

Subject : Engineering Mechanics

~

Subject Code : 17204

Page No: 1 / 26

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1		Attempt any <u>TEN</u> of the following :		20 M
	a)	Define velocity ratio & mechanical advantage in a simple machine.		
	Ans	<u>Mechanical Advantage</u> is the ratio of the load (W) lifted by the machine to the effort (P) applied to lift the load. It is denoted by M.A. $M.A. = \frac{W}{P}$	1 M	
		<u>Velocity Ratio</u> is the ratio of distance travelled by effort (y) to distance travelled by load (x). $V.R. = \frac{y}{x}$	1 M	2 M
	b) Ans	Define ideal machine & ideal effort. <u>Ideal Machine</u> is the machine whose efficiency is 100 % & in which friction is zero.	1 M	
		<u>Ideal Effort</u> is the ratio of actual load & VR of machine. It is denoted by (Pi). $Pi = \frac{W}{VR}$	1 M	2 M
	c) Ans	Define effort lost in friction with formula. <u>Effort lost in friction (P_{f_1}</u> : It is the effort by considering the wear and tear effect while use of machine. OR		
		It is the effort obtained by subtracting ideal effort from an effort.	1 M	

Subject & Code: Engineering Mechanics (17204)

Page No: 2 / 26

. - -

Que. Sub. No. Que	Model Answers	Marks	Total Marks
1	$Pf = P - Pi$ OR $Pf = P - \left(\frac{W}{VR}\right)$ Where, P = Actual effort & Pi = Ideal Effort	1 M	2 M
d) Ans	State principle of transmissibility of force.Principle of transmissibility of forcestates that, "if a force acts at apoint on a rigid body, it is assumed to act at any other point on the lineof action of force within the same body".As per this principle force of push nature can be made pull by	1 M	
	Pull Force θ (III quadrant) F	1 M	2 M
e) Ans	What is Bow's notation? Explain with a sketch. Consider a force of 100 N is acting on a body. In this method, capital letters P & Q are marked on both side of line of action of force. A force of 100 N is now read as PQ as shown below in space diagram. To represent a force of 100 N graphically, pq is drawn parallel to PQ as shown in vector diagram.	1 M	
	P = 100 N $P = 100 N$ $P = 100 N$ $F = 100 N$ $P = 100 N$ $P = 100 N$ $P = 100 N$	1 M	2 M
f) Ans	SCALE = 1 cm = 25 N Define statics & dynamics. <u>Statics</u> is the branch of applied mechanics which deals with forces & their action on bodies at rest.	1 M	
	<u>Dynamics</u> is the branch of applied mechanics which deals with forces & their action on bodies in motion.	1 M	2 M

Subject & Code: Engineering Mechanics (17204)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	g) Ans	What is space diagram & vector diagram? <u>Space diagram</u> is the diagram in which number of forces acting on body is drawn in space to a suitable scale & naming the spaces in order by Bow's notation.	1 M	
		<u>Vector diagram</u> is the diagram in which the forces are taken to a suitable scale & drawn parallel to their respective lines of action of the forces drawn in space diagram by maintaining the same order as it was maintained in space diagram.	1 M	2 M
	h) Ans	State Lami's theorem. <u>Lami's theorem</u> states that, if three forces acting at a point on a body keep it at rest, then each force is proportional to the sine of the angle between the other two forces.	1 M	
		As per Lami's theorem, $\frac{F_1}{sin\alpha} = \frac{F_2}{sin\beta} = \frac{F_3}{sin\gamma}$	1 M	2 M
	i) Ans	What is relation between resultant & equilibrant? Equilibrant is always equal in magnitude, opposite in direction & collinear to the resultant.	1 M	
		$E \qquad \begin{array}{c} O & \propto & P \\ \hline C & &$	1 M	2 M
	j) Ans	Define coefficient of friction & angle of repose. <u>Coefficient of friction</u> is the ratio of limiting friction (F) to the normal reaction (R) at the surface of contact. $F \alpha R$ $F = \mu R$ $\mu = \frac{F}{R}$	1 M	
		<u>Angle of repose</u> is defined as the angle made by the inclined plane with the horizontal plane at which the body placed on an inclined plane is just on the point of moving down the plane, under the action of its own weight.	1 M	2 M

Subject & Code: Engineering Mechanics (17204)

--

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	~			
	k) Ans	 List any four laws of friction. (1) Frictional force always acts opposite to the direction of motion & tangential to plane of contact. (2) In limiting equilibrium, liming friction (F) bears a constant ratio to normal reaction (R). (3) Coefficient of friction depends only upon nature of surface in contact & it is independent of surface area in contact. (4) Static friction is more than dynamic friction. (5) Friction is self-adjusting force & increases with increase in applied force up to limiting friction. 	1/2 M Each (any four)	2 M
	l) Ans	State the formula of velocity ratio of differential axle & wheel with their meaning. Velocity Ratio of Differential axle & wheel is given by - $VR = \frac{2D}{d_1 - d_2}$ Where, D = Diameter of effort wheel d ₁ = Diameter of bigger axle d ₂ = Diameter of smaller axle	1 M 1 M	2 M
2		Attempt any <u>FOUR</u> of the following :		16 M
	a)	In a machine, an effort of 2 N lifted a load of 30 N. If the effort lost due to friction at this load is 0.5 N, find the VR & efficiency of the machine.		
	Ans.	 Effort lost in friction is given by – P_f = P - P_i 0.5 = 2 - P_i P_i = 1.5 N Ideal Effort P_i = W / VR 1.5 = 30 / VR 	1 M	

Subject & Code: Engineering Mechanics (17204)

