
WINTER – 2015 EXAMINATION

Subject & Code : Engineering Mechanics (17204)

Page No: 1 / 28

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
- 6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	a) Ans.	Attempt any <u>TEN</u> of the following : What is efficiency of machine? The efficiency of a machine is the ratio of output to input of a machine and is generally expressed as a percentage.	1 M for	20
		$\%\eta = \frac{Output}{Input}X100$ OR The efficiency of a machine can also be defined as a ratio of	define -tion and 1 for form-	
		Mechanical Advantage (MA) to Velocity Ratio (VR) of a machine and is generally expressed as a percentage. $\% \eta = \frac{M.A.}{V.R.} X100$	ula	2 M
	b) Ans.	Define mechanical advantage along with it's expression. Mechanical Advantage is the ratio of the load lifted by the machine to the effort applied to lift the load. It is denoted by M.A. $M.A. = \frac{LOAD}{EFFORT} = \frac{W}{P}$	1 M for define -tion and 1 for form- ula	2 M

Subject & Code : Engineering Mechanics (17204)

Page No: 2 / 28

No. 1	Que. C)			N/I GPIZA
•		What is law of machine?		Marks
	Ans.	The relation between the load lifted (W) and the effort applied (P) is		
		known as the law of machine. This relationship, when plotted on a		
		graph results in a straight line as shown below.	1 M	
		The equation of this straight line is –		
		P = (mW + c)N		
		lî		
		EFFORT		
		$(P) \qquad P = mW + C$		
		т —		
			1 M	
		(W) 7	I IVI	
		Where, m = slope of line = constant		2 M
		c = Intercept on y axis = effort required to start the machine		
	d)	Enlist four coplanar force system.		
	Ans.	Following are the four coplanar force system –	¹∕₂ M	
		1) Concurrent force system	for	
		2) Collinear force system	each	
		3) Non-concurrent force system		2 M
		4) Parallel force system		
	e)	State four effects of forces on rigid body.		
	Ans.	Following are the effects of forces on rigid body -		
		1) It may change the state of a body.	¹∕₂ M	
		2) It may accelerate or retard the motion of a body.	for	
		3) It may turn or rotate the body on which it acts.	each	2 14
		4) It may deform the body on which it acts.		2 M
	f)	Define resolution of force.		
	Ans.	The way of representing a single force into number of forces without		
		changing the effect of the force on the body is called as resolution of force.	2 M	2 M
		loice.	2 111	2 11
	g)	Define Lami's theorem.		
	Ans.	Lami's theorem states that, if three forces acting at a point on a body		
		keep it at rest, then each force is proportional to the sine of the angle between the other two forces.	1 M	
		between the other two forces.	1 141	
		As per Lami's theorem,		
		$F_1 \qquad F_2 \qquad F_3 \qquad \qquad$		
		$\frac{F_1}{\sin\alpha} = \frac{F_2}{\sin\beta} = \frac{F_3}{\sin\gamma}$	1 M	2 M

Subject & Code : Engineering Mechanics (17204)

Page No: 3 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
1	h) Ans.	Define free body diagram with one example. In statics, for considering the equilibrium of the bodies under any system of forces, each body is separated from it's surrounding. Such body is known as a free body. If all active and reactive forces acting on free body are shown, the diagram is known as free body diagram. e. g. Consider block resting on a horizontal surface.	1 M	
		 Where, W = Self weight of block = active force R = Reaction offered by the surface = reactive force. (Note : Student may take any example of lamp suspended form ceiling or sphere resting in a trough etc., so marks may be given.) 	1 M	2 M
	i) Ans.	Define angle of repose with diagram. Angle of repose is defined as the angle made by the inclined plane with the horizontal plane at which the body placed on an inclined plane is just on the point of moving down the plane, under the action of its own weight.	1 M 1 M	2 M
	j) Ans.	State any two types of beams with diagram of each. Following are the different types of beams – (1) Simply supported beam (2) Cantilever beam (3) Over hanging beam L - L		

Subject & Code : Engineering Mechanics (17204)

Page No: 4 / 28

Subject & Code : Engineering Mechanics (17204)

