(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER- 16 EXAMINATION
Model Answer

Subject Code:

17203

Important Instructions to examiners:

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
1	a)	Attempt any NINE of the following: Define heat treatment. State its two purposes.	18
		Heat Treatment: It is the process of heating steel to a certain high temperature and then cooling it at a controlled rate, in order to develop certain desirable physical properties in it without changing its chemical composition.	(2)
		Purpose of heat treatment:- 1) To change the structure of steel, 2) To increase surface hardness. 3) To increase resistance to heat & corrosion. (State any two relevant purposes)	1
	b)	Name various products of Blast furnace? i) Pig Iron ii) Slag iii) Flue Gases	(2) 2
	c)	Give composition of Pig iron	(2)
		i) Iron: 92-94% ii) Carbon: 2.5- 4.5% iii) Silicon: 0.7 – 3% iv) Phosphorus: 0.5 -1 % v) Manganese: 0.2- 1% vi) Sulphur: 0.1 -0.3%	2

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

		_Model Ans	<u>swer</u>	Subject Code:	17203		
Q. No.	Sub Q. N.		Answe	er		Marking Scheme	
	d)	Give composition of HSS 1. 18-4-1 HSS W-18% Cr-4% V-1% Remaining steel with 0 .75% C 3. Vanadium HSS Alloy Steel containing more than 1% V a	and 0.7% C	2. Cobalt HSS Alloy Steel con 4. Molybdenum HSS Mo-6% W-6% Cr-4% V-20% Remaining is steel	taining 5-8% Co	2	
	e)	Tune the various value innis. Classify them in to protective and non-protective.				(2)	
		Type of Oxide film	Protecti	ive value			
	1) Stable film porous oxide film Non protective						
		2) Stable non – porous oxide film Protective		re			
		3) Unstable oxide film	Protectiv	ve		1/2 Mark	
		4) Volatile oxide film	Non prot	tective		each	
	f)	f) Why tinned containers are used to store the food stuffs?					
	Since tin is less active metal, It does not react with the food stuffs to form poisor compounds. So tinned containers are used to store food stuff.					2	
	g)	How galvanizing is different from sh	erardizin	g?		(2)	
		Galvanizing		Sherardizing			
		1 It is process of coating iron or steel with a thin coat of zinc by hot dipping		1 It is process of coati steel articles by alloyi zinc metal	_		
		2 In galvanizing surface of iron sheet covered by a thin layer of zinc metal protect the base metal from corrosion	which	2 In sherardizing surfarticle is covered by a layer which protect the corrosion	a Zinc- iron alloy	1 Mark each	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

180/1EC - 2/001 - 2005 Certified)

WINTER – 16 EXAMINATION

Model Answer	Subject Code:	17203
--------------	---------------	-------

Q. No.	Sub Q. N.	Answer		
		3 This process is carried out in a large tanks by dipping iron sheet in a bath of molten zinc at a temperature of about 425-460 ⁰ c 4 This process is widely used for protecting iron articles like fencing wires, roofing sheets etc.	3 This process is carried out in a constantly rotating drum by packing the small iron or steel article in zinc powder at a temperature of about 350 -400° c 4. This process is used for protecting small & irregular iron articles like bolts, screws, nails, nuts etc.	
		(Note: Any two points)		
	h)	Give four characteristics of good paint. Characteristics of good paint.: 1) It should be able to resist the atmospheric con	ditions.	(2)
		 Paint should have desired consistency. It should have high hiding power. Its film should be washable. Its film should not crack or shrink on drying It should form uniform, nonporous, adherent, When paint is applied on a metal it should res (Note: write any four points) 		½ Mark each
	i)	Give composition of LPG Composition:- The average composition of LPG is 1)Ethane = 0.20% 2)Propane = 57.30% 3) Butane = 41.10% 4)Pentane = 1.40%		(2) ½ Mark each
	j)	Define flash point and fire point. Fire Point: - "Fire point is the minimum tempe which catch fire & burn continuously at least for Flash Point: - Flash point of oil is the lowest enough vapours which give momentary flash of	r five seconds when flame is applied to it." temperature at which the oil begins to give light when a flame is applied to it.	1
	k)	List four expectations from good lubricant.		(2)
		 It should avoid direct contact between the ruwear & tear & deformation. It should reduce the loss of heat, so it acts as a 3. It should reduce expansion of metal by local formation. 	a coolant.	