Page No: 5 / 26

. - -

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	Que.	VR = 30 / 1.5 = 20 3) Mechanical Advantage MA = W / P = 30 / 2 = 15 % $\eta = \frac{MA}{VR} X100 = \frac{15}{20} X100$	1 M 2 M	4 M
	b)	 = 75 % A Weston's differential pulley block has 16 & 15 cogs. An effort of 600 N lifts a load of 15 KN. Find VR, MA & efficiency. 		
	Ans.	VR of Weston's differential pulley block is given by - $VR = \frac{2T_1}{T_1 - T_2} = \frac{2X16}{16 - 15}$ VR = 32 W = 15000	2 M	
		$M.A. = \frac{W}{P} = \frac{15000}{600}$ $M.A. = 25$ $\%\eta = \frac{MA}{VR} X100 = \frac{25}{32} X100$ $\%\eta = 78.125\%$	1 M 1 M	4 M
	c)	A screw jack has an effort wheel diameter of 300 mm & pitch is 6 mm. If a load of 1200 N is lifted by an effort of 200 N, find VR, MA & efficiency.		
	Ans.	VR of simple screw jack is given by -		
		$VR = \frac{\pi D}{p} = \frac{\pi X 300}{6}$ VR = 157.079	2 M	
		$MA = \frac{W}{P} = \frac{1200}{200}$ $MA = 6$	1 M	
		$\% \eta = \frac{MA}{VR} X100 = \frac{6}{157.079} X100$ % $\eta = 3.82\%$	1 M	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Winter 2016

Subject & Code: Engineering Mechanics (17204)

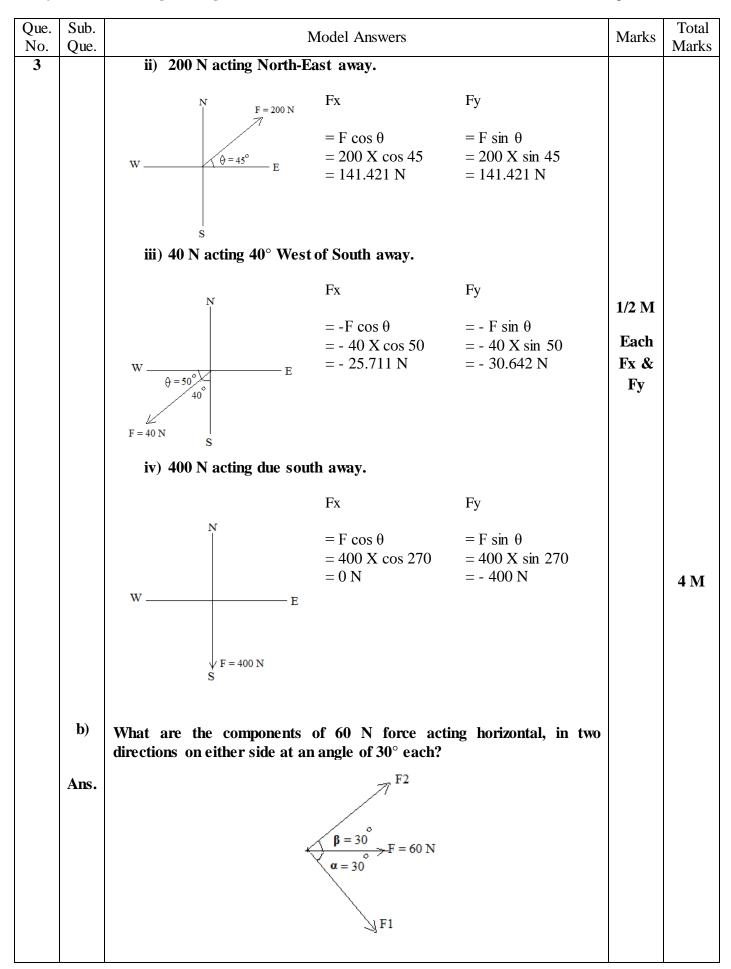
Page No: 6 / 26

--

2	Que. d) Ans.	A machine has VR = 25 & law of machine is P = (0.01 W + 5) N. Find MA, efficiency & effort lost in friction when load is 1000 N. Also state whether the machine is reversible or not. $P = (0.01W + 5)N = ((0.01X1000) + 5)$ $P = 15N$ $MA = \frac{W}{P} = \frac{1000}{15} = 66.667$ $\%\eta = \frac{MA}{VR}X100 = \frac{66.667}{25}X100$	1 M	
	Ans.	$P = 15N$ $MA = \frac{W}{P} = \frac{1000}{15} = 66.667$	1 M	
		$MA = \frac{W}{P} = \frac{1000}{15} = 66.667$	1 M	
			1 M	
		$\frac{1}{2} n = \frac{1}{2} $		
			1 N/	
		$\% \eta = 266.667\%$ W = 1000 40	1 M	
		$P_{i} = \frac{W}{VR} = \frac{1000}{25} = 40$ $P_{f} = P - P_{i} = 15 - 40 = -25N$	1 M	
		Since, $\%\eta = 266.67 \% > 50 \%$, machine is reversible.	1 M	4 M
	e)	In a differential axle & wheel, the diameter of wheel is 36 cm & that of axles are 9 cm & 6 cm. If the efficiency of machine is 80%, determine the load lifted by an effort of 100 N.		
	Ans.	(1) VR of differential axle & wheel is given by -		
		$VR = \frac{2D}{d_1 - d_2} = \frac{2X36}{9 - 6}$ $VR = 24$	2 M	
		$\%\eta = \frac{M.A.}{V.R.}X100$		
		$80 = \frac{MA}{24} X100$		
		$MA = \frac{80X24}{100} = 19.2$ $MA = \frac{W}{P}$		
		$19.2 = \frac{W}{100}$ W = 19.2X100	2 M	4 M
		W = 1920N		
	f)	A load of 1 KN is lifted by an effort of 56 N & 2 KN is lifted by an		

Subject & Code: Engineering Mechanics (17204)

