mm}$.
b) Find centroid of T-section with flange $120 \times 12 \mathrm{~mm}$ and vertical web $180 \times 18 \mathrm{~mm}$.
c) A square of 400 mm side from which a circle of 400 mm diameter is cut-off from the centre. Find centroid of the remaining area.
d) Locate centre of gravity of a right circular cone and sphere. State formula for volume.
e) A solid cone having base diameter 6 cm and height 6 cm is kept co-axially on a solid cylinder having same diameter and height 10 cm . Find centre of gravity of combination.
f) A frustum of a cone has top diameter 40 cm and bottom diameter 60 cm with height 18 cm . Find centre of gravity.