Page No: 5 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2	<u>Que.</u>	Attempt any <u>FOUR</u> of the following :		16 M
	a)	For a certain machine the law is $P = (0.08 \text{ W} + 5) \text{ N}$. Calculate the effort required to lift a load of 5 KN. Also calculate the maximum M.A. and identify the type of machine. V.R. of machine is 20.		
		1) Using Law of machine		
	Ans.	P = (0.08 W + 5) N.		
		= ((0.08 X 5000) + 5) N Putting W = 5000 N	1 1 1	
		= 405 N	1 M	
		2) Law of machine is given by $P = (mW + C) N$		
		Hence, comparing given law of machine, we get,		
		m = 0.08		
		Hence, Max. $MA = 1/m = 1/0.08$		
		Max. MA = 12.5	1 M	
		3)		
		$\%\eta = \frac{M.A.}{V.R.}X100$		
		$\%\eta = \frac{\left(\frac{W}{P}\right)}{V.R.}X100 = \frac{\left(\frac{5000}{405}\right)}{20}X100$		
		= 61.72 % > 50 %	1 M	
		4) As efficiency of machine is greater than 50 %, machine is Reversible machine.	1 M	4 M
	b)	In a machine an effort of 2 N is lifted a load of 30 N. If the effort lost due to friction is 0.5 N. Find the velocity ratio and efficiency of machine.		
		1) Effort lost in friction is given by –		
	Ans.	$P_f = P - P_i$		
		$0.5 = 2 - P_i$		
		$P_i = 1.5 \text{ N}$	1 M	
		2) Ideal Effort		
		$P_i = W / VR$		
		1.5 = 30 / VR		

Subject & Code : Engineering Mechanics (17204)

Page No: 6 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2		VR = 30 / 1.5 = 20 3) Mechanical Advantage MA = W / P = 30 / 2 = 15 4)	1 M 1 M	
		$\% \eta = \frac{M.A.}{V.R.} X100 = \frac{15}{20} X100$ $VR = \frac{N_1}{N_2} X \frac{N_3}{N_4} = \frac{120}{10} X \frac{20}{12}$		
		= 75 %	1 M	4 M
	c)	A Weston's differential pulley block is used to lift a load of 8 KN. The diameter of pulleys are 26 cm and 24 cm. Calculate the effort required if the efficiency is 45 %. Also calculate the load lost in friction.		
	Ans.	1) VR of Weston's differential pulley block is given by - $VR = \frac{2D}{D-d} = \frac{2X26}{26-24}$		
		VR = 26	1 M	
		$\%\eta = \frac{M.A.}{V.R.}X100$ $45 = \frac{MA}{26}X100$ $MA = \frac{45X26}{100}$		
		MA = 11.7 But, $MA = \frac{W}{P}$ 8000		
		$11.7 = \frac{8000}{P}$ $P = \frac{8000}{11.7}$	1 M	
		P = 683.76 N 3) Ideal Load (W _i) = P X VR = 683.76 X 26 =17777.76 N	1 M	
		4) Load lost in friction $(W_f) = W_i - W$ = 17777.76 - 8000 = 9777.76 N	1 M	4 M

Subject & Code : Engineering Mechanics (17204)

Page No: 7 / 28

Que.	Sub.	Model Answers	Morko	Total
No.	Que.		Marks	Marks
2	d)	A geared pulley block is used to lift a load by an effort of 1000 N with 60 % efficiency. Calculate the load lifted by the effort – (i) Cogs on effort wheel = 120, (ii) Cogs on load drum = 12, (iii) No. of teeth on pinion = 10, (iv) No. of teeth on spur = 20		
	Ans.			
		1) Let, (i) Cogs on effort wheel $(N_1) = 120$, (ii) No. of teeth on pinion $(N_2) = 10$, (iii) No. of teeth on spur $(N_3) = 20$ (iv) Cogs on load drum $(N_4) = 12$,		
		VR of geared pulley block is given by –		
		$VR = \frac{N_1}{N_2} X \frac{N_3}{N_4}$	1M	
		$VR = \frac{120}{10} X \frac{20}{12}$		
		VR = 20 2)	1 M	
		$\%\eta = \frac{M.A.}{V.R.}X100$		
		$60 = \frac{MA}{20} X 100$ $MA = \frac{60X 20}{100}$		
		MA = 12 3)	1 M	
		$MA = \frac{W}{P}$ $12 = \frac{W}{1000}$		
		W = 12X1000	1 M	4 M
		W = 12000 N OR 12 KN	T 1VI	T 14T
	e)	A screw jack has an effort wheel diameter of 20 cm and pitch is 5 mm. Find velocity ratio. If a load of 1000 N is lifted by an effort of 150 N. Find the effective methods.		
	Ans.	150 N. Find the efficiency of the machine.1) VR of simple screw jack is given by -		

Subject & Code : Engineering Mechanics (17204)