Page No: 7 / 26



Ans.	Using Law of machine – P = (mW + c)N Putting values of W & P 56 = m(1000) + c (1) 96 = m(2000) + c (2) Subtracting eqn (2) from eqn (1) -40 = -m(1000) $m = \frac{40}{1000} = 0.04$ Putting value of m in eqn (1) 56 = (0.04)1000 + c c = 16N Hence, Law of machine is – P = (0.04W + 16)N (3)			1 M 1 M	
	Putting values of W & P 56 = m(1000) + c (1) 96 = m(2000) + c (2) Subtracting eqn (2) from eqn (1) -40 = -m(1000) $m = \frac{40}{1000} = 0.04$ Putting value of m in eqn (1) 56 = (0.04)1000 + c c = 16N Hence, Law of machine is - P = (0.04W + 16)N (3)				
	56 = m(1000) + c (1) 96 = m(2000) + c (2) Subtracting eqn (2) from eqn (1) -40 = -m(1000) $m = \frac{40}{1000} = 0.04$ Putting value of m in eqn (1) 56 = (0.04)1000 + c c = 16N Hence, Law of machine is - P = (0.04W + 16)N (3)				
	96 = m(2000) + c (2) Subtracting eqn (2) from eqn (1) -40 = -m(1000) $m = \frac{40}{1000} = 0.04$ Putting value of m in eqn (1) 56 = (0.04)1000 + c c = 16N Hence, Law of machine is - P = (0.04W + 16)N (3)				
	Subtracting eqn (2) from eqn (1) -40 = -m(1000) $m = \frac{40}{1000} = 0.04$ Putting value of m in eqn (1) 56 = (0.04)1000 + c c = 16N Hence, Law of machine is $-$ P = (0.04W + 16)N (3)			1 M	
	-40 = -m(1000) $m = \frac{40}{1000} = 0.04$ Putting value of m in eqn (1) 56 = (0.04)1000 + c c = 16N Hence, Law of machine is - P = (0.04W + 16)N (3)			1 M	
	$m = \frac{40}{1000} = 0.04$ Putting value of m in eqn (1) 56 = (0.04)1000 + c c = 16N Hence, Law of machine is – P = (0.04W + 16)N (3)			1 M	
	Putting value of m in eqn (1) 56 = (0.04)1000 + c c = 16N Hence, Law of machine is – P = (0.04W + 16)N (3)			1 M	
	56 = (0.04)1000 + c c = 16N Hence, Law of machine is - P = (0.04W + 16)N (3)			1 M	
	c = 16N Hence, Law of machine is – P = (0.04W + 16)N (3)			1 M	
	Hence, Law of machine is – P = (0.04W + 16)N (3)			1 M	
	P = (0.04W + 16)N (3)				
1	Detting W. 2000 Nin son (2)			1 M	
	Putting $W=3000$ N in eqn (3)				
	P = ((0.04X3000) + 16))			1 M	4.74
	P = 136N				4 M
	Attempt any <u>FOUR</u> of the following	:			16 M
a)	 i) 350 N acting South-West aw ii) 200 N acting North-East awa iii) 40 N acting 40° West of South 	ay. 1y. h away.	ogonal components	-	
Ans.	i) 350 N acting South-West av	way.			
	Fx		Fy		
	= -350 X c	os 45	= - F sin θ = -350 X sin 45 = - 247.487 N		
	ı)	a) Resolve each of the following forces i) 350 N acting South-West awa ii) 200 N acting North-East awa iii) 40 N acting 40° West of South iv) 400 N acting due south away ns. i) 350 N acting South-West ava $w = \frac{1}{\theta = 45^{\circ}} = -F \cos \theta$ $= -350 X c$ $= -247.485$	a)Resolve each of the following forces into orthou i) 350 N acting South-West away. ii) 200 N acting North-East away. iii) 40 N acting 40° West of South away. iv) 400 N acting due south away.ms.i)350 N acting South-West away.ms.i)350 N acting South-West away.w $=$ - F cos θ = -350 X cos 45 = - 247.487 N	a) Resolve each of the following forces into orthogonal components i) 350 N acting South-West away. ii) 200 N acting North-East away. iii) 40 N acting 40° West of South away. iv) 400 N acting due south away. ns. i) 350 N acting South-West away. iii) 400 N acting South-West away. iii) 350 N acting South-West away. iii) $\frac{1}{\theta = 45^{\circ}}$ $E = -F \cos \theta = -F \sin \theta$ $= -350 X \cos 45 = -350 X \sin 45$ = -247.487 N = -247.487 N	a)Resolve each of the following forces into orthogonal components - i) 350 N acting South-West away. ii) 200 N acting North-East away. iii) 40 N acting 40° West of South away. iv) 400 N acting due south away.ms.i) 350 N acting South-West away.ms.i) 350 N acting South-West away.ms.i) 350 N acting South-West away. $W = -F \cos \theta = -F \sin \theta$ $= -350 X \cos 45 = -350 X \sin 45$ $= -247.487 N$

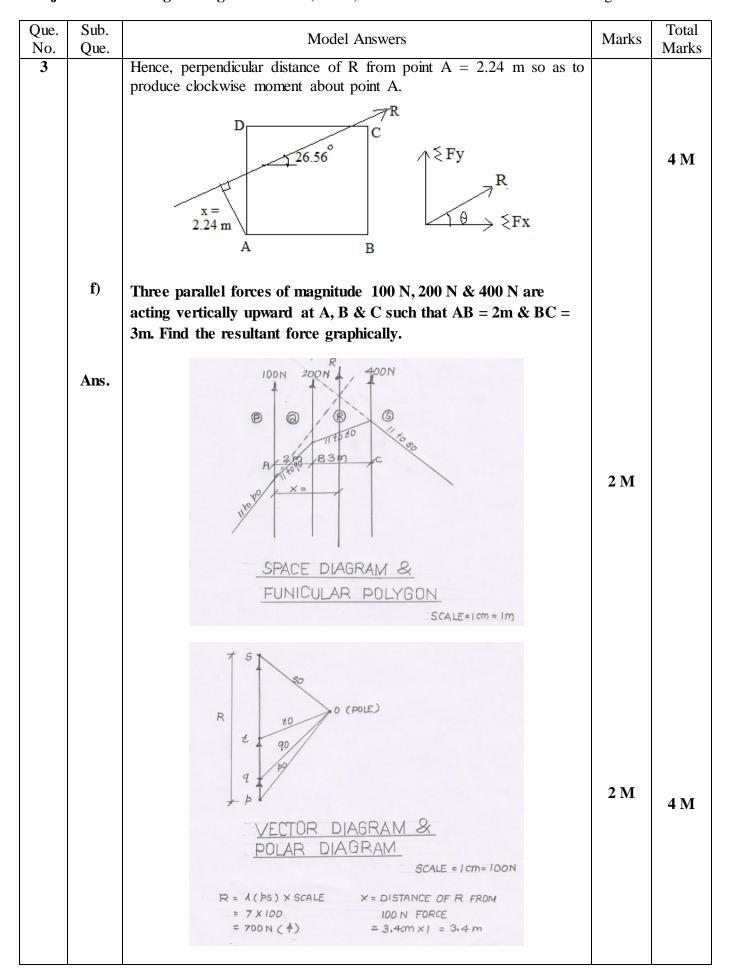
Subject & Code: Engineering Mechanics (17204)

