

Subject Code: 17203(M.E)

SUMMER- 16 EXAMINATION

Subject: Applied Chemistry

Page No: 1/11

Model Answer

No. Que. Inportant Instructions to examiner: Name Marks 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer withen by candidate may vary but the examiner may try to assess the understanding level of the candidate. 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills). 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn. 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer. 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding. 7) For programming language papers, credit may be given to any other program based on equivalent concept. 5)

Subject Code: 17203

SUMMER-16

Page No: 2/11

Que.	Sub.		N	Iodel Answer	Marks	Total
No.	Que.					Marks
1	a)	Attempt any NINE of the following: Write any two ores of iron chemical formula.			18	
	<i>a)</i>	Sr.No.	Name of Ore	Chemical formula.	1	
		1	Magnetite	(Fe ₃ O ₄)	Mark	
		2	Haematite	(Fe_2O_3)	each	2
		3	Limonite	$(2Fe_2O_3.3H_2O)$		
		4	Siderite	(FeCO ₃)		
		5	Iron Pyrites	(FeS ₂)		
	b) What are the products of Blast furnace? i) Pig Iron ii) Slag iii) Flue Gases (Any two products)				1 Mark each	2
	c)	Purpose i) To imp ii) To inc	prove strength, elas crease its resistance	sticity, ductility, toughness.	1 Mark each	2
	d)	Addition properti i) Corros Toughne	n of alloying eleme es of steel:	6	2	2
	e)	Corrosid destruction called as Types of i)Atmosp	on of a metal due to corrosion.'' corrosion oheric corrosion / d	e it's types. f chemical or electrochemical decay or o the action of surrounding medium is lirect chemical corrosion / Dry corrosion ctro chemical corrosion / Wet corrosion.	1	2
	f)	corrosion <u>1) Imput</u> fast in the along with	n. rities in the atmos e presence of impu	ors affecting rate of atmospheric sphere: Atmospheric corrosion rate is urities such as H ₂ S, SO ₂ , CO ₂ , Cl ₂ , gases & H ₂ SO ₄ etc. Atmospheric air in ese impurities.	1	2

Subject Code: 17203

SUMMER- 16 EXAMINATION

Page No: 3 /11

Que.	Sub.	Madal Angevan	Manles	Total
No.	Que.	Model Answer	Marks	Marks
1		2) Moisture in the atmosphere: Atmospheric gases & chemical vapors dissolve in moisture and reaction between such dissolved gases and metal becomes faster. Therefore moisture acts as conducting medium and enhances the corrosion.	1	
	g)	List any four constituents of paint. The constituents of the paint are:-	1/2	2
		1) Pigments 2) Drying Oil / Medium 3) Thinners 4) Driers	Mark	
		5) Extenders 6) Plasticizers	each	
	h)	 h) Give reason why galvanized containers are not used for storing food stuffs. Galvanized container contains zinc coating. Since zinc is more 		2
		Galvanized container contains zinc coating. Since zinc is more active metal, zinc gets dissolved in dilute acids forming poisonous (toxic) zinc compounds which will poison the content. Therefore galvanized containers can not be used for storing food stuff.	2	
	i)	Classify fuel with suitable examples of each.		
		I) Primary or Natural Physical State	2	2
		i) Solid – e.g wood ,coal		
		ii) Liquid- e.g Crude oil		
		iii)Gaseous- e.g Natural gas (marsh gas)		
		II)Secondary or Artificial Physical Statei) Solid – e.g coke, charcoal		
		ii) Liquid- e.g Petrol,kerosene,diesel oil, lubricating oil		
		iii)Gaseous- e.g LPG,water gas ,producer gas ,coal gas,biogas		
		(Any one type of classification with two types along with one	ne	
		example of each 1 mark)		
	j)	 Write any two disadvantages of solid fuels. 1) They have high ash content value. 2) A large proportion of heat is wasted during their combustion. 3) Combustion operations cannot be controlled easily. 4) Cost of handling is high. 5) Calorific value is lower than liquid or gaseous fuels. 6) They require excess of air for complete combustion. 7) They cannot be used in I.C. engines as a fuel. 	1 Mark each	2