Page No: 8 / 28

Que.	Sub.	Model Answers	Marks	Total
No. 2	Que.			Marks
		$VR = \frac{\pi D}{p}$ $VR = \frac{\pi X 200}{5}$	1 M	
		VR = 125.66 2)	1 M	
		$MA = \frac{W}{P} = \frac{1000}{150} = 6.66$	1 M	
	f)	$\%\eta = \frac{M.A.}{V.R.} X100 = \frac{6.66}{125.66} X100$ = 5.31 % A machine has a VR = 50. A load of 3 KN is lifted by an effort of	1 M	4 M
		150 N. Calculate MA, efficiency and effort lost in friction and ideal effort.		
	Ans.	1) $MA = W / P = 3000 / 150 = 20$	1 M	
		2) $\% \eta = \frac{M.A.}{V.R.} X100 = \frac{20}{50} X100$ = 40 % 3) Ideal Effort W = 3000 means	1 M	
		$P_i = \frac{W}{VR} = \frac{3000}{50} = 60N$	1 M	
		4) Effort lost in friction $P_f = P - P_i = 150 - 60 = 90N$	1 M	4 M
3		Attempt any <u>FOUR</u> of the following :		16
	a) Ans.	Resolve a force of 12 KN into two directions at 30° and 40° on either side of it. $F^{2} \xrightarrow{\beta = 12 \text{ KN}} F = 12 \text{ KN}$ $\alpha = 30^{\circ} \text{ F1}$		

Subject & Code : Engineering Mechanics (17204)

Page No: 9 / 28

Que. No.	Sub. Que.			Model Answers		Marks	Total Marks
3		Resolving f $F_1 = \frac{F \sin \alpha}{\sin(\alpha)}$	$\frac{n\beta}{(+\beta)}$	own in fig.		1 M	
		$F_{1} = \frac{12X}{\sin(30)}$ $F_{1} = 8.208$				1 M	
		$F_2 = \frac{F \sin \alpha}{\sin(\alpha)}$ $F_2 = \frac{12X}{12X}$				1 M	
		$F_2 = \frac{12X}{\sin(3)}$				1 M	4 M
	b)	(i) 350 (ii) 400 (iii) 200	thogonal co N acting 40 N acting du	orth – East	he following forces –		
	Ans.		W Fx 4 F1 = 350	45 50 40 Fy S	= 200 N F4 = 40 N		
		Force (F)	θ w.r.to	Orthogonal	components		
		in N	x axis	$F_x = F \cos \theta$	$F_y = F \sin \theta$		
		$F_1 = 350$	$\theta_1 = 50^\circ$	$= -350 \cos 50$ = - 224.98 N	= -350 sin 50 = - 268.12 N		
		$F_2 = 400$	$\theta_2 = 270^{\circ}$	$= 400 \cos 270$ = 0 N	= - 400 sin 270 = - 400 N		

Subject & Code : Engineering Mechanics (17204)

Page No: 10 / 28

Que. No.	Sub. Que.			Model Answers	3	Marks	Total Marks
		Force (F)	θ w.r.to	Ortho	onal components		
		in N	x axis	$F_x = F \cos \theta$	$F_y = F \sin \theta$	 Each	
		$F_3 = 200$	$\theta_3 = 45^{\circ}$	$= 200 \cos 45$ = 141.42 N	= 200 sin 45 = 141.42 N	Fx & Fy compo	
		$F_4 = 40$	$\theta_4 = 0^\circ$	$=40\cos 0$	$= 40 \sin 0$		
				= 40 N	= 0 N		
	c)	Calculate th in fig.	he moment	about point B for	the force system as show 10KN	vn	
			15KN 40KN	B A	T 2 m D 20 KN 30KN		
	Ans.	= 0 + 30 = + 160	(0) + (10 X) (0) - 40 + 90 + 0 N-m (\mathbb{N}^{-1})	3) - (20 X 2) + (30 + 80	X 3) + (40 X 2)	2 M 1 M 1 M	4 M
	d)	Two forces resultant is	of 12 N an 5 15 N. Fin		at a point such that the een them. Also find ang		
	Ans.	θ be	the angle be	rce and Q be the 9 E etween P and Q for between P & R.			
				Q = 9 N	P = 12 N	1 M	

Subject & Code : Engineering Mechanics (17204)