Subject & Code: Engineering Mechanics (17204)

Page No: 9 / 26

Que.	Sub.	Model Answers	Marks	Total
No. 3	Que.		2 M	Marks
0		$F_1 = \frac{F \sin \alpha}{\sin(\alpha + \beta)} = \frac{60 \sin 30}{\sin(30 + 30)} = 34.64N$	2 111	
				4 M
		$F_2 = \frac{F\sin\beta}{\sin(\alpha+\beta)} = \frac{60\sin 30}{\sin(30+30)} = 34.64N$	2 M	• • • •
	c)	Find the moment about point B as shown in Figure No. 1		
	Ans.			
		20 KN		
		25 KN A VD		
		3 m		
		_10 KN		
		B 3 m C 30 KN		
		√ 40 KN		
		Taking moment @ point B –		
		$M_{\rm B} = (25 \text{ X } 3) + (20 \text{ X } 3) + (40 \text{ X } 3) + (10 \text{ X } 0) - (30 \text{ X } 0)$	2 M	
		$= + 255 \text{ KN-m} (\swarrow)$ = 255 KN-m (Clockwise moment)	2 M	4 M
	d)	Find the resultant force & it's direction if two forces 20 N & 40 N		
		is acting along the adjacent sides of a parallelogram making an angle of 60° .		
	Ans.			
		Q = 40 N		
		Q-40 N		
		$\phi = 60^{\circ}$ a		
		P = 20 N		
		Using Law of parallelogram of forces		
		$R = \sqrt{P^2 + Q^2 + 2PQ\cos\theta}$		
		$R = \sqrt{(20)^2 + (40)^2 + 2X20X40\cos 60}$		
		R = 52.915N	2 M	

Subject & Code: Engineering Mechanics (17204)



-	Sub.	Model Answers	Marks	Total Marks
3	Que.	Let, α be thinclination of R with P $\alpha = \tan^{-1} \left[\frac{Q \sin \theta}{P + Q \cos \theta} \right] = \tan^{-1} \left[\frac{40 \sin 60}{20 + 40 \cos 60} \right]$ $\alpha = 40.893^{\circ}$	2 M	4 M
	e)	ABCD is a square of 2 m side. Along sides AB, CB, DC & AD the forces of 10, 20, 30 & 40 N are acting respectively. Find resultant of forces from A.		
A	Ans.	NOTE: According to position of ABCD, answer may vary.		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 M	
		1) Resolving all forces – $\Sigma Fx = +10 + 30$ = +40 N		
		$\Sigma Fy = +40 - 20$ = + 20 N 2) Magnitude of Resultant $R = \sqrt{(\Sigma F_x)^2 + (\Sigma F_y)^2} = \sqrt{(40^2) + (20^2)}$ $R = 44.721N$		
		3) Direction and position of resultant As Σ Fx is +ve and Σ Fy is +ve, Resultant lies in 1 rd quadrant. $\theta = \tan^{-1} \left \frac{\Sigma F_y}{\Sigma F_x} \right = \tan^{-1} \left \frac{20}{40} \right = 26.565^{\circ}$	1 M	
		$\begin{vmatrix} \Sigma F_x \end{vmatrix} \qquad 40 $ 4) Position of Resultant w.r.to point A Let x be the perpendicular distance of R from point A. $\Sigma MF_A = (20 X 2) + (30 X 2) = +100 Nm$ $MR_A = + R. x = +44.721 x$	1 M	
		Using Varignon's theorem of moment $\Sigma MF_A = MR_A$ + 100 = + 44.721 x = 2.24	1 M	

Subject & Code: Engineering Mechanics (17204)

Subject & Code: Engineering Mechanics (17204)

Que.	Sub.	Model Answers	Marks	Total Marka
No. 4	Que.	Attempt any <u>FOUR</u> of the following :		Marks 16 M
	a)	Find the tensions in the string as shown in Figure No. 2		
		75° T2 135° 150°		
		$V_{25 N}$		
	Ans.	Using Lami's theorem, $\frac{25}{\sin 75} = \frac{T_1}{\sin 135} = \frac{T_2}{\sin 150}$ (1) (2) (3)		
		Using term (1) and (2) Using term (1) and (3) $\frac{25}{\sin 75} = \frac{T_1}{\sin 135}$ $\frac{25}{\sin 75} = \frac{T_2}{\sin 150}$ $T_1 = \frac{\sin 135}{\sin 75} X 25$ $T_2 = \frac{\sin 150}{\sin 75} X 25$ $T_1 = 18.301N$ $T_2 = 12.940N$	2 M each T ₁ & T ₂	4 M
	b)	A sphere of weight 400 N rests in a groove of smooth inclined surfaces which are making 60° & 30° inclination with horizontal. Find the reactions at the contact surfaces.		
	Ans.	$\mathbf{RA} \xrightarrow{60^{\circ}}_{0} 30^{\circ} \mathbf{RB} \xrightarrow{90^{\circ}}_{0} 30^{\circ} 60^{\circ} 30^{\circ} \mathbf{RA}$ $\mathbf{W} = 400 \mathbf{N}$ $\mathbf{W} = 400 \mathbf{N}$		

Subject & Code: Engineering Mechanics (17204)