Page No: 3/12

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMINATION

N/	امط	ام	Answer	
IV	IUU	eı	Aliswei	

Subject Code: 17203

	1	<u></u>	
Q.	Sub	Answer	Marking
No.	Q. N.		Scheme
		4. It should reduce unsmooth relative motion.5. It should reduce the maintenance & running cost of machine.6. It should reduce the power loss in I.C. engine.	
	l)	How CNG is more economical than other fuel.	(2)
	''	CNG is compressed natural gas which is used in transport sector. It's calorific value is 8000	2
		to 14000 kcal/m ³ . It is cheaper than petrol & diesel As.it is free from lead & sulphur it is more environmentally clean and safer than other fuels. So it is more economical than other fuels.	2
2		Attempt any four of the following:	16
	a)	List various zones of blast furnace. Give reactions involved in zone of reduction with	(4)
		temperature	
		<u>Various zones of blast furnace</u> :-	
		 Zone of reduction Zone of heat absorption Zone of fusion 	1
		Reactions in the zone of reduction of blast furnace.	
		The reduction of iron oxide is done in the following stages:-	
		$Fe_2O_3 \longrightarrow Fe_3O_4 \longrightarrow FeO \longrightarrow Fe$	
		i)In between $300 - 500^{\circ}$ C, when charge is heated, Fe ₂ O ₃ (Ferric oxide) is reduced to Fe ₃ O ₄	
Ì		(Ferroso ferric oxide).	
		$3Fe_2O_3 + CO \longrightarrow 2Fe_3O_4 + CO_2$	
		This Fe ₃ O ₄ is stable upto 650° C in presence of CO, CO ₂ & free coke.	3
		ii) In between $650 - 700^{\circ}$ C, Fe ₃ O ₄ is reduced to FeO Fe ₃ O ₄ + CO \longrightarrow 3FeO + CO ₂	3
		iii) At temperature between $700 - 800^{\circ}$ C, FeO is reduced to metallic iron.	
		FeO + CO \longrightarrow Fe + CO ₂	
		iv) Simultaneously, the limestone present in the charge is also decomposed to produce lime.	
		$CaCO_3 \rightarrow CaO + CO_2 \uparrow$	
		v) The metal produced is spongy; simultaneously a part of metallic iron reacts with CO to	
ı		form Fe ₂ O ₃ or Fe ₃ O ₄ .	
		$2Fe + 3CO \longrightarrow Fe_2O_3 + 3C$	
		$3Fe + 4CO \longrightarrow Fe_3O_4 + 4C$	
		(Note: consider any three reactions)	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

