Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1		Attempt any TEN of the following :		20
	a) Ans	Define effort and effort lost in friction. Effort(P): The force applied to lift the heavy loads is known as effort.	1 M	
		Effort lost in friction $\left(\mathrm{P}_{\mathrm{f}}\right)$: It is the effort by considering the wear and tear effect while use of machine. OR It is the effort obtained by subtracting ideal effort from an effort.	1 M	2 M
	b) Ans	State any two uses of machines. 1) To lift heavy loads which is not possible manually. 2) To minimize the human beings efforts.	$\begin{aligned} & 1 \mathrm{M} \\ & \text { each } \end{aligned}$	2 M
	$\begin{gathered} \text { c) } \\ \text { Ans } \end{gathered}$	Draw nature of graph for load against Ideal effort.		
		Ideal Effort ($\mathbf{P}_{\mathbf{i}}$)		
		0	2 M	2 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	$\begin{gathered} \text { d) } \\ \text { Ans } \end{gathered}$	Define rigid body with one example. Rigid Body: It is defined as the body which do not deform when subjected to system of forces and it is fixed in position. e. g. In fact, no body is perfectly rigid. Every body deforms slightly under the action of forces. Hence, rigid body is a theoretical concept.	1 M 1 M	2 M
	$\begin{gathered} \text { e) } \\ \text { Ans } \end{gathered}$	State any two effects of force on a body. 1) It may change the state of a body. 2) It may accelerate or retard the motion of a body. 3) It may turn or rotate the body on which it acts. 4) It may deform the body on which it acts.	1M each (any two)	2 M
	$\begin{gathered} \text { f) } \\ \text { Ans } \end{gathered}$	Define coplanar parallel force system along with neat sketch. Definition: If lines of action of forces are parallel to each other in the same plane, the system is called as coplanar parallel force system. Sketch : Parallel forces may be like or unlike. a) Like parallel forces: acting in same direction	1 M	
		b) Unlike parallel forces: acting in opposite direction	1/2M	
			1/2 M	2 M
	$\begin{gathered} \mathbf{g}) \\ \text { Ans } \end{gathered}$	What is polar diagram? Polar Diagram : In case of non-concurrent or parallel force system the point of application of resultant can be found out by constructing polar diagram. Polar diagram is obtained from the vector diagram. To construct a polar diagram, any point "O" known as pole is chosen near the vector diagram and the points on the vector diagram are joined to it. The lines joined in this way are known as rays.	1 M	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	$\begin{gathered} \text { j) } \\ \text { Ans } \end{gathered}$	State types of friction. 1) Static friction: The friction experienced by a body when it is in equilibrium. 2) Dynamic friction: The friction experienced by a body when it is in motion 3) Rolling: The friction experienced by a bodies when one rolls over the another body. 4) Sliding: The friction experienced by a bodies when one slides over the another body	1 M each (any two)	2 M