Page No: 13 / 26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4		Using Lami's theorem, $\frac{400}{\sin 90} = \frac{R_A}{\sin 150} = \frac{R_B}{\sin 120}$ (1) (2) Using term (1) and (2) $\frac{400}{\sin 90} = \frac{R_A}{\sin 150}$ $R_A = \frac{\sin 150}{\sin 90} X 400$ $R_B = \frac{\sin 120}{\sin 90} X 400$	2 M each R _A & R _B	4 M
		$R_A = 200N$ $R_B = 346.40N$		
	c)	A body of weight 100 N is suspended by two strings of 4 m & 3 m lengths attached at the same horizontal level 5 m apart. Find the tensions in the strings.		
	Ans.	A $5m$ B $T1$ 90° $T2$ 3 m $4m$ $6m$ $4m$ $6m$ 143.13° 126.87° 100 N FBD		
		In \triangle ACB, $AC^2 + BC^2 = AB^2$ $(3)^2 + (4)^2 = (5)^2$ $\angle ACB = 90^\circ$ In right angle \triangle ACB, $\sin \theta = \frac{BC}{AB} = \frac{4}{5}$ $\theta = \sin^{-1}\left(\frac{4}{5}\right) = 53.13^\circ$ $\theta + \alpha + 90^\circ = 180^\circ$ $53.13^\circ + \alpha + 90^\circ = 180^\circ$ $\alpha = 36.87^\circ$		
		Using Lami's theorem, $\frac{100}{\sin 90} = \frac{T_1}{\sin 126.87} = \frac{T_2}{\sin 143.13}$ (1) (2) (3)		

Subject & Code: Engineering Mechanics (17204)

Que. No.	Sub. Que.	Model A	nswers	Marks	Total Marks
4		$\frac{100}{\sin 90} = \frac{T_1}{\sin 126.87}$ $T_1 = \frac{\sin 126.87}{\sin 90} X100$	Using term (1) and (3) $\frac{100}{\sin 90} = \frac{T_2}{\sin 143.13}$ $T_2 = \frac{\sin 143.13}{\sin 90} X100$ $T_2 = 60N$	2 M each T ₁ & T ₂	4 M
	d)	A simply supported beam has a sp concentrated load on it such that times the right hand reaction.	· –		
	Ans.	$\mathbf{A} \underbrace{\mathbf{x}}_{\mathbf{L} = 4 \text{ m}}^{\mathbf{W}}$ $\mathbf{R} \mathbf{A} = 3 \text{ RB}$	B RB	1 M	
		Let, RA = Left hand reaction RB = Right hand reaction x = Position of W from RA Applying equilibrium conditions $\Sigma Fy = 0^{(1+ve)} \sqrt{-ve}$ and $\Sigma M = 0$	= 0 ^{((+ve ,)} -ve)		
		$\Sigma Fy = 0$ RA - W + RB = 0 3 RB - W + RB = 0 4 RB = W		1 M	
		$\Sigma MA = 0$ (RA X 0) + (W X x) - (RB X L) = (4 RB X x) = RB X 4 x = 1 m	= 0	2 M	4 M

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Winter 2016

Subject & Code: Engineering Mechanics (17204)

. _ _

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	e)	A simply supported beam of span 10 m carries a centre load of 25 KN & a udl of 25 KN/m throughout. Find support reaction. 25 KN		1.1u1K3
	Ans.			
		25 KN/m		
		\mathbf{A} $5 \mathrm{m}$ \mathbf{B}		
		L = 10 m	1 M	
		RA RB		
		250 + 25 = 275 KN		
		$\mathbf{A} \land 5\mathbf{m} \land \mathbf{B}$		
		L = 10 m		
		RA RB		
		1) Equivalent point load and it's position		
		Equivalent point load = Intensity of udl X span of udl = 25×10		
		= 250 KN		
		Position from RA = Span of udl $/ 2 = 10 / 2 = 5$ m 2) Applying equilibrium conditions		
		$\Sigma Fy = 0 (\uparrow + ve \downarrow \sqrt{-ve}) \text{ and } \Sigma M = 0 (\uparrow + ve \downarrow \sqrt{-ve})$		
		$\Sigma Fy = 0$ (1) (2) V and $\Sigma M = 0$ (2) V		
		$\Sigma Fy = 0$		
		RA - 275 + RB = 0 RA + RB = 275 KN (1)	1 M	
		$\Sigma M_A = 0$ Taking moment of all forces @ point A		
		$(RA \times 0) + (275 \times 5) - (RB \times 10) = 0$	1 1 7	
		1375 = 10 RB RB = 137.5 KN	1 M	
		Putting value of RB in eqn. 1 RA $+ 137.5 = 275$	1 M	4 M
		RA = 137.5 KN		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (IS O/IEC - 27001 - 2005 Certified) **Model Solution : Winter 2016**

Subject & Code: Engineering Mechanics (17204)