		WINTER – 16 E	EXAMINATION		7			
		Model Answ	subject Code:	17203				
Q. No.	Sub Q. N.	Answer						
	b)	Give the difference between annealing nor	Give the difference between annealing normalizing.					
		Annealing 1.It is the process of heating the steel at a temperature (760-925°C) and cooling it slowly in the furnace along with the furnace 2.Due to annealing steel becomes more soft, pliable, malleable & ductile 3.Time required for annealing is more than normalizing 4. Consumption of fuel or electric power is more.	Normalizing 1.It is the process of heating temperature of 50 °C above the critical temperature of 50 °C/Sec. 2. Due to normalizing steel homogenous & more soft. properties of steel are more annealing. 3.Time required for normal annealing 4. Consumption of fuel or less.	emperature ely in air at a rate el becomes The mechanical e improved than alizing is less than	1 Mark each			
	c)	Describe open hearth process for steel. Procedure:-1) The charge consists of pig / &hematite (Ore). 2) Heating the charge on the hearth of furnact by producer gas. 3) First Phase of Cycle: -Producer gas / air i (R) while the products of combustion flow thr 4) The charge is fed through a charging doc producer gas. Fuel is fired through nozzles. 5) The hot gases formed in (R ₁) pass over supported on the hearth is openly exposed to	s passed through previously rough the regenerator. or & heated to 1600° C to 1 the hearth to its opposite of the flames & is converted	ourning fuel in air or y heated regenerator .650°C by means of end & metal charge	(4)			
		Metal charge is also heated by the radiations f 6) After passing over the hearth, the proceedamber) & heat it after about 25 to 30 min 7) Second Phase Cycle:-Idle burner fires the f 8) Regenerators R ₁ , R ₂ store & release large of the atmosphere & thus wasted. 9) Tap hole in the lowest part of the hearth a ready to be poured.	ducts of combustion pass fuel. Quantities of heat which wo	ould have escaped to	2			
		Reaction:- a) Oxidation of impurities of Mn $2Fe_2O_3 + 3Mn \rightarrow 2Fe + 3MnO$, P and Si by hematite		2			
		$5 \text{ Fe}_2\text{O}_3 + 6\text{P} \rightarrow 10\text{Fe} + 3\text{P}_2\text{O}_5$						
		$2Fe_2O_3 + 3Si \rightarrow 4Fe + 3SiO_2$						

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer	Subject Code:	17203
---------------------	---------------	-------

Q. No.	Sub Q. N.			Answer		Marking Scheme
		a) Formatio	n of slag for the remo	val of Mn P & Si		
		$MnO + SiO_2 \rightarrow N$		var or ivin, r & or.		
		$P_2O_5 + 3CaO \rightarrow$	$\operatorname{Ca}_3(\operatorname{PO}_4)_2$ Slag			
		$SiO_2 + CaO \rightarrow C$	aSiO ₃			
		b) Finally (C & S from gaseous or	xides which leave the fu	irnace as five gases	
		$2 \operatorname{Fe_2O_3} + 3C \rightarrow$	$4\text{Fe} + 3\text{CO}_2 \uparrow$			
		$2Fe_2O_3 + 3S \rightarrow 4$	$4\text{Fe} + 3\text{SO}_2 \uparrow$			
	d)	Differentiate be	 tween solid liquid ga	seous fuels.		(4)
		Property	Solid	Liquid	Gaseous	
		1.Calorific Value	Low	Higher	Highest	
		2.Ignition Temperature	Very high	Moderate	Very low	
		3.Cost	Cheapest	Costly	Costlier	
		4.Ash content	High	Negligible	Nil	
		5. Velocity of combustion	Non controllable	Easily controllable	Easily controllable	
		6. Volatile matter & moisture	Large	Negligible	Nil	1 Mark
		7. Transportation	Laborous but risk free	Can be piped but risky	Can be piped but very risky	each
		8. Storage	Large space but no risk of fire	Small space but risk of fire hazard	Very large space & very high risk of fire hazard	
		9.Efficiency	Very low	High	Highest	
		10 Smoke	Burn with smoke	Nigligible	No Smoke	
		11 Use in I.C.Engine	Can not be used	Can be used	Can be used	
		12 Pollution	Large	Lesser	Least	
		(Note: consider	any four points)		_	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMINATION

Model Answer	Subject Code:
---------------------	---------------

17203

	1				
Q.	Sub	Answer	Marking		
No.	Q. N.		Scheme		
	e)	Explain proximate analysis matter in coal sample for determining moisture and	(4)		
	<i>C</i>	volatile.	(',		
		1) Percentage of Moisture:-			
		i) About 1 gm of finely powdered air- dried coal sample is weighed (W g) in a crucible.			
		ii) The crucible is placed in an electric hot oven for 1 hour at 105°C.			
	iii) Cool it to room temp in a desiccator & weighed it again (W ₁ g).				
		iv) Loss in weight $(W - W_1 g)$ is due to loss of moisture from the coal.			
			2		
		% of moisture = $\frac{\text{Loss in weight}}{\text{Loss in weight}} \times 100$			
		Weight of coal sample			
		$= (W-W_1) / W \times 100$			
		2) Percentage of Volatile Matter (V.M.):-			
		i) The above sample of moisture free coal left in crucible (W ₁ g) is			
		covered with a lid.			
		ii) Then the crucible is placed in a muffle furnace at 925°C for 7 min.	2		
		iii) Cool it in desiccator to room temp & weigh it again. (W ₂ g) (Without lid)			
		% of Volatile matter = $\frac{\text{Loss in weight}}{Notice of the second of $			
		Weight of coal sample			
		$= (W1-W2) / W \times 100$			
	f)	Give composition, properties and applications of Biogas.	(4)		
		The average composition of biogas is:			
		CH_4 (methane) = $50 - 60\%$ (Combustible gas)			
		CO_2 (carbon dioxide) = $30 - 40\%$ (non – combustible gas) H_2 (hydrogen) = $5 - 10\%$ (Combustible gas)			
		N_2 (nitrogen) = 2-6% (non – combustible gas)	2		
		H_2S (Hydrogen sulphide) = traces (Combustible gas)			
		Properties:- (any one)			
		a) Biogas on burning liberates a larger amount of heat than thatobtained by burning animal			
		dung or fire wood directly.			
		b) It burns without producing residue, smoke etc.			
		c) It is cheap, clean in use, has good calorific value & convenient fuel.	1		
		d) It does not pollute the atmosphere.			
		e) It involves no storage problem.f) Biogas production is very economical.			
		g) It provides excellent yield of good manure			
		B, 12 provides encoment from or good manufe			
<u></u>					

Page No: 7/12

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2005 Certified)

Model Answer	Subject Code:	17203
--------------	---------------	-------

Q. No.	Sub Q. N.	Answer	Marking Scheme	
	Applications:- (any one) a) It is used as an efficient fuel. b) It is used for cooking food. c) It is used as an illuminant in villages. d) To run engines (generators).			
3	Attempt any FOUR of the following:			
	a)	Explain stepwise mechanism of electrochemical corrosion due to evolution of Hz gas? with labeled diagram).	(4)	
		H ₂ Fe → Fe + 2e Acidic Water Small Copper Cathode Anode	1	
		Steel tank: - Anode Copper strip:- Cathode		
		These types of corrosion occur usually in acidic environments like industrial waste, solutions of non – oxidizing acids. Consider a steel tank containing acidic industrial waste and small piece of copper scrap in contact with steel. The portion of the steel tank in contact with copper acts as anode & is corroded most with the evolution of hydrogen gas. Reactions:	1	
		At Anode: Fe	1	
		H ⁺ ions are eliminated as H ₂ gas $2H^{+} + 2e^{-} \longrightarrow H_{2} \uparrow (Reduction)$ Thus, over all reaction is $Fe + 2H^{+} \longrightarrow Fe^{++} + H_{2} \uparrow$	1	

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMINATION

Model Answer Subject Code:

17203

	Ch		Marking	
Q. No.	Sub Q. N.	Answer		
	b)	Describe the process of metal spraying with its advantages and disadvantages	(4)	
		Compressed air Oxy-acetylene or oxy-propane Material (wire, rod, powder) Nozzle Air cap Air passage Finely divided metal	1	
	<u>Process:-</u> In this method ,coating metal sprayed on the surface of base metal with the hispraying gun or pistol. The spraying gun consist of a duct for compressed air and is fitted with the oxy- hydrogen flame. The coating metal in the form of wire is fed into the gun which is then melted inside the gun with the help of oxy hydrogen flame. The molten metal then sprayed on the surface of base metal with the help of compressed air.			
		Advantages:- 1 Thickness of coating can be controlled 2 Irregular surfaces can be covered easily	1	
		 3 Metallic coating can be applied on non-metallic surfaces like glass, plastic rubber etc. 4 Coating can be applied on fabricated structures & there will be no possibility of damage of coating during the assembly of parts 		
	5 Warn out machine parts can be repaired by metal spraying			
		Disadvantages:-		
		1 Coating may be porous		
		2 Coating may be less adherent		