Subject Code: 17203

SUMMER-16 EXAMINATION

Page No: 4/11

Que. No.	Sub. Que.		Model Answer	<u>(</u>	Marks	Total Marks
1.	k)	Write ant two applications of Bio-diesel.			1	2
	,		of Biodiesel:-			
		1) It is an a	Iternative fuel formulated ex	clusively for diesel engines	Mark	
			o modification in engines.		each	
		2) It is also boilers.	used as a heating fuel in dor	nestic & commercial		
		3) It is used	in rockets			
		(Any two ap)				
	1)		ication.Name the types of lu The process of reducing fri			2
		moving or sl	liding surfaces, by the intr	oduction of lubricants in	1	_
		between them	n is called lubrication.			
		Types of Lub	orication (Any two)			
		1. Fluid – Fili	m Lubrication		1/2	
		2. Boundary l	Lubrication		Mark	
		•	ressure Lubrication		each	
2.						
	a)	Attempt any	FOUR			16
		Write the ch	emical reaction taking plac	e in zone of reduction of		4
		blast furnace		•		4
		1) $3Fe_2O_3 + C$ ii) $Fe_3O_4 + C$	$\begin{array}{ccc} CO & \longrightarrow & 2Fe_3O_4 + CO_2 \\ O & \longrightarrow & 3FeO + CO_2 \end{array}$		1	
		iii) $Fe_3O_4 + CO_4$ iii) $FeO + CO_4$	-	T	Mark	
			\rightarrow CaO + CO ₂		each	
			$Fe_2O_3 + 3C$			
			\rightarrow Fe ₃ O ₄ + 4C			
		(Note: consid	ler any four reactions)			
		Write two pr	operties and two uses of m	agnetic steel.		
	b)	Steel	Properties	Uses		
		Magnetic steel	1. This steel has very high ferromagnetic character	i)It is used for making permanent & powerful		4
		SICCI	2. Magnetic property of	magnets for ransformer	4	т
			alloy is not lost with time	cores.		
			& at higher temperature also.	ii)Dynamos iii)Motors		
			aiso.	iv)Loudspeakers,		
				v) Speakers for audio		
				&video sets in		
				electromagnets.		

Subject Code: 17203

SUMMER- 16 EXAMINATION

Page No: 5 /11

Que. No.	Sub. Que.		Model	Answer		Marks	Total Marks
2.	c)			is of carbon con s of different ca			4
		It is classified on	the percentage of	of carbon present	in it.		
		· ·	arbon steel – 0.05			2	
		<i>'</i>	on steel -0.3 to 0				
		c) High carbon s	teel -0.6 to 1.5%	carbon.			
		Properties	Low or Mild Carbon Steel	Medium Carbon Steel	High Carbon Steel		
		i)Hardness	Soft, tough, malleable, ductile	Harder & tougher than steel	Quite hard.		
		ii)Weldability	Suitable for welding	Fairly good for welding (not easily)	unweldable		
		iii)Heat treatment	Responds to heat treatment	can be hardned by heat treatment.	can be imparted desired hardness by heat treatment highest	2	
		iv)Tensile Strength	low	high	Highest		
		Uses :-	Soft wires, wires for rope, chains, rivets, bolts, nails, boiler tubes.	Rail roads, wheels, axles, fish – plates, turbine rotors, springs, gun parts, machine parts etc.	Wooden working tools, chisels, saws, drills, metal cutting tools for lathes, cutters, knives, blades, razors etc.		
		(Any two prope steel)	rties and uses of	any one type of	plain carbon		
	d)	Write composit	ion and properti	es of bio-gas.			4

Subject Code: 17203

SUMMER- 16 EXAMINATION

Page No: 6/11

Que. No.	Sub. Que.	Model Answers	Marks	Total Marks
2.	Que	 Composition:- The average composition of biogas is;- 1) CH₄ (methane) = 50 - 60% (Combustible gas) 2) CO₂ (carbon dioxide) = 30 - 40% (non - combustible gas) 3) H₂ (Hydrogen) = 5 - 10% (Combustible gas) 4) H₂S (Hydrogen sulphide) = traces (Combustible gas) 5) N₂ = 2-6% (Non carbon gas) Properties:- 1) Biogas on burning liberates a larger amount of heat than that obtained by burning animal dung or fire wood directly. 2) It burns without producing residue, smoke etc. 3) It is cheap, clean in use, has good calorific value & convenient fuel. 4) It does not pollute the atmosphere. 5) It involves no storage problem. 6) Biogas production is very economical. 7) It provides excellent yield of good manure. 	2	4
	e)	 8) Its flame temperature is about 540 °c. (Composition 2 mark , any two properties 2 marks) With the help of labelled diagram, illustrate various fractions obtained during refining of crude petroleum. 	2	4
		Crude Oil FURNACE		

Subject Code: 17203

SUMMER- 16 EXAMINATION

Page No:7 /11

Que. No.	Sub. Que.	Μ	Iodel Answers	Marks	Total Marks
2.	f)	 (Any four fractions) State any four characteristics: 1) A good fuel should have 2) A good fuel should have 3) A good fuel should not he gases. 4) The velocity of combust 5) The combustion should he 6) It should contain low per 7) It should be cheap, easily transportation. 8) A good fuel requires sma 9) A good fuel does not concauses air pollution. 	rol) il, Paraffin wax, Asphalt stics of a good fuel. a high calorific value. a moderate ignition temperature iberate any polluting or poisonous ion should be moderate. be easily controllable. rcentage of non-combustible matter. y available & convenient for	^{1/2} Mark each	4
3.	a)	Attempt any FOUR: Explain the mechanism of hydrogen gas.	f immersed corrosion by evolution of		16 4