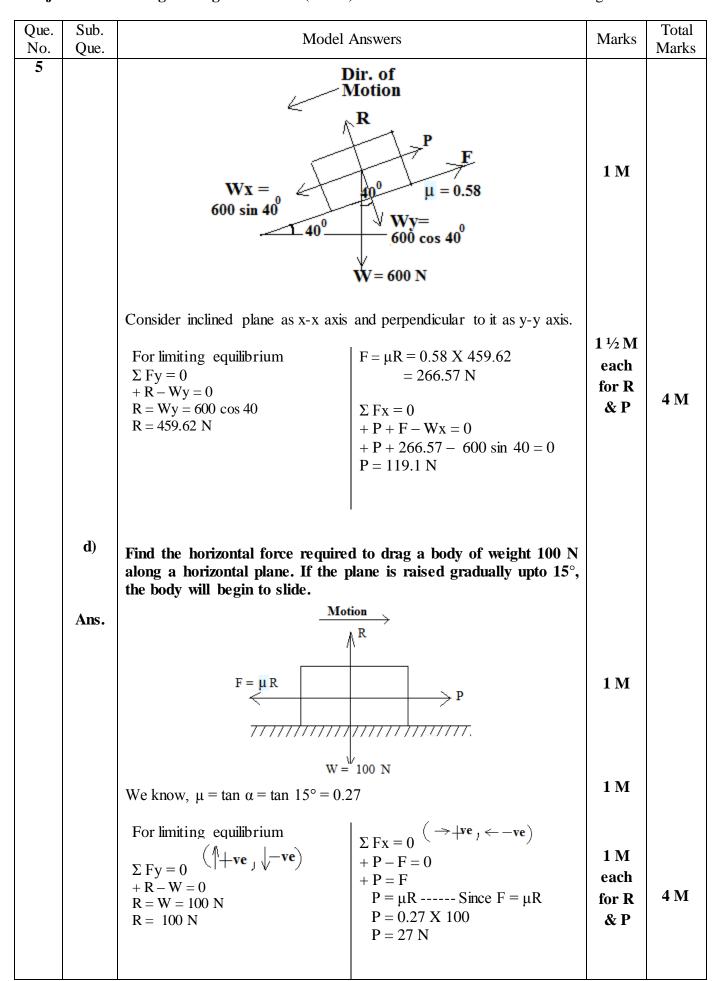
Page No: 16 / 26

Que. No.	Sub. Que.	Model A	Answers	Marks	Total Marks
4	f)	Distinguish between resultant & e	equilibrant.		101u1K5
	A -=	Dec Kerd			
	Ans.	Resultant	1) Equilibrant		
		which can produce the same	1) Equilibrant is a single force which when acts with other		
		effect on the body as it is	forces brings the set of forces &		
		produced by all forces acting	body in equilibrium.		
		together.	oody in equilibrium.		
		2) It is donated by R.	2) It is denoted by E.		
		3) It causes displacement of			
		body.			
		4) The set of forces which	4) The set of forces which keeps	1 M	
		causes the displacement of a	the body at rest are called as	each	
		body are called as components	components of a equilibrant or	(any	4 M
		of a resultant or component	equilibrant forces.	four)	
		forces.		iour)	
		5)			
			,0		
			7		
			∕∕R		
			ĸ		
			X		
		X	[¬] →P		
			Where,		
		<u> </u>	& Q = Forces		
		F	R = Resultant		
		E	E = Equilibrant		
5		Attempt any <u>FOUR</u> of the following	ng :		16
	a)	A body of weight 2000 N rest	s on a horizontal plane. If the		
		coefficient of friction is 0.4. Find			
		move the body.	-		
		Motic	n _		
	Ans.		R		
		- - Υ			
				1 M	
		$F = \mu R$			
			\rightarrow P		
			, <u>, , , , , , , , , , , , , , , , , , </u>		
		///////////////////////////////////////	$\mu = 0.4$		
		W = 2	000 N		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Winter 2016

Subject & Code: Engineering Mechanics (17204)

. - -

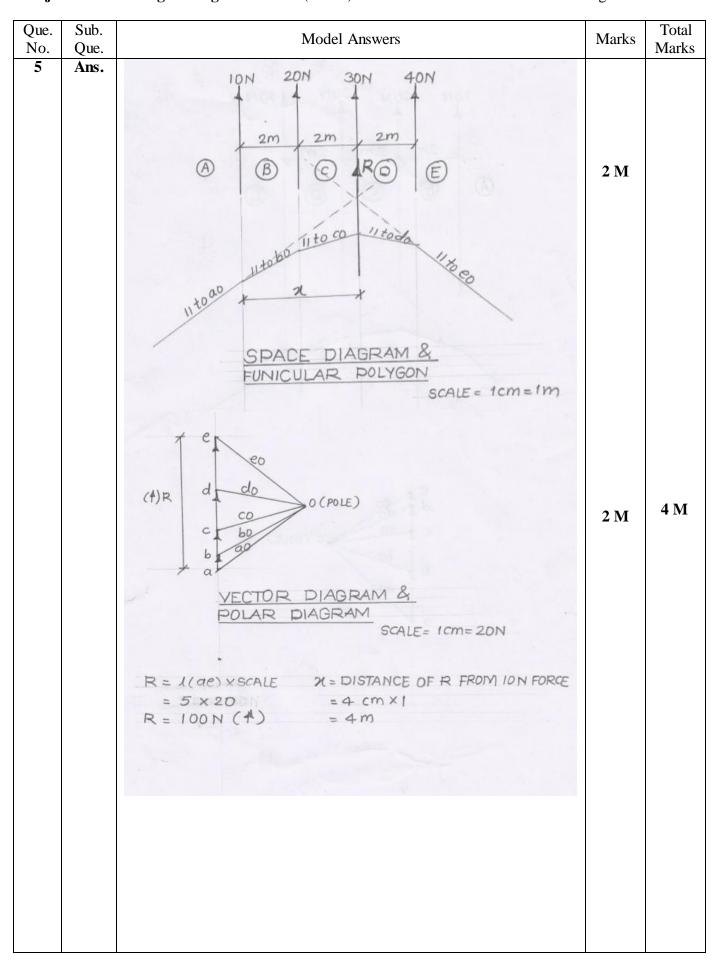

Que. No.	Sub. Que.	Model	Answers	Marks	Total Marks
5		For limiting equilibrium $\Sigma Fy = 0 \qquad (\uparrow + ve \downarrow \sqrt{-ve}) \\ + R - W = 0 \\ R = W = 2000 N \\ R = 2000 N$	$\Sigma Fx = 0 (\rightarrow +ve, \leftarrow -ve)$ + P - F = 0 + P = F P = μ R Since F = μ R P = 0.4 X 2000 P = 800 N	1 ½ M each for R & P	4 M
	b)	-	n a horizontal plane where the Find the force at 30° up the		
	Ans.	$F = \mu R$	$\begin{array}{c} \begin{array}{c} & P \sin 30 \\ R \\ \hline & P \\ \hline \hline & P \\ \hline \hline \hline & P \\ \hline \hline \hline & P \\ \hline \hline$	1 M	
		For limiting equilibrium $\Sigma Fx = 0$ ($\rightarrow +ve_{,} \leftarrow -ve$) $+ P \cos 30 - F = 0$ $+ P \cos 30 - \mu R = 0$ (0.866) P - (0.25) R = 0 (0.866) P = (0.25) R R = (0.866 / 0.25) P R = (3.464) P	$\sum Fy = 0$ + R + P sin 30 - W = 0 (3.464) P + (0.5) P - 80 = 0 (3.464 + 0.5) P = 80 (3.964) P = 80 P = 20.18 N	1 ½ M each for R & P	4 M
	c)		g on a rough inclined plane of 40°. equired to prevent the body from		

Subject & Code: Engineering Mechanics (17204)

Page No: 18 / 26

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Winter 2016

Subject & Code: Engineering Mechanics (17204)