	$\begin{gathered} \text { k) } \\ \text { Ans } \end{gathered}$	Define cone of friction. Cone of friction: The resultant reaction S makes an angle ϕ with normal reaction R as shown for given set of axes XY. Y-axis S	1 M for diagram \& 1 M For explan ation	
	$\begin{gathered} \text { 1) } \\ \text { Ans } \end{gathered}$	If X axis is rotated about Y axis, the resultant reaction S will also rotate. The line of action of action of S will always lie on surface of right circular cone whose vertex angle is equal to 2ϕ. This cone is known as cone of friction. State velocity ratio for screw jack with meaning of term involved. Velocity Ratio of Simple Screw jack is given by -		2 M
		$\mathbf{V R}=2 \pi \mathbf{L} / \mathbf{p}$ \qquad When handle of length L is provided OR $V R=2 \pi R / p$ When effort wheel is provided Where, $\mathrm{L}=$ length of handle $\mathrm{P}=$ pitch of screw $\mathrm{R}=$ radius of an effort wheel.	1 M for formula 1 M terms used	2 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
	d)	As per Lami's theorem, $\frac{F_{1}}{\sin \alpha}=\frac{F_{2}}{\sin \beta}=\frac{F_{3}}{\sin \gamma}$ Limitations of Lami's theorem - (1) It is applicable only when body is in equilibrium. (2) It is applicable only for concurrent force system. (3) It is applicable only when there are three forces only. (4) It is applicable only when three forces are acting away from the point. A beam of span 4 m is simply supported at it's end. It carries a concentrated loads of $40 \mathrm{KN} \& 20 \mathrm{KN}$ at $1 \mathrm{~m} \& 2 \mathrm{~m}$ from left hand support respectively. It carries udl of $10 \mathrm{kN} / \mathrm{m}$ for 2 m from the right end. Determine the reactions at support. 1) Equivalent point load and it's position Equivalent point load = Intensity of udl X span of udl $\begin{aligned} & =10 \mathrm{X} 2 \\ & =20 \mathrm{KN} \end{aligned}$ Position from RA $=2 \mathrm{~m}+$ Span of udl $/ 2=2+(2 / 2)=3 \mathrm{~m}$		4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	e) Ans.	2) Applying equilibrium conditions $\begin{aligned} & \Sigma \mathrm{Fy}=0(\uparrow+\mathbf{v e}, \downarrow-\mathbf{v e}) \text { and } \Sigma \mathrm{M}=0((+\mathbf{v e},\lceil-\mathbf{v e}) \\ & \Sigma \mathrm{Fy}=0 \\ & \mathrm{RA}-40-20-20+\mathrm{RB}=0 \\ & \mathrm{RA}+\mathrm{RB}=80 \mathrm{KN}-----(1) \\ & \Sigma \mathrm{M}_{\mathrm{A}}=0 \end{aligned}$ Taking moment of all forces @ point A $\begin{aligned} & (R A \times 0)+(40 \times 1)+(20 \times 2)+(20 \times 3)-(R B X 4)=0 \\ & R B=35 K N \end{aligned}$ Putting value of $R B$ in eqn. (1) $\begin{aligned} & \mathrm{RA}+35=80 \\ & \mathrm{RA}=45 \mathrm{KN} \end{aligned}$ Solve Que. 4 (d) by graphical method. $\begin{aligned} R A & =1(t p) \times \text { scale } \\ & =2.3 \times 20 \\ & =46 \mathrm{kN} \\ R_{B} & =1(\mathrm{st}) \times \text { scale } \\ & =1.8 \times 20 \\ & =36 \mathrm{kN} \end{aligned}$ VECTOR DIA, \& POLAR DIA, $(S C A L E=1 \mathrm{~cm}=20 \mathrm{kN})$	1 M 1 M 1 M 2 M with labe- lling 2 M with labe- lling magni- tude of of R_{A} \& R_{B}	4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	f)	Find the support reactions of simply supported beam shown in Figure. 