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMINATION

17203 **Model Answer** Subject Code:

Q.	Sub	Answer M			
No.	Q. N.		Scheme		
	c)	How will you protect following from corrosion?			
		(i) Underground pipe line			
		(ii) Iron machinaries			
		(ii) Iron macimiaries			
	<u>Underground pipe line:-</u> It can be protected from corrosion by using				
		a) Sacrificial anode method- In this method the iron pipe to be protected is made cathodic by connecting it to more active metals like Zn/ Mg/ Al.			
		b) Impressed current method- In this method the iron pipe to be protected is made cathodic by passing impressed current in opposite direction to that of corrosion current.	2		
		 Iron machinaries:- It can be protected from corrosion by using a) By Applying metallic coating of corrosion resistant metals like Cr, Ni etc. b) By applying organic coatings like paint enamels lacquers etc. 	2		
		(Note any one method for each)			
	d) Explain fluid film lubrication with diagram		(4)		
		Fluid film lubrication: i) It is carried out by introducing the liquid lubricants in between the moving or sliding surface. The lubricant film covers the irregularities of the sliding or moving surface & forms a thin layer in between them. This thin layer of lubricant avoids metal to metal contact & reduces wear & friction.	2		
		ii) The resistance to movement of moving parts is only due to the internal resistance between the particles of the lubricant moving over each other.iii) In fluid film lubrication, the lubricant chosen should have the minimum viscosity under working condition & at the same time it should remain in place & separate the surfaces.			
		Examples: This type of lubrication is provided in case of delicate instrument and light machines like watches, clocks, guns, sewing machines, scientific instrument etc.	1		

Page No: 10/12

(Autonomous)

(ISO/IEC - 27001 - 2005 Certified)

WINTER – 16 EXAMI NATION

Model Answer Subject Code: 17203

Q. No.	Sub Q. N.	Answer	
3	Metal Surface Light Load Oil molecules which are tightly help up Looseiy arranged oil molecules Metal Surface		1
e) Give the classification of lubricants. Give one example of each. Classification of lubricants:- i) Solid lubricant		(4)	
		i) Solid lubricantii) Semi solid lubricantiii) Liquid lubricant	1
		 i) Solid lubricants: Examples: graphite, molybdenum disulphide, soap, soapstone, wax, talc, charteflon etc. ii) Semi-solid lubricants: Examples: greases and Vaseline. iii) Liquid lubricants: Examples: vegetable and animal oils such as castor, olive, coconut, palr linseed, hazel nut, tallow, lard, whale, cod-liver oil etc. and fatty acids like of stearic acid etc., silicones, blended oils, and mineral oils. (Any one example of each)) 	m, neem, 1 leic acid,

Page No: 11/12

(Autonomous) (ISO/IEC - 27001 - 2005 Certified)

(...,

WINTER – 16 EXAMINATION

Model Answer

Subject Code:

17203

	Sub	<u> </u>	Answer		Marking
Q. No.	Q. N.		Allswei		Scheme
	f)	Give the selection of machine.	riteria or lubricant used in I.C. engine and steam engine, sev	wing	(4)
		Machine	Selection criteria		
		I.C.engine	Lubricant used in I.C.engines is exposed to high temperature . Hence Lubricant used must have high viscosity index & therm stability		1
		Steam engine	Lubricant used must have		
			 Metal wetting property High viscosity Emulsification with water 		2
		Sewing machine	Lubricant used must be 1. Minimum viscosity under working condition		1
			It should form a thin , uniform film between the movir surfaces	ng	_

Page No: 12/12