--

No.	Sub. Que.	Model Answers	Marks	Total Marks
5	e)	Calculate the magnitude & direction of resultant force of the force system as shown in Figure No. 3. Use analytical method.		Walk
		$Fx \xrightarrow{60^{\circ}}_{Fx} \xrightarrow{60^{\circ}}_{Fy} \xrightarrow{45^{\circ}}_{Fx} \xrightarrow{61^{\circ}}_{Fx} \xrightarrow{61^{\circ}}_{Fy} \xrightarrow{15^{\circ}}_{Fy} \xrightarrow$		
	Ans.	Resolving all forces horizontally $(\rightarrow +ve, \leftarrow -ve)$ & vertically $(\uparrow +ve, \lor -ve)$,		
		$\Sigma Fx = + (40 \cos 30) - (20 \cos 60) - (35 \cos 60) + (25 \cos 45)$ = + 24.819 N $\Sigma Fy = + (40 \sin 30) + (20 \sin 60) - (35 \sin 60) - (25 \sin 45)$ = - 10.668 N	1 M	
		Magnitude of resultant $R = \sqrt{(\sum F_x)^2 + (\sum F_y)^2} = \sqrt{(24.819^2) + (-10.668^2)}$ R = 27.015N	1 M	
		3) Direction and position of resultant As Σ Fx is +ve and Σ Fy is -ve, Resultant lies in 4 th quadrant. $\theta = \tan^{-1} \left \frac{\Sigma F_y}{\Sigma F_x} \right = \tan^{-1} \left \frac{10.668}{24.819} \right = 23.259^{\circ}$	2 M	4 M
	f)	Find the magnitude, direction & position of resultant force of four parallel like forces as shown in Figure No. 4. Use graphical method.		

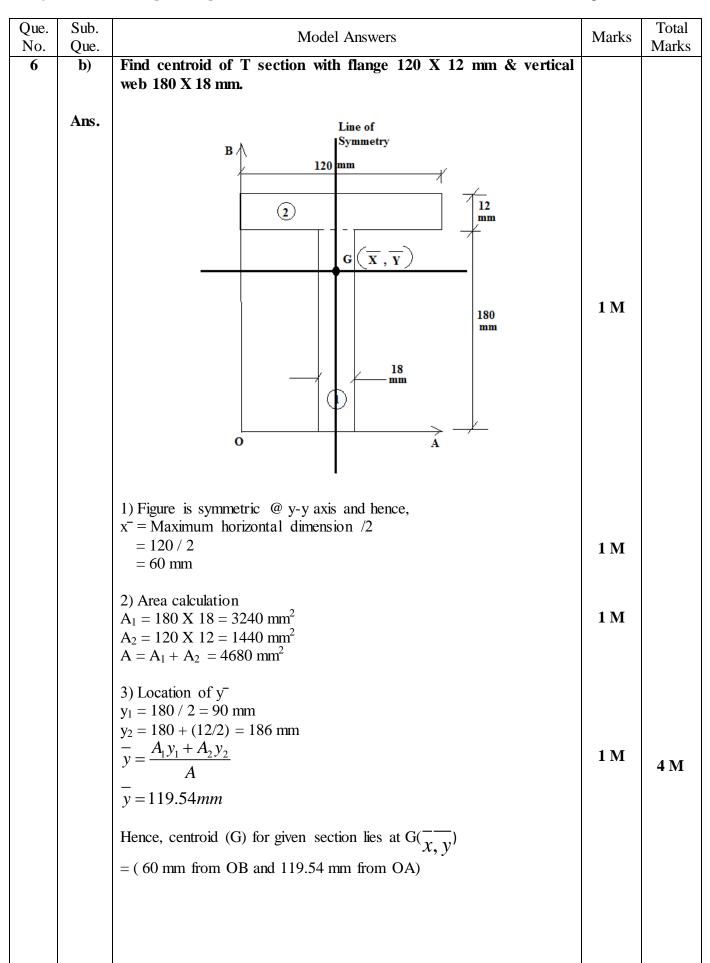
Subject & Code: Engineering Mechanics (17204)

Page No: 20 / 26

Subject & Code: Engineering Mechanics (17204)

Page No: 21 / 26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	a) Ans,	Attempt any <u>FOUR</u> of the following : Find the centroid of L section 90 X 60 X 8 mm. 90 mm 1 G (\bar{x}, \bar{y}) 8 mm 2 m 2 m 4	1 M	16 M
		$\frac{60 \text{ mm}}{A_1 = 90 \text{ X } 8 = 720 \text{ mm}^2}$ $A_2 = 52 \text{ X } 8 = 416 \text{ mm}^2$ $A = A_1 + A_2 = 1136 \text{ mm}^2$ 2) Location of x ⁻ $x_1 = 8 / 2 = 4 \text{ mm}$ $x_2 = 8 + (52/2) = 34 \text{ mm}$ $\overline{x} = \frac{A_1 x_1 + A_2 x_2}{A}$	1 M 1 M	
		$\overline{x} = 14.98mm$ 3) Location of \overline{y} $y_1 = 90 / 2 = 45 \text{ mm}$ $y_2 = 8 / 2 = 4 \text{ mm}$ $\overline{y} = \frac{A_1 y_1 + A_2 y_2}{A}$ $\overline{y} = 29.98mm$ Hence, centroid (G) for given section lies at $G(\overline{x}, \overline{y})$ = (14.98 mm from OB and 29.98 mm from OA)	1 M	4 M