1) Equivalent point load and it's position Equivalent point load = Intensity of udl X span of udl $\begin{aligned} & =5 \mathrm{X} 3 \\ & =15 \mathrm{~N} \end{aligned}$ Position from RA $=7 \mathrm{~m}+$ Span of udl $/ 2=7+(3 / 2)=8.5 \mathrm{~m}$ 2) Applying equilibrium conditions $\begin{align*} & \Sigma F y=0(\uparrow+\mathbf{v e}, \downarrow-\mathbf{v e}) \text { and } \Sigma \mathrm{M}=0 \\ & \Sigma \mathrm{Fy}=0 \\ & \mathrm{RA}+10-20-15+\mathrm{RB}=0 \\ & \mathrm{RA}+\mathrm{RB}=25 \mathrm{~N}------(1) \tag{1} \end{align*}$ $\Sigma \mathrm{M}_{\mathrm{A}}=0$ Taking moment of all forces @ point A $\begin{aligned} & (\text { RA x } 0)-(10 \times 3)+(20 \times 7)+(15 \times 8.5)-(\text { RB X 10 })=0 \\ & R B=23.75 \mathrm{~N} \end{aligned}$ Putting value of $R B$ in eqn. (1) $\begin{aligned} & \mathrm{RA}+23.75=25 \\ & \mathrm{RA}=1.25 \mathrm{~N} \end{aligned}$	1 M	4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	a) Ans.	Attempt any Four of the following :		16
		A block of $1000 \mathbf{N}$ is kept on a horizontal surface. A horizontal force of $\mathbf{3 0 0} \mathbf{N}$ is required to just move it. Find - (i) Normal reaction (ii) Frictional resistance (iii) Resultant reaction (iv) Coefficient of friction		
		Motion		
		$\mathrm{F}=\mu \mathrm{R}$ $<$ $\mathrm{P}=\mathbf{3 0 0} \mathrm{N}$ $<$		
		For limiting equilibrium $\begin{aligned} & \Sigma \mathrm{Fy}=0 \quad(\uparrow+\mathbf{v e}, \downarrow-\mathbf{v e}) \\ & +\mathrm{R}-\mathrm{W}=0 \\ & \mathrm{R}=\mathrm{W}=1000 \mathrm{~N} \\ & \mathrm{R}=1000 \mathrm{~N} \end{aligned}$	1 M	
		$\begin{aligned} & \sum \mathrm{Fx}=0(\rightarrow+\mathrm{ve}, \leftarrow-\mathrm{ve}) \\ & +\mathrm{P}-\mathrm{F}=0 \\ & +300=\mathrm{F} \\ & \mathrm{~F}=300 \mathrm{~N} \end{aligned}$	1 M	
		$\text { But, } \begin{aligned} F & =\mu R \\ 300 & =\mu 1000 \\ \mu & =300 / 1000 \\ \mu & =0.3 \end{aligned}$	1 M	
		Resultant reaction $s=\sqrt{F^{2}+R^{2}}=\sqrt{(\mu R)^{2}+R^{2}}$		
		$\begin{aligned} & S=\sqrt{(300)^{2}+(1000)^{2}} \\ & S=1044.03 \mathrm{~N} \end{aligned}$	1 M	4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	b) Ans. c) Ans.	Find the value of $\boldsymbol{\mu}$ if the body is in limiting equilibrium. Refer fig. Motion For limiting equilibrium $\begin{aligned} & \quad \Sigma \mathrm{Fy}=0 \quad(\mid+\mathbf{v e}, \downarrow-\mathbf{v e}) \\ & +\mathrm{R}-\mathrm{W}-400 \sin 30=0 \\ & \mathrm{R}=1000+200 \\ & \mathrm{R}=1200 \mathrm{~N} \\ & \\ & \Sigma \mathrm{Fx}=0 \quad(\rightarrow+\mathbf{v e}, \leftarrow-\mathbf{v e}) \\ & +400 \cos 30-\mathrm{F}=0 \\ & \mathrm{~F}=346.410 \mathrm{~N} \\ & \\ & \mathrm{But}, \mathrm{~F}=\mu \mathrm{R} \\ & 346.410=\mu(1200) \\ & \mu=346.410 / 1200 \\ & \mu=0.288 \end{aligned}$ A block weighing $\mathbf{3 0 0} \mathbf{N}$ is resting on an inclined plane making an angle of 30° with the horizontal. Calculate the pull applied parallel to the plane to move the block up the plane if $\boldsymbol{\mu}=\mathbf{0 . 3 5}$.	1 M	4 M