Page No: 11 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	<u> </u>	2) Using Law of parallelogram of forces $R^2 = P^2 + Q^2 + 2PQ \cos \theta$ $(15)^2 = (12)^2 + (9)^2 + (2 \times 12 \times 9 \times \cos \theta)$ $225 = 144 + 81 + 216 \cos \theta$ $225 = 225 + 216 \cos \theta$ $225 - 225 = 216 \cos \theta$ $0 = 216 \cos \theta$	1 M	
		$0 = \cos \theta$ $0 = \cos^{-1} \theta$ $\theta = \cos^{-1} (\theta)$ $\theta = 90^{\circ}$ Hence, the two forces are perpendicular to each other.	1 M	
		3) Using relation, $\tan \alpha = \frac{Q \sin \theta}{P + Q \cos \theta} = \frac{9 \sin 90}{12 + 9 \cos 90}$ $\tan \alpha = 0.75$ $\alpha = \tan^{-1}(0.75)$ $\alpha = 36.87^{\circ} \text{ with } 12 \text{ N force}$ OR Angle between Q and R = 90°- 36.87° = 53.13°	1 M	4 M
	e)	Calculate the magnitude and direction of resultant for concurrent force system as shown in Fig Use analytical method. F2=70 N $F2=70 N$ $F3=100 N$		
	Ans	1) Resolving all forces – Σ Fx = + (50 cos 30) – (70 cos 45) + (100 cos 180) + (60 cos 70) = + 43.30 - 49.50 - 100 + 20.52 = - 85.68 N Σ Fy = + (50 sin 30) + (70 sin 45) + (100 sin 180) - (60 sin 70) = + 25 + 49.50 + 0 - 56.38	1 M	
		= + 18.12 N 2) Magnitude of Resultant $R = \sqrt{(\Sigma Fx)^{2} + (\Sigma Fy)^{2}}$ $R = \sqrt{(-85.68)^{2} + (18.12)^{2}}$	1 M	
		R = 87.58N	1 M	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer : Winter 2015

Subject & Code : Engineering Mechanics (17204)

Page No: 12 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
3	Que.	3) Direction and position of resultant As Σ Fx is -ve and Σ Fy is +ve , Resultant lies in 2 nd quadrant.	1/2 M	WILLING
		$\theta = \tan^{-1} \left \frac{\sum Fy}{\sum Fx} \right = \tan^{-1} \left \frac{18.12}{85.68} \right $ $\theta = 11.94^{\circ}$ $\underset{\xi Fx}{\overset{\xi Fy}{\overset{\xi Fy}{\xi $	1/2 M	4 M
	f)	Four forces of 20 N, 15 N, 30 N and 25 N are acting at 0° , 60° , 90° and 150° from x-axis taken in order. Find the resultant by		
	Ans.	graphical method.		
		JEON XIEN		
		25N 16		
		150 60'0		
		× 20N ×		
		Ē		
		SPACE CDIAGRAM	2 M for each diag- ram with	
		R i R i i i i i i i i	all nota- tions	4 M
		VECTOR DIAGRAM SCALE = 1 CM = 10 N		

.....

Subject & Code : Engineering Mechanics (17204)

Page No:13 / 28

Que.	Sub.		Maulaa	Total
No.	Que.	Model Answers	Marks	Marks
4		Attempt any <u>FOUR</u> of the following :		16
	a)	Five parallel forces of 20, 40, 60, 80 and 100 N are acting on beam. Distances of forces from 20 N force are 1m, 2m, 3m and 4m. Forces of 40 N and 80 N are acting vertically downwards. Other pointing upwards. Find resultant in magnitude and direction and locate it's position with respect to 20 N force.		
	Ans.	1)		
		∧ R		
		20N 60N 100N		
		A = x = 4 m		
		1 m	1 M	
		2 m		
		4 m		
		Magnitude of Resultant		
		 R = + 20 - 40 + 60 - 80 + 100 = + 60 N ([↑]) + ve sign indicates Resultant acts vertically upwards. 2) Position of Resultant Considering Varignon's theorem of moment & taking moment of all forces @ point A i.e. about 20 N force. Let, R acts at x distance from point A. 	1 M	
		$\begin{split} \Sigma \ M_{FA} &= M_{RA} \\ (20 \ 0) + (40 \ X \ 1) - (60 \ X \ 2) + (80 \ X \ 3) - (100 \ X \ 4) = - \ R \ X \ x \\ &- 240 &= - \ 60 \ X \ x \\ &x &= 4 \ m \end{split}$	1 M	
		Hence, R must be located at 4 m distance from 20 N force, so as to produce anticlockwise moment.	1 M	4 M
	b)	Forces of 3, 6, 9 and 12 KN respectively acts on a regular pentagon as shown in figure. Find the resultant in magnitude and		
	Ans.	direction. Use analytical method only. D B B B C C C C C C C		

.....

Subject & Code : Engineering Mechanics (17204)