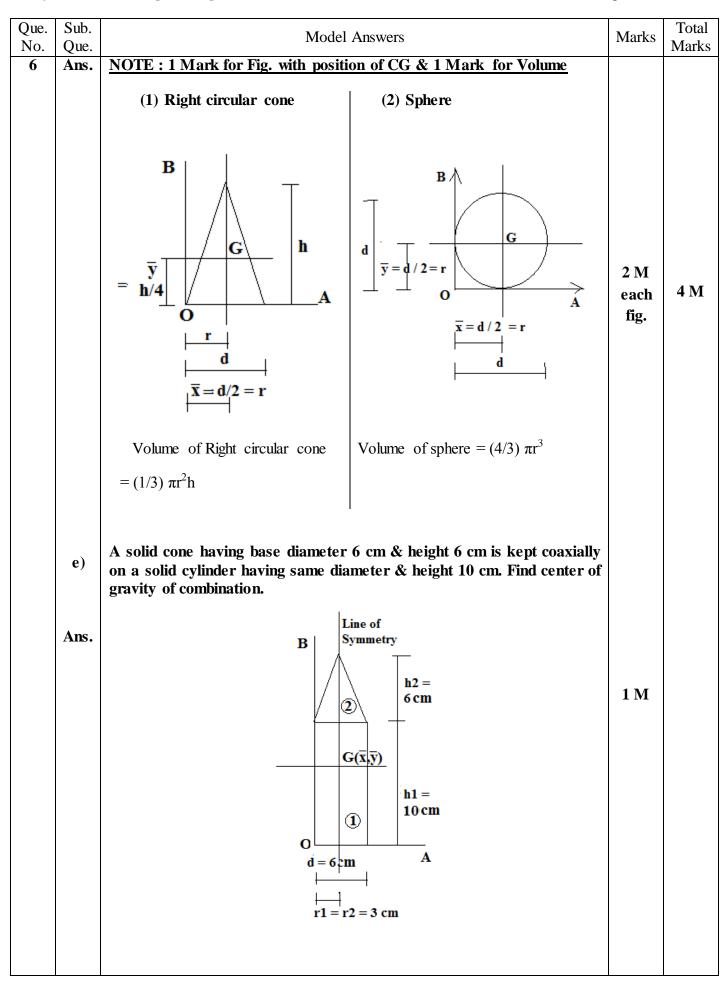


_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Subject & Code: Engineering Mechanics (17204)

Page No: 22 / 26

Subject & Code: Engineering Mechanics (17204)


. _ _

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	c)	A square of 400 mm side from which a circle of 400 mm diameter is cutoff from the center. Find centroid of the remaining area. ${}_{A}{}^{B}$		THURS
	Ans.	$400 \text{ mm} \underbrace{\begin{array}{c} \hline \\ 400 \text{ mm} \\ \hline \\ \hline \\ 0 \\ \hline \\ 400 \text{ mm} \\ \hline \\ 400 \text{ mm} \\ \hline \end{array}}_{A}$	1M	
		1) Area calculation $A_1 = 400 \times 400 = 160000 \text{ mm}^2$ $A_2 = (\pi / 4) \times (400)^2 = 125663.706 \text{ mm}^2$ $A = A_1 - A_2 = 34336.293 \text{ mm}^2$	1 M	
		2) Location of \bar{x} $x_1 = 400 / 2 = 200 \text{ mm}$ $x_2 = 400 / 2 = 200 \text{ mm}$		
		$\overline{x} = \frac{A_1 x_1 - A_2 x_2}{A}$ $\overline{x} = 200mm$	1 M	
		3) Location of y^- $y_1 = 400 / 2 = 200 \text{ mm}$ $y_2 = 400 / 2 = 200 \text{ mm}$		
		$\begin{aligned} \overline{y} &= \frac{A_1 y_1 - A_2 y_2}{A}\\ \overline{y} &= 200mm \end{aligned}$	1 M	4 M
		Hence, centroid (G) for given section lies at $G(\overline{x, y})$		
		= (200 mm from OB and 200 mm from OA)		
	d)	Locate center of gravity of a right circular cone & sphere. State formula for the volume.		

Subject & Code: Engineering Mechanics (17204)

Subject & Code: Engineering Mechanics (17204)

Page No: 25 / 26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	Que.	1) Figure is symmetric @ y-y axis and hence, $x^{-} = Maximum$ horizontal dimension /2 = 6 / 2 = 3 cm	1 M	
		2) Volume Calculation $V_1 = \pi r^2 h = \pi (3)^2 10 = 282.743 cm^3$ $V_2 = (1/3)\pi r^2 h = (1/3)\pi (3)^2 X 6 = 56.548 cm^3$ $V = V_1 + V_2 = 339.291 cm^3$ 3) \overline{y} calculation $y_1 = 10/2 = 5 cm$	1 M	
		$y_{2} = 10 + (6/4) = 11.5cm$ $\overline{y} = \frac{V_{1}y_{1} + V_{2}y_{2}}{V}$ $\overline{y} = 6.08cm$ Hence, centre of gravity (G) for given composite body lies at G($\overline{x}, \overline{y}$) $= (3 \text{ cm from OB and } 6.08 \text{ cm from OA})$	1 M	4 M
	f) Ans.	A frustum of a cone has top diameter 40 cm & bottom diameter 60 cm with height 18 cm. Find center of gravity. $Q \qquad \qquad$	1 M	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Solution : Winter 2016

Subject & Code: Engineering Mechanics (17204)

Page No: 26 / 26

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6		Let, Full cone as Fig. 1 & cut cone as Fig. 2		
		1) Figure is symmetric @ y-y axis and hence, $x^{-} = Maximum$ horizontal dimension /2		
		= 60 / 2	1 M	
		= 30 cm		
		$h_1 = 18$ cm, $h_2 =$ Height of cut cone		
		In triangle, ABE & CDE $h = h_{-}$		
		$\frac{h}{60} = \frac{h_2}{40}$		
		$h = \frac{60}{40}h_2$		
		$ \begin{aligned} h &= 1.5h_2 \\ h_1 &+ h_2 &= h \end{aligned} $		
		$h_1 + h_2 = h$ $h_1 + h_2 = 1.5h_2$		
		$h_1 = 1.5h_2 - h_2$		
		$h_1 = 0.5h_2$		
		$18 = 0.5h_2$		
		$h_2 = 36cm$		
		h = 18 + 36 = 54cm		
		2) Volume Calculation		
		$V_1 = (1/3)\pi r_1^2 h = (1/3)\pi (30)^2 X 54 = 50.86 X 10^3 cm^3$		
		$V_2 = (1/3)\pi r_2^2 h_2 = (1/3)\pi (20)^2 X 36 = 15.07 X 10^3 cm^3$	1 M	
		$V = V_1 - V_2 = 35.82 \times 10^3 cm^3$		
		3) \overline{y} calculation		
		$y_1 = \frac{h}{4} = \frac{54}{4} = 13.5cm$		
		$y_2 = h_1 + \frac{h_2}{4} = 18 + \left(\frac{36}{4}\right) = 27cm$		
		$\overline{y} = \frac{V_1 y_1 - V_2 y_2}{V}$		4 1 4
		$\overline{y} = 7.815cm$	1 M	4 M
		Hence, centre of gravity (G) for given frustum of cone lies at $G(\overline{x, y})$		
		= (30 cm from AQ and 7.815 cm from AP)		