WINTER - 2015 EXAMINATION

Subject \& Code : Engineering Mechanics (17204)

Page No: 1 / 28

Important Instructions to examiners:

1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
3) The language errors such as grammatical, spelling errors should not be given more importance. (Not applicable for subject English and Communication Skills.)
4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by the candidate and those in the model answer may vary. The examiner may give credit for any equivalent figure drawn.
5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and the model answer.
6) In case of some questions credit may be given by judgment on part of examiner of relevant answer based on candidate's understanding.
7) For programming language papers, credit may be given to any other program based on equivalent concept.

Model Answer

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	a) Ans.	Attempt any FOUR of the following : Five parallel forces of $\mathbf{2 0}, \mathbf{4 0}, \mathbf{6 0}, 80$ and 100 N are acting on beam. Distances of forces from 20 N force are $\mathbf{1 m}, \mathbf{2 m}, \mathbf{3 m}$ and $\mathbf{4 m}$. Forces of 40 N and 80 N are acting vertically downwards. Other pointing upwards. Find resultant in magnitude and direction and locate it's position with respect to 20 N force. 1) Magnitude of Resultant $\mathrm{R}=+20-40+60-80+100=+60 \mathrm{~N}(\$)$ + ve sign indicates Resultant acts vertically upwards. 2) Position of Resultant Considering Varignon's theorem of moment \& taking moment of all forces @ point A i.e. about 20 N force. Let, R acts at x distance from point A . $\begin{gathered} \sum \mathrm{M}_{\mathrm{FA}}=\mathrm{M}_{\mathrm{RA}} \\ (200)+(40 \mathrm{X} 1)-(60 \mathrm{X} 2)+(80 \mathrm{X} 3)-(100 \mathrm{X} 4)=-\mathrm{RX} \mathrm{x} \\ -240 \\ =-60 \mathrm{Xx} \\ \mathrm{x} \end{gathered}=4 \mathrm{~m} .$ Hence, R must be located at 4 m distance from 20 N force, so as to produce anticlockwise moment. Forces of 3, 6, 9 and 12 KN respectively acts on a regular pentagon as shown in figure. Find the resultant in magnitude and direction. Use analytical method only.		16
			1 M	
			1 M	
			1 M	
	Ans.			

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
4	c) Ans.	1) Exterior angle $=360 /$ No. of angular points $\begin{gathered} =360 / 5 \\ =72^{\circ} \end{gathered}$ Interior angle $=180^{\circ}-72^{\circ}=108^{\circ}$ Angle $\mathrm{BAC}=$ Angle $\mathrm{CAD}=$ Angle $\mathrm{DAE}=108^{\circ} / 3=36^{\circ}$ 2) Magnitude of Resultant Resolving all forces - $\begin{aligned} \Sigma \mathrm{Fx} & =(12 \cos 0)+(9 \cos 36)+(6 \cos 72)-(3 \cos 72) \\ & =+12+7.28+1.85-0.93 \\ & =+20.2 \mathrm{~N} \\ \Sigma \mathrm{Fy} & =(12 \sin 0)+(9 \sin 36)+(6 \sin 72)+(3 \sin 72) \\ & =0+5.29+5.71+2.85 \\ & =+13.85 \mathrm{~N} \end{aligned}$ 3) Magnitude of resultant $\begin{aligned} & R=\sqrt{\left(\sum F x\right)^{2}+\left(\sum F y\right)^{2}} \\ & R=\sqrt{(20.2)^{2}+(13.85)^{2}} \\ & R=24.49 N \end{aligned}$ 4) Direction and position of resultant As $\Sigma \mathrm{Fx}=+\mathrm{ve}$ and $\Sigma \mathrm{Fy}=+\mathrm{ve}, \mathrm{R}$ lies in $1^{\text {st }}$ quadrant $\begin{aligned} & \theta=\tan ^{-1}\left\|\frac{\sum F y}{\sum F x}\right\|=\tan ^{-1}\left\|\frac{13.85}{20.2}\right\| \\ & \theta=34.44^{\circ} \\ & <\mathrm{Fy} \\ & \uparrow \quad \boldsymbol{J}^{\mathbf{R}} \end{aligned}$ Solve Q. 4 (a) graphically	1 M 1/2 M 1/2 M 1 M 1/2 M 1/2 M	4 M

\begin{tabular}{|c|c|c|c|c|}
\hline Que. No. \& \begin{tabular}{l}
Sub. \\
Que.
\end{tabular} \& Model Answers \& Marks \& Total Marks \\
\hline 4 \& d)

Ans. \& An electric bulb of $30 \mathbf{N}$ weight is hanging from ceiling. It's wire is pulled by a force acting at 40° to the horizontal such that the wire makes an angle of 60° with the ceiling. Find the magnitude of force and tension in the wire. \& 2 M for each diagra m with all notations \& 4 M