Page No: 14 / 28

Que.	Sub.	Madal Anomana	Marita	Total
No.	Que.	Model Answers	Marks	Marks
4		1) Exterior angle = $360 / \text{ No. of angular points}$ = $360 / 5$ = 72° Interior angle = $180^{\circ} - 72^{\circ} = 108^{\circ}$ Angle BAC = Angle CAD = Angle DAE = $108^{\circ} / 3 = 36^{\circ}$ 3KN / 9KN / 9KN / 72 / 72 / 36 / 12KN	1 M	
		 2) Magnitude of Resultant Resolving all forces – Σ Fx = (12 cos 0) + (9 cos 36) + (6 cos 72) – (3 cos 72) = + 12 + 7.28 + 1.85 – 0.93 = + 20.2 N Σ Fy = (12 sin 0) + (9 sin 36) + (6 sin 72) + (3 sin 72) = 0 + 5.29 + 5.71 + 2.85 = + 13. 85 N 3) Magnitude of resultant 	1/2 M 1/2 M	
		$R = \sqrt{(\Sigma Fx)^{2} + (\Sigma Fy)^{2}}$ $R = \sqrt{(20.2)^{2} + (13.85)^{2}}$ $R = 24.49N$ 4) Direction and position of resultant As Σ Fx = +ve and Σ Fy = + ve, R lies in 1 st quadrant	1 M 1/2 M	
		$\theta = \tan^{-1} \left \frac{\sum Fy}{\sum Fx} \right = \tan^{-1} \left \frac{13.85}{20.2} \right $ $\theta = 34.44^{\circ}$ $\stackrel{\leq Fy}{\longleftarrow} \stackrel{\mathbf{R}}{\longleftarrow} \stackrel{\leq Fx}{\longleftarrow}$	1/2 M	4 M
	c) Ans.	Solve Q. 4 (a) graphically		

Subject & Code : Engineering Mechanics (17204)

Page No: 15 / 28

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer : Winter 2015

Subject & Code : Engineering Mechanics (17204)

Page No: 16 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4		Using Lami's theorem, $\frac{W}{\sin 80^{\circ}} = \frac{T}{\sin 130^{\circ}} = \frac{P}{\sin 150^{\circ}}$ $\frac{30}{\sin 80^{\circ}} = \frac{T}{\sin 130^{\circ}} = \frac{P}{\sin 150^{\circ}}$ (1) Using term (1) and (2) 30 _ T	1 M	
		$\frac{30}{\sin 80^{\circ}} = \frac{T}{\sin 130^{\circ}}$ $T = 30X \frac{\sin 130^{\circ}}{\sin 80^{\circ}}$ $T = 23.34 \text{ N}$ Using term (1) and (3) $\frac{30}{\sin 80^{\circ}} = \frac{P}{\sin 150^{\circ}}$ $P = 30X \frac{\sin 150^{\circ}}{\sin 80^{\circ}}$	1 M	
	e)	P = 15.23 N	1 M	4 M
		A sphere weights 1200 N. It is supported by two planes at 35° and 50° to the horizontal respectively. Calculate the support reactions.		
	Ans.	$RA = 50^{\circ} 35^{\circ} BR = 0$ $W = 1200 N$ $RB = 1200 N$	1 M	

.....

Subject & Code : Engineering Mechanics (17204)

Page No: 17 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4		Using Lami's theorem, $\frac{W}{\sin 85^{\circ}} = \frac{RA}{\sin 145^{\circ}} = \frac{RB}{\sin 130^{\circ}}$ $\frac{1200}{\sin 85^{\circ}} = \frac{RA}{\sin 145^{\circ}} = \frac{RB}{\sin 130^{\circ}}$ (1) Using term (1) and (2) $\frac{1200}{\sin 85^{\circ}} = \frac{RA}{\sin 145^{\circ}}$	1 M	
		$RA = 1200X \frac{\sin 145^{\circ}}{\sin 85^{\circ}}$ $RA = 690.92 \text{ N}$ Using term (1) and (3) $\frac{1200}{\sin 85^{\circ}} = \frac{RB}{\sin 130^{\circ}}$ $RB = 1200X \frac{\sin 130^{\circ}}{\sin 85^{\circ}}$	1 M	
	f)	RB = 922.77 N A simply supported beam is of 10 m span. It has a udl of 25 KN/m throughout it's length and point loads of 80 KN and 120 KN at 3m and 8 m from left support. Calculate the reactions at support using analytical method.	1 M	4 M
	Ans.	using analytical method. $ \begin{array}{c} 80 \text{ KN} & 120 \text{ KN} \\ 25 \text{ KN/m} \\ \hline & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$	1 M	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer : Winter 2015

Subject & Code : Engineering Mechanics (17204)

Page No: 18 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	Que.	1) Equivalent point load and it's position Equivalent point load = Intensity of udl X span of udl = 25 X 10 = 250 KN Position from RA = Span of udl / 2 = 10 / 2 = 5 m 2) Applying equilibrium conditions $\Sigma Fy = 0 \left((+ve_{,} +ve_{,} -ve_{,}) and \Sigma M = 0 ((+ve_{,} +ve_{,}) -ve_{,}) \Sigma Fy = 0 RA - 80 - (25 X 10) - 120 + RB = 0 RA + RB = 450 KN(1) \Sigma M_{A} = 0$ Taking moment of all forces @ point A (RA x 0) + (80 X 3) + (250 X 5) + (120 X 8) - (RB X 10) = 0 2450 = 10 RB RB = 245 KN Putting value of RB in eqn. 1 RA + 245 = 450 RA = 205 KN	1 M 1 M 1 M	4 M
5	a)	Attempt any <u>FOUR</u> of the following : Calculate the reactions of beam at the support as shown in figure using analytical method.		16
	Ans.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 M	
		Reaction at roller support is always perpendicular to the support but reaction at hinge support will be inclined due to inclined load. Let, this inclination is α .		