Subject Code: 17203

SUMMER- 16 EXAMINATION

Que.	Sub.			Total
No.	Que.	Model Answer	Marks	Marks
3.		H ₂ H ₂	1	
		 Process: These types of corrosion occur usually in acidic environments like industrial waste, solutions of non – oxidizing acids. Consider a steel tank containing acidic industrial waste and small piece of copper scrap in contact with steel. The portion of the steel tank in contact with copper acts as anode & is corroded most with the evolution of hydrogen gas. 	1	
		Reactions: At Anode: Fe \longrightarrow Fe ⁺⁺ + 2 e ⁻ (Oxidation) These electrons flow through the metal from anode to the cathode that is piece of copper metal where they are accepted by H ⁺ ions to form H ₂ gas	1	
	b)	At cathode : H^+ ions are eliminated as H_2 gas $2H^+ + 2e^- \longrightarrow H_2 \uparrow (Reduction)$ Thus, over all reaction is $Fe + 2H^+ \longrightarrow Fe^{++} + H_2 \uparrow$ Name and explain the process of coating small and irregular	1	4
		 shaped iron articles to protect from corrosion. The method used to coat small and irregular shaped articles is sherardizing. Process: i) The iron articles (bolts, screws, nails etc) to be coated are first cleaned and then packed with Zn dust and ZnO powder in a steel drum, which is provided with electrical heating circuit 	1	
		arrangement. ii) The drum is slowly rotated for 2-3 hours and its temp is kept between $350^{\circ} - 400^{\circ}$ C during this process Zn gets diffused slowly into iron forming Fe - Zn alloy at the surface which protects iron surface from corrosion.	2	

Subject Code: 17203

SUMMER-16 EXAMINATION

Page No: 9 /11

Que. No.	Sub. Que.		Model Answe	er	Marks	Total Marks
3.			tron Articles	 Electrical Heating Circuit M → Motor (Zn + ZnO) Powder 	1	
	c)	Distingu	ish between galvanizing and ti Galvanizing	nning. Tinning		4
		i)	A process of covering iron or steel with a thin coat of Zinc to prevent it from rusting.	A process of covering iron or steel with a thin coat of Tin to prevent it from corrosion.	1 Mark	
		ii)	In galvanising, zinc protects the iron as it is more electropositive than iron.It does not allow iron to pass into solution.	Tin protects base metal iron from corrosion, as it is less electropositive than iron and higher corrosion resistance.	each	
		iii)	In galvanizing Zn continues to protect the metal by galvanic cell action, even if coating of Zn is broken.	In tinning, tin protects the iron, till the coating		
		iv)	Galvanized containers can not be used for storing acidic food stuff, since Zn reacts with food acids forming Zn compounds which are highly toxic i.e. poisonous.	Tin coated containers and utensils can be used for storing any food stuff since Tin is non toxic and protects the metal from corrosion and does not causes food poisoning.		

Subject Code: 17203

SUMMER- 16 EXAMINATION

Page No: 10/11

Que.	Sub.	Model Answer	Marks	Total
No.	Que.		IVIAINS	Marks
3.	d)	 Suggest the type of lubricant used for following jobs: i)Clock ii) Cutting tools iv)Sewing machine iv) Gears i) Clock : Vegetable and animal oils like palm oil, hazel nut oil, neat foot oil, etc ii) Cutting tools: Mineral oil containing additives like fatty oils,oil-emulsions. iii) Sewing machine : Mineral oil, silicones, thin vegetable and animal oils like palm oil, hazel nut oil, neat foot oil. iv) Gears: Thick mineral oils containing extreme pressure additives (like metallic soaps). 	1 1 1 1	4
	e)	 State and explain the types of lubrication done for machines working under heavy load and at slow speed. A type of lubrication done for machines working under heavy load and at slow speed is boundary lubrication. Process: i) Under such conditions, the space between the moving parts is lubricated with a thin layer of oil lubricant. ii) The oil is adsorbed by physical or chemical forces or both on the metallic surfaces. iii) The adsorbed layers cannot get removed easily & thus avoids direct metal to metal contact. iv) The load is carried by the layers of the adsorbed lubricant on the metallic surfaces. v) The property which is responsible for this kind of adsorption is "Oiliness." 	1	4
		Diagram:	1	

Subject Code: 17203

SUMMER- 16 EXAMINATION

Que. No.	Sub. Que.	Model Answer	Marks	Total Marks
3	f)	Define the terms:		4
		i) Flash Point	1	
		ii) Fire Point		
		iii) Acid value		
		iv) Emulsification		
		i) Flash Point: "Flash point of oil is the lowest temperature at	1	
		which the oil begins to give enough vapours which give		
		momentary flash of light when a flame is applied to it."		
		ii) Fire Point: "Fire point is the minimum temperature at which the oil gives enough vapours which catch fire & burn continuously at least for five seconds when flame is applied to it."	1	
		iii) Acid value: It is the number of milligrams of KOH required to	1	
		neutralize free acid in one gram of oil.		
		iv) Emulsification: Certain oils have the tendancy to mix with water to form an intermate & stable mixture called emulsion & the process is known as 'emulsification.'	1	