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& Sub. Que. \& Model Answers \& Marks \& Total Marks

\hline 5

6 \& \begin{tabular}{l}
a)

Ans.

 \&

$$
\begin{aligned}
& \% \eta=\frac{M \cdot A .}{V \cdot R .} \times 100 \\
& 80=\frac{M A}{24} \times 100 \\
& M A=\frac{80 \times 24}{100}=19.2 \\
& M A=\frac{W}{P} \\
& 19.2=\frac{W}{100} \\
& W=19.2 X 100 \\
& W=1920 N
\end{aligned}
$$

Attempt any Four of the following :

Locate the centroid of T section $100 \times 100 \times 10 \mathrm{~mm}$ having total depth of 100 mm .

1) Figure is symmetric @ y-y axis and hence, $\mathrm{x}^{-}=$Maximum horizontal dimension /2

$$
\begin{aligned}
& =100 / 2 \\
& =50 \mathrm{~mm}
\end{aligned}
$$

\end{tabular} \& 1 M \& \[

4 \mathrm{M}
\]

$$
16
$$

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	b) Ans.	2) Area calculation $\begin{aligned} & A_{1}=90 \times 10=900 \mathrm{~mm}^{2} \\ & A_{2}=100 \times 10=1000 \mathrm{~mm}^{2} \\ & A=A_{1}+A_{2}=1900 \mathrm{~mm}^{2} \end{aligned}$ 3) Location of y^{-} $\begin{aligned} & y_{1}=90 / 2=45 \mathrm{~mm} \\ & \mathrm{y}_{2}=90+(10 / 2)=95 \mathrm{~mm} \end{aligned}$ $\bar{y}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A}$ $\bar{y}=\frac{(900 X 45)+(1000 X 95)}{1900}$ $\bar{y}=71.315 \mathrm{~mm}$ Hence, centroid (G) for given section lies at $\mathrm{G}(\bar{x}, \bar{y})$ $=(50 \mathrm{~mm}$ from OB and 71.315 mm from OA $)$ Locate the centroid of the shaded area as shown in figure. 1) Let, Fig. 1 - Quarter circle and Fig. 2 - Semi Circle Area Calculation $\begin{aligned} & A_{1}=\frac{\pi r_{1}^{2}}{4}=\frac{\pi(1)^{2}}{4}=0.7854 \mathrm{~m}^{2} \\ & A_{2}=\frac{\pi r_{2}^{2}}{2}=\frac{\pi(0.5)^{2}}{2}=0.3927 \mathrm{~m}^{2} \\ & A=A_{1}-A_{2}=0.3927 \mathrm{~m}^{2} \end{aligned}$	1 M	4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	Ans.	$\begin{aligned} & \bar{y}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A} \\ & \bar{y}=450.30 \mathrm{~mm} \end{aligned}$ Hence, centroid (G) for given ice cream cone lies at $\mathrm{G}(\bar{x}, \bar{y})$ $=(100 \mathrm{~mm}$ from OB and 450.30 mm from OA $)$ OR NOTE : Considering Center of Gravity of ice-cream cone. 1) Figure is symmetric @y-y axis and hence, $\mathrm{x}^{-}=$Maximum horizontal dimension $/ 2$ $\begin{aligned} & =200 / 2 \\ & =100 \mathrm{~mm} \end{aligned}$ 2) Volume Calculation $\begin{aligned} & V_{1}=(1 / 3) \pi r_{1}^{2} h_{1}=(1 / 3) \pi(100)^{2} \times 600=6.28318 \times 10^{6} \mathrm{~mm}^{3} \\ & V_{2}=(2 / 3) \pi r_{2}^{3}=(2 / 3) \pi(100)^{3}=2.094395 \times 10^{6} \mathrm{~mm}^{3} \\ & V=V_{1}+V_{2}=8.377575 \times 10^{6} \mathrm{~mm}^{3} \end{aligned}$ 3) \bar{y} calculation $\begin{aligned} & y_{1}=h_{1}-\frac{h_{1}}{4}=600-\frac{600}{4}=450 \mathrm{~mm} \\ & y_{2}=h_{1}+\frac{3 r_{2}}{8}=600+\left(\frac{3 X 100}{8}\right)=637.5 \mathrm{~mm} \\ & \bar{y}=\frac{V_{1} y_{1}+V_{2} y_{2}}{V} \\ & \bar{y}=496.875 \mathrm{~mm} \end{aligned}$ Hence, Centre of Gravity (G) for given ice cream cone lies at $\mathrm{G}(\overline{x, y})$ $=(100 \mathrm{~mm}$ from OB and 496.875 mm from OA $)$	1 M	4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	e)	Find the y^{*} of the composite body given in figure. 1) Figure is symmetric @ y-y axis and hence, $\mathrm{x}^{-}=$Maximum horizontal dimension $/ 2$ $\begin{aligned} & =6 / 2 \\ & =3 \mathrm{~cm} \end{aligned}$ 2) Volume Calculation $\begin{aligned} & V_{1}=\pi r_{1}^{2} h_{1}=\pi(1)^{2} X 6=18.849 \mathrm{~cm}^{3} \\ & V_{2}=\pi r_{2}^{2} h_{2}=\pi(3)^{2} X 2=56.548 \mathrm{~cm}^{3} \\ & V=V_{1}+V_{2}=75.397 \mathrm{~cm}^{3} \end{aligned}$	1 M	