Subject & Code : Engineering Mechanics (17204)

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5		Applying equilibrium conditions – $\Sigma Fx = 0$ $(\rightarrow +ve, \leftarrow -ve)$, $\Sigma Fy = 0$ $(\uparrow +ve, \downarrow -ve)$ and $\Sigma M = 0$ $(\neg +ve, \uparrow) -ve)$ $\Sigma Fx = 0$ RA cos $\alpha - 20$ cos 30 = 0 RA cos $\alpha = 17.32$ (1) $\Sigma Fy = 0$		
		$\Sigma Fy = 0$ RA sin $\alpha - 10 - 20 sin 30 + RB = 0$ RA sin $\alpha + RB = 20$ (2) Taking moment of all forces @ point A $\Sigma M_A = 0$ + (10 X 2) + (20 sin 30 X 4) - (RB X 6) = 0	1 M	
		20 + 40 = 6 RB RB = 10 N Putting value of RB in eqn. (2) RA sin α + 10 = 20 RA sin α = 10 (3) Divide eqn. (3) by (1) <u>RA sin α</u> = <u>10</u> RA cos α 17.32 tan α = 0.577 α = tan ⁻¹ (0.577) = 30°	1 M	
		Putting value of α in eqn (1) RA cos 30 = 17.32 RA = 20 N	1 M	4 M
	b)	A beam of 6 m span simply supported at ends. It carries three loads 12 KN, 18 KN, 24 KN at 1m, 3m, 4m respectively from left hand support. Calculate reactions at the end of the beam graphically.		

Subject & Code : Engineering Mechanics (17204)

Page No: 20 / 28

-----Subject & Code : Engineering Mechanics (17204)

Page No: 21 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	c)	A beam ABC is hinged at A and placed rollers at B. The distance between two supports AB is 5 m and overhanging BC is 1 m. The beam carries a udl of 10 KN/m over it is entire length along with a point load of 5 KN at C. Calculate support reactions by analytical method.		IVIAINS
	Ans.	5 KN		
		$ \begin{array}{c} 10 \text{ KN/m} \\ \hline \\ M \\ \hline \\ M \\ \hline \\ RA \\ \hline \\ RB \\ \hline \\ RB \\ \hline \\ C \\ \hline \\ C \\ \hline \\ RB \\ \hline \\ C \\ \hline \\ C \\ \hline \\ C \\ \hline \\ RB \\ \hline \\ C \\ \hline \\ RB \\ \hline \\ C \\ \hline \\ $		
		60 KN 5 KN		
		$A \xrightarrow{A \longrightarrow 3 \text{ m}} 5 \text{ m} \xrightarrow{B \longrightarrow C} 1 \text{ m}$		
		RA RB	1 M	
		inclined, reaction at support A will act vertically upwards. 1) Equivalent point load and it's position Equivalent point load = Intensity of udl X span of udl = 10 X 6 = 60 KN Position from RA = Span of udl / 2 = 6 / 2 = 3 m 2) Applying equilibrium conditions $\Sigma Fy = 0 (1 + ve) \sqrt{-ve}$ and $\Sigma M = 0 (1 + ve) \sqrt{-ve}$ $\Sigma Fy = 0$		
		RA - 60 + RB - 5 = 0 RA + RB = 65 KN (1) $\Sigma M_A = 0$ Taking moment of all forces @ point A $(RA \times 0) + (60 \times 3) - (RB \times 5) + (5 \times 6) = 0$	1 M	
		210 = 5 RB RB = 42 KN Putting value of RB in eqn. 1	1 M	
		RA + 42 = 65 $RA = 23 KN$	1M	4 M
	d)	A block weighing 100 N can be just moved by applying a pull of P N being applied horizontal. Find P if coefficient of friction between block and surface is 0.50.		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer : Winter 2015

Subject & Code : Engineering Mechanics (17204)