\hline
\end{tabular}

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	b)	Applying equilibrium conditions - $\Sigma \mathrm{Fx}_{\mathrm{K}}^{\mathrm{o}} 0(\rightarrow+\mathbf{v e}, \leftarrow-\mathbf{v e}), \Sigma \mathrm{Fy}=0(1+\mathbf{v e}, \downarrow-\mathbf{v e})$ and $\Sigma \mathrm{M}=0\left({ }^{(+v e},\lceil\right.$-ve $)$ $\Sigma \mathrm{Fx}=0$ RA $\cos \alpha-20 \cos 30=0$ RA $\cos \alpha=17.32------(1)$ $\Sigma \mathrm{Fy}=0$ RA $\sin \alpha-10-20 \sin 30+R B=0$ $R A \sin \alpha+R B=20-------(2)$ Taking moment of all forces @ point A $\Sigma \mathrm{M}_{\mathrm{A}}=0$ $+(10 \mathrm{X} 2)+(20 \sin 30 \mathrm{X} 4)-($ RB X 6$)=0$ $20+40=6 \mathrm{RB}$ $\mathrm{RB}=10 \mathrm{~N}$ Putting value of $R B$ in eqn. (2) RA $\sin \alpha+10=20$ RA $\sin \alpha=10$------- (3) Divide eqn. (3) by (1) $\underline{R A \sin \alpha}=\underline{10}$ RA $\cos \alpha \quad 17.32$ $\tan \alpha=0.577$ $\alpha=\tan ^{-1}(0.577)=30^{\circ}$ Putting value of α in eqn (1) RA $\cos 30=17.32$ $R A=20 \mathrm{~N}$ A beam of 6 m span simply supported at ends. It carries three loads $12 \mathrm{KN}, 18 \mathrm{KN}, 24 \mathrm{KN}$ at $1 \mathrm{~m}, 3 \mathrm{~m}, 4 \mathrm{~m}$ respectively from left hand support. Calculate reactions at the end of the beam graphically.	1 M 1 M 1 M	4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	Ans.			
		SPACE DIA. AND FUNICULAR POLYGON $\text { SCALE }=1 \mathrm{~cm}=1 \mathrm{~m}$ $\begin{aligned} R A & =l(p t) \times S C A L E \\ & =(2.7 \times 10) \\ & =27 \mathrm{KN} \\ R B & =l(S t) \times S C A L E) \\ & =(2.7 \times 10) \\ & =27 \mathrm{kN} \end{aligned}$ VECTOR DIA. AND POLAR DIA, $S C A L E=1 \mathrm{~cm}=10 \mathrm{KN}$	2 M for each diagram with all notati ons	4 M

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
5	f) Ans.	$\mu=0.577$	1 M	
		Using relation between coefficient of friction, angle of friction and angle of repose $\begin{aligned} & \mu=\tan \alpha=\tan \phi \\ & 0.577=\tan \alpha=\tan \phi \\ & \alpha=\phi=29.98^{\circ} \end{aligned}$	1 M	4 M
		A body weighing 350 KN is resting on a horizontal plane and can be just moved by a force of $\mathbf{1 2 5} \mathbf{K N}$ applied horizontally. Find coefficient of friction. Also find magnitude and direction of resultant reaction.		
		$\xrightarrow[\text { Motion }]{\text { Dir. of }}$		
		1) For limiting equilibrium $\begin{aligned} & \sum \mathrm{Fy}=0 \quad(1+\mathbf{v e}, \downarrow-\mathbf{v e}) \\ & +\mathrm{R}-\mathrm{W}=0 \\ & \mathrm{R}=\mathrm{W}=350 \mathrm{KN} \end{aligned}$	1 M	
		$\begin{aligned} & \sum \mathrm{Fx}=0 \quad(\rightarrow+\mathbf{v e}, \leftarrow-\mathbf{v e}) \\ & +\mathrm{P}-\mathrm{F}=0 \\ & \mathrm{P}=\mathrm{F} \\ & \mathrm{P}=\mu \mathrm{R} \\ & 125=\mu \mathrm{X} 350 \\ & \mu=125 / 350 \\ & \mu=0.36 \end{aligned}$	1 M	
		2) Resultant reaction $s=\sqrt{F^{2}+R^{2}}=\sqrt{(\mu R)^{2}+R^{2}}$		
		$\begin{aligned} & S=\sqrt{(0.36 X 350)^{2}+(350)^{2}} \\ & S=371.99 \mathrm{~N} \end{aligned}$	1 M	
		3) Direction of resultant reaction		
		$\tan \phi=\frac{F}{R}=\frac{\mu R}{R}=\mu$		

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
6	Ans. c)	 1) Figure is symmetric @ y-y axis and hence, $\mathrm{x}^{-}=$Maximum horizontal dimension $/ 2$ $\begin{aligned} & =200 / 2 \\ & =100 \mathrm{~mm} \end{aligned}$ 2) Area calculation $\begin{aligned} & \mathrm{A}_{1}=200 \times 10=2000 \mathrm{~mm}^{2} \\ & \mathrm{~A}_{2}=300 \times 10=3000 \mathrm{~mm}^{2} \\ & \mathrm{~A}=\mathrm{A}_{1}+\mathrm{A}_{2}=5000 \mathrm{~mm}^{2} \end{aligned}$ 3) Location of y^{-} $\mathrm{y}_{1}=10 / 2=5 \mathrm{~mm}$ $\mathrm{y}_{2}=10+(300 / 2)=160 \mathrm{~mm}$ $\begin{aligned} & \bar{y}=\frac{A_{1} y_{1}+A_{2} y_{2}}{A} \\ & \bar{y}=\frac{(2000 X 5)+(3000 \times 160)}{5000} \\ & \bar{y}=98 \mathrm{~mm} \end{aligned}$ Hence, centroid (G) for given section lies at $\mathrm{G}(\bar{x}, \bar{y})$ $=(100 \mathrm{~mm}$ from OB and 98 mm from OA $)$ Find the centroid of the shaded area of a lamina as shown in figure. 1) Let, Fig. 1 - Quarter circle and Fig. 2 - Triangle	1 M 1 M 1 M 1 M	4 M