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	f) Ans.	3) \bar{y} calculation $\begin{aligned} & y_{1}=\frac{h_{1}}{2}=\frac{6}{2}=3 \mathrm{~cm} \\ & y_{2}=h_{1}+\frac{h_{2}}{2}=6+\frac{2}{2}=7 \mathrm{~cm} \\ & \bar{y}=\frac{V_{1} y_{1}+V_{2} y_{2}}{V} \\ & \bar{y}=6 \mathrm{~cm} \end{aligned}$ Hence, centre of gravity (G) for given composite body lies at $\mathrm{G}(\bar{x}, \bar{y})$ $=(3 \mathrm{~cm}$ from OB and 6 cm from OA$)$ The frustum of a cone has top diameter $40 \mathrm{~cm} \&$ bottom diameter 60 cm with height 18 cm . Calculate y only. Let, Full cone as Fig. $1 \&$ cut cone as Fig. 2 1) Figure is symmetric @y-y axis and hence, $\mathrm{x}^{-}=$Maximum horizontal dimension $/ 2$ $\begin{aligned} & =60 / 2 \\ & =30 \mathrm{~cm} \end{aligned}$ $\mathrm{h}_{1}=18 \mathrm{~cm}, \mathrm{~h}_{2}=\text { Height of cut cone }$	1 M 1 M 1 M	4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
		In triangle, ABE \& CDE $\begin{aligned} & \frac{h}{60}=\frac{h_{2}}{40} \\ & h=\frac{60}{40} h_{2} \\ & h=1.5 h_{2} \\ & h_{1}+h_{2}=h \\ & h_{1}+h_{2}=1.5 h_{2} \\ & h_{1}=1.5 h_{2}-h_{2} \\ & h_{1}=0.5 h_{2} \\ & 18=0.5 h_{2} \\ & h_{2}=36 \mathrm{~cm} \\ & h=18+36=54 \mathrm{~cm} \end{aligned}$ 2) Volume Calculation	$1 \mathrm{M}$	
		$\begin{aligned} & V_{1}=(1 / 3) \pi r_{1}^{2} h=(1 / 3) \pi(30)^{2} \times 54=50.86 \times 10^{3} \mathrm{~cm}^{3} \\ & V_{2}=(1 / 3) \pi r_{2}^{2} h_{2}=(1 / 3) \pi(20)^{2} \times 36=15.07 \times 10^{3} \mathrm{~cm}^{3} \\ & V=V_{1}-V_{2}=35.82 \times 10^{3} \mathrm{~cm}^{3} \end{aligned}$ 3) \bar{y} calculation $\begin{aligned} & y_{1}=\frac{h}{4}=\frac{54}{4}=13.5 \mathrm{~cm} \\ & y_{2}=h_{1}+\frac{h_{2}}{4}=18+\left(\frac{36}{4}\right)=27 \mathrm{~cm} \\ & \bar{y}=\frac{V_{1} y_{1}-V_{2} y_{2}}{V} \\ & \bar{y}=7.815 \mathrm{~cm} \end{aligned}$ Hence, centre of gravity (G) for given frustum of cone lies at $\mathrm{G}(\bar{x}, \bar{y})$ $=(30 \mathrm{~cm}$ from AQ and 7.815 cm from AP $)$	1 M 1 M 1 M	4 M