Page No: 22 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
<u>No.</u> 5	Que.	Model Answers Dir. of Motion R R F M R Q R W = 100 N For limiting equilibrium $\Sigma Fy = 0$ R = W = 100 N $\Sigma Fx = 0$ $(+ ve_{,} - ve_{,})$ + R - W = 0 R = W = 100 N $\Sigma Fx = 0$ $(- + ve_{,} - ve_{,})$ + P - F = 0 $+ P - \mu R = 0$ + P - (0.50 X 100) = 0 P = 50 N	1 M 1 M 1 M 2 M	Marks 4 M
	e)	A body of weight 400 N resting on a inclined plane inclined at an angle of 30° with the horizontal just started to move down the plane. Calculate : (i) Coefficient of friction (ii) Angle of friction (iii) Angle of repose		
	Ans.	Dir. of Motion $Wx = 400 \sin 30^{\circ} \mu$ $Wy = 400 \cos 30^{\circ}$ Consider inclined plane as x-x axis and perpendicular to it as y-y axis. For limiting equilibrium $\Sigma Fy = 0$ +R - Wy = 0 $R = Wy = 400 \cos 30$ R = 346.47 N $\Sigma Fx = 0$ +F - Wx = 0 $\mu R - 400 \sin 30 = 0$ $(\mu X 346.47) = 200$ $\mu = 300 / 346.47$	1 M 1 M	

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer : Winter 2015

Subject & Code : Engineering Mechanics (17204)

Page No: 23 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
<u>10.</u> 5	Que.	$\mu = 0.577$	1 M	IVIAINS
		Using relation between coefficient of friction, angle of friction and angle of repose $\mu = \tan \alpha = \tan \phi$ $0.577 = \tan \alpha = \tan \phi$ $\alpha = \phi = 29.98^{\circ}$	1 M	4 M
	f)	A body weighing 350 KN is resting on a horizontal plane and can be just moved by a force of 125 KN applied horizontally. Find coefficient of friction. Also find magnitude and direction of resultant reaction.	1 M	
	Ans.	Dir. of Motion		
		S \mathbf{F} $\mathbf{W} = 350 \text{ KN}$ 1) For limiting equilibrium $\Sigma Fy = 0$ $(\uparrow + ve_{\downarrow} \sqrt{-ve_{\downarrow}})$ + R - W = 0 R = W = 350 KN $\Sigma Fx = 0$ $(\rightarrow + ve_{\downarrow} \leftarrow -ve_{\downarrow})$ + P - F = 0 P = F $P = \mu R$ $125 = \mu X 350$	1 M	
		$ \mu = \frac{125}{350} \mu = 0.36 $	1 M	
		2) Resultant reaction $s = \sqrt{F^2 + R^2} = \sqrt{(\mu R)^2 + R^2}$		
		$S = \sqrt{(0.36X350)^2 + (350)^2}$	1 M	
		S = 371.99 N	1 141	
		3) Direction of resultant reaction		
		$\tan\phi = \frac{F}{R} = \frac{\mu R}{R} = \mu$		

Subject & Code : Engineering Mechanics (17204)

Page No: 24 / 28

-	Sub. Que.	Model Answers	Marks	Total Marks
5	200.	$\phi = \tan^{-1} \mu = \tan^{-1}(0.36)$ $\phi = 19.80^{\circ}$	1 M	4 M
6		Attempt any <u>FOUR</u> of the following :		16
Ū	a)	Find the centroid for a channel section as shown in figure.		
		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
2	Ans.	 1) Figure is symmetric @ x-x axis and hence, y⁻ = Maximum vertical dimension /2 = 300 / 2 = 150 mm 2) Area calculation 	1 M	
		$A_1 = A_3 = 120 X 20 = 2400 mm^2$ $A_2 = 260 X 20 = 5200 mm^2$ $A = A_1 + A_2 + A_3 = 10000 mm^2$	1 M	
		3) Location of x^- $x_1 = x_3 = 120 / 2 = 60 \text{ mm}$ $x_2 = 20 / 2 = 10 \text{ mm}$	1 M	
		$\overline{x} = \frac{A_1 x_1 + A_2 x_2 + A_3 x_3}{A}$ $\overline{x} = \frac{(2400 X 60) + (5200 X 10) + (2400 X 60)}{10000}$ $\overline{x} = 34mm$ Hence, centroid (G) for given section lies at G($\overline{x}, \overline{y}$) $= (34 \text{ mm from OB and 150 mm from OA})$	1 M	4 M
	b)	Find the centroid of an inverted T – Section with flange 200 X 10 mm and a web of 300 X 10 mm.		

Subject & Code : Engineering Mechanics (17204)

Page No: 25 / 28

Subject & Code : Engineering Mechanics (17204)

Page No: 26 / 28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6		Area Calculation $A_{1} = \frac{\pi r^{2}}{4} = \frac{\pi (200)^{4}}{4} = 31415.93mm^{2}$ $A_{2} = \frac{1}{2}bh = \frac{1}{2}X \ 200X \ 200 = 20000mm^{2}$		
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 M	
		$x_{1} = \frac{4r}{3\pi} = \frac{4X200}{3\pi} = 84.88mm$ $x_{2} = \frac{b}{3} = \frac{200}{3} = 66.67mm$	¹∕₂ M	
		$\overline{x} = \frac{A_1 x_1 - A_2 x_2}{A} = \frac{(31415.93X84.88) - (20000X66.67)}{11415.93}$ $\overline{x} = 116.78mm$	1 M	
		3) \overline{y} calculation $y_1 = \frac{4r}{3\pi} = \frac{4X200}{3\pi} = 84.88mm$ $y_2 = \frac{b}{3} = \frac{200}{3} = 66.67mm$	½ M	
		$y_{2}^{y_{2}} = \frac{3}{3} = \frac{3}{3}$ $y = \frac{A_{1}y_{1} - A_{2}y_{2}}{A} = \frac{(31415.93X84.88) - (20000X66.67)}{11415.93}$ $y = 116.78mm$ Hence, centroid (G) for given section lies at G($\overline{x}, \overline{y}$)	1 M	
	d)	A right circular cone of 5 cm radius and 50 cm height is placed co-		4 M
		axially on a solid cylinder of 5 cm radius and 100 cm height. Find centre of gravity of the composite solid. B $G(\bar{x},\bar{y})$		

Subject & Code : Engineering Mechanics (17204)

Page No: 27 / 28

Que.	Sub.	Madal Anomara	Marita	Total
No.	Que.	Model Answers	Marks	Marks
6		1) Figure is symmetric @ y-y axis and hence, x^{-} = Maximum horizontal dimension /2		
		$= \frac{10}{2}$	135	
		= 5 cm	1 M	
		2) Volume Calculation		
		$V_1 = \pi r^2 h = \pi (5)^2 100 = 7853.98 cm^3$		
		$V_2 = (1/3)\pi r^2 h = (1/3)\pi (5)^2 X 50 = 1308.99 cm^3$		
		$V = V_1 + V_2 = 9162.97 cm^3$	1 M	
		3) \overline{y} calculation		
		$y_1 = 100/2 = 50cm$	1 M	
		$y_2 = 100 + (50/4) = 112.5cm$		
		$\overline{y} = \frac{V_1 y_1 + V_2 y_2}{V} = \frac{(7853.98X50) + (1308.99X112.5)}{9162.97}$		
		$y = \frac{1}{V} = \frac{1}{9162.97}$	1 M	
		$\overline{y} = 58.92cm$	1 1/1	
		Hence, centre of gravity (G) for given composite body lies at $G(\overline{x, y})$		4 M
		= (5 cm from OB and 58.92 cm from OA)		
	e)	A cone has base 120 mm and height 200 mm. In to it a hole of diameter 60 mm is drilled upto a depth of 50 mm. Find centre of gravity of remaining volume of cone.		
		$ \begin{array}{c} B \\ \hline \hline$		
	Ans.			
		Let's assume that hole is drilled co-axially with the cone.		
		1) Figure is symmetric @ y-y axis and hence, $x^{-} = Maximum horizontal dimension /2$		
		= 120 / 2	1 M	
		= 60 mm		
		2) Volume Calculation		

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified) Model Answer : Winter 2015

Subject & Code : Engineering Mechanics (17204)

Page No: 28 /28

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6		$V_{1} = (1/3)\pi r^{2}h = (1/3)\pi (60)^{2} X 200 = 753982.24mm^{3}$ $V_{2} = \pi r^{2}h = \pi (30)^{2} 50 = 141371.67mm^{3}$ $V = V_{1} - V_{2} = 612610.57mm^{3}$ 3) \overline{y} calculation	1 M	
		$y_{1} = 200/4 = 50mm$ $y_{2} = 50/2 = 25mm$ $- V_{1}y_{1} - V_{2}y_{2} (753982.24X50) - (141371.67X25)$	1 M	
		$\overline{y} = \frac{V_1 y_1 - V_2 y_2}{V} = \frac{(753982.24X50) - (141371.67X25)}{612610.57}$ $\overline{y} = 55.77mm$	1 M	
		Hence, centre of gravity (G) for given composite body lies at $G(\overline{x, y})$ = (60mm from OB and 55.77 mm from OA)		4 M
	f)	Draw the sketch of solid cylinder and solid cone and show the position of CG on it.		
	Ans.	1) Solid cylinder $ \begin{array}{c} \mathbf{B} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{B} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{B} \\ \mathbf{A} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{A} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{B} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{B} \\ \mathbf{B} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{G} \\ \mathbf{B} \\ \mathbf{G} \\ G$	1 M for each figure and $\frac{1}{2}$ M for each $\overline{x, y}$	4